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ABSTRACT: In the early stages of drug development, large chemical libraries are typically
screened to identify compounds of promising potency against the chosen targets. Often,
however, the resulting hit compounds tend to have poor drug metabolism and
pharmacokinetics (DMPK), with negative developability features that may be difficult to
eliminate. Therefore, starting the drug discovery process with a “null library”, compounds that
have highly desirable DMPK properties but no potency against the chosen targets, could be
advantageous. Here, we explore the opportunities offered by machine learning to realize this
strategy in the case of the inhibition of a-synuclein aggregation, a process associated with
Parkinson’s disease. We apply MolDQN, a generative machine learning method, to build an
inhibitory activity against a-synuclein aggregation into an initial inactive compound with
good DMPK properties. Our results illustrate how generative modeling can be used to endow
initially inert compounds with desirable developability properties. CNS MPO

Toxicity

B INTRODUCTION properties before investigating potency during drug develop-
ment, to help ensure that drugs reaching the end of the
pipeline engage their targets effectively and in order to reduce
the requirement for invasive delivery strategies.”"’

In this work, we aim to provide an example of a generic “null
library” that contains inert (null) molecules with good
bioavailability. We define as inert compounds having minimal
biological side effects, i.e., not likely to hit any off targets that
would hamper clinical trials such as G protein-coupled
receptors (GPCRs), kinases, ion channels, and transporters,
which are critical to cell function.'"'” Given the sensitivity of
the CNS to toxicity it is important that these off targets are
minimised.

Three methods could be pursued here to fulfill these criteria:
(1) parsing of clinical trial data to identify compounds with
good safety profiles, (2) using machine learning models to
carry out in silico screening of libraries and predict compounds
with desired properties such as low toxicity,"”'* and (3) using
generative modeling to create molecular structures with
predicted potency beginning from structures with strong
DMPK properties.

In this work, we explore these three approaches in the case
of a-synuclein (aS) aggregation, a process implicated in

High-throughput screens are often the beginning of drug
discovery pipelines, marking the division between the
exploratory research and drug development stages."”” These
screens often yield hit compounds that are not yet drug-like,
leading to a laborious process of optimizing pharmacokinetics,
pharmacodynamics, and toxicology, frequently with a signifi-
cant concomitant loss of potency.” Attempts can be made to
optimize drug potency simultaneously with metabolism and
pharmacokinetics (DMPK), but this creates challenging
situations where different optimization metrics are often in
opposition.4

As a result, for some areas of drug development it may be of
interest to take a more conservative approach, starting from
regions of the chemical space that already possess a strong
DMPK profile and screening for potency in proximal areas of
the chemical space. This approach may be particularly helpful
in therapeutic areas that require target engagement in the
central nervous system (CNS), as the modifications required
for CNS accessibility may ablate a significant proportion of the
potency that time and resources had been invested in
obtaining.” CNS-accessing compounds are of special interest
for brain disorders, including neurodegenerative diseases,
chronic pain, depression, and schizophrenia."® In most
cases, there remains an unmet need for treatments in these
areas, in part resulting from challenges in understanding
biological mechanisms of disease, but also due to the blood
brain barrier which blocks access to most of small molecule
drugs, and nearly all of macromolecule therapeutics.”'® In such
a scenario, it would be interesting to start from strong DMPK
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Table 1. Training and Testing Scores for QSAR Models Tested on Different Parameters of Interest”

Data set MSE

Model AutoDock Vina train AutoDock Vina test
LR 0.699 0.878
DT 0.009 0.359
RF 0.047 0.178

DNN 0.304 0.415

CNS MPO train

0.366
0
0.28
0.056

CNS MPO test Aggregation train Aggregation test

0416 0.0002 o(10')
0.487 0.0002 0.122
0232 0.052 0.516
0.123 0.017 0.081

“Average mean square error (MSE) from cross validation for four different models for the AutoDock Vina scores and CNS MPO scores (training
and testing on the Cayman dataset of ~10,000 compounds) and half-times of aggregation (training and testing on the aggregation dataset of ~300
compoundslg_u). LR = linear regressor, DT = decision tree, RF = random forest, and DNN = deep neural network.

Parkinson’s disease. Misfolded oligomeric aggregates of aS
disrupt membranes within neurons, especially those of
mitochondria,">'® while the highly ordered fibrillar aggregates
act as catalytic surfaces for the production of further oligomeric
aggregates.17 as$ is a challenging target, with successive hurdles
of the blood brain barrier and the neuronal membrane to
overcome. The training data for potency was a small set of
aggregation inhibitor data generated previously." ™' The assay
used to generate this data set was also used in this work to test
compounds predicted to be potent. For DMPK properties, we
used a computational toxicity filter, the central nervous system
multiparameter optimization (CNS MPQO) score,”> and an
experimental metabolic assay tracking ATP levels in cells as a
proxy for cell viability (see Materials and Methods).

Based on our results, we note that the first process tends to
be laborious and necessarily limited in terms of molecular
diversity sampled. Final stage drug candidates are also rarely
good starting points for elaboration, given their pre-existing
complexity. This approach would primarily be suitable for
repurposing efforts. For exploring the second approach we
used biological data in combination with chemical structures.”
We started from previous work'* that employs random forest
models trained on a combination of Morgan fingerprints,”*
Cell Painting,” and gene ontology features to classify
molecules as toxic or nontoxic. Although similar approaches
for combining data have been shown to improve accuracy on a
range of bioactivity predictions,% this approach needs to be
established individually for each bioactivity endpoint studied.
When using this strategy to find compounds targeting aS, we
failed to identify compounds that were both efficacious and
nontoxic. By contrast, we found that the third approach,
implemented in terms of structural alterations via generative
models such as MolDQN>" or MolCycleGAN,” could be
rather promising,

B RESULTS

Identification of Starting Points for Repurposing
from a Set of Clinical Molecules. As a demonstration of the
first approach and its limitations, an initial library of
compounds fitting the null library criteria of good safety
profile and few gene targets was identified by mining the
repositioning database collated by Brown and Patel’” and the
Drug Repurposing Hub® (Figure S1). The repositioning
database was filtered to obtain drugs that failed in phase I, II,
or III without safety concerns, forming a library of ~500
molecules, which was further curated to remove toxic cancer
treatments and all biologics. Of the curated compounds from
the repositioning library, there was ~80% overlap with the
Drug Repurposing Hub. However, 57% of these compounds
caused changes in expression of more than one gene, and so
they were removed as they could not be considered as inert.
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Molecules reaching Phase II or III in the Drug Repurposing
Hub with changes in expression of up to one gene were also
included, giving a final library size of ~600 for potential use in
repurposing or limited elaboration projects. We decided to not
pursue this strategy further, since this subset was limited in
terms of both data set size and ease of functionalization against
a desired target, as well incomplete data on changes in gene
expression and opaque reporting on clinical trial failure.

In Silico Screening for Molecules with Low toxicity.
The second approach that we attempted was to filter
compounds from the Cell Painting (CP) data set based on
their predicted toxicity using an approach recently devel-
oped.'* As a benchmark, we then directly selected for
compounds that passed the toxicity filters and also showed
aggregation inhibition potential using a QSAR model”' trained
on the aggregation inhibitor data set. We found four of the
compounds predicted to have low toxicity also to have good
predicted potency.

The structures within the CP data set deviated significantly
from those in the aggregation data set, implying that the
generalizability of the model to this search space would be
poor. One compound (ISF1, Figure S2A), from among this
number appeared to exhibit aggregation inhibition (Figure
S2B, C), which is shown in comparison to the positive control
compound Anle-138b,*! an aS aggregation inhibitor in clinical
trials. However, the scaffold of ISF1 is notoriously cytotoxic.
This issue was not identified by the model trained on the CP
data set, suggesting limitations in the model or in the ability of
the CP features to encode information about long-term
toxicity. Possible limitations in the CP features may arise
from coarse granularity of the readouts, so that more subtle
toxicity mechanisms are missed or because the data are limited
to a single cell line, thus not encompassing possible toxic
effects in different cell types.

A further crucial filter for compounds designed to target aS
aggregates in neurons is bioavailability. In this case we use a
measure of brain blood barrier permeability, implemented here
via a CNS MPO score.”” ISF1 had a poor CNS MPO score of
1.8, largely due to its high molecular weight, high topological
polar surface area (TPSA, a measure of the polar surface of a
compound), and high logP (a measure of the lipophilicity of a
compound, expressed as the logarithm of its partition
coefficient between n-octanol and water). The common CNS
MPO score cut off in terms of a viable CNS penetrant
compound is 4 out of a possible total of 6,** based on the sum
of six molecular parameters scored between 0 and 1. This
demonstrated the challenges of a direct search for a molecule
with high potency and good DMPK, which failed to produce
any leads.

Potency Optimization of an Initial Inert Small
Molecule Using MoIDQN. Given the drawbacks of the

https://doi.org/10.1021/acs.jcim.3c01777
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Table 2. Optimized Hyperparameters for Training of QSAR Neural Networks”

QSAR model parameters

Data set Layers Nodes per layer Activation Learning rate
AutoDock Vina 3 256, 256, 32 ReLU, Sigmoid 1x1073
CNS MPO 3 256, 256, 32 ReLU6 1x107°
Aggregation 4 128, 128, 128, 32 ReLU, Sigmoid sx107*

“Models were trained for 1000 epochs.
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Figure 1. Characterization of the most potent compound identified by the generative elaboration of an inert compound. (A) Structures of the
parent compound and its derivative hit (G1). (B) Kinetic traces of a 10 uM solution of aS with 25 nM seeds at pH 4.8, 37 °C in the presence of G1
at the concentration indicated (orange, red) or 1% DMSO (purple). Anle-138b (blue) is shown as a positive control and the inert parent
compound is shown for comparison (lilac). (C) Approximate rate of reaction (taken as 1/¢,,,, normalized between 0 and 100) in the presence of
Anle-138b (blue) and G1 (teal). The data point colors match those in panel B. The KICs, of G1 (27.9 uM) is indicated by the intersection of the
fit and the horizontal dotted line. Anle-138b has an extrapolated KICs, of 42.86 uM based on the sample tested here. (D) Human neuroblastoma
cells (SH-SYSY) at a final density of 20,000 cells/well and incubated in the presence of the generative modeling parent compound (navy) for 24 h,
before addition of CellTiterGlo to detect ATP levels as a proxy for cell viability (see Materials and Methods). The concentration range is shown as
a log scale, from 500 pM to SO M. Staurosporine, which induces apoptosis, is shown as a negative control (maroon). (E) Cell viability in SH-SYSY
cells after 24 h of incubation with G1 (teal).

previous two strategies, we sought to combine experimental compound: bioavailability and low toxicity. To this end, an
and computational methods to validate the null criteria for a initial parent structure with no experimental toxicity, strong
592 https://doi.org/10.1021/acs.jcim.3¢01777
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CNS MPO score, and no predicted or experimental activity
against aggregation was chosen to observe whether it could be
functionalized to some degree against the chosen target. We
used a generative modeling method (MolDQN, see Materials
and Methods) to move from the parent chemical space with
strong DMPK toward higher potency, yielding a weighted
compromise between the two via multiparameter optimization
of CNS MPO score and potency. MolDQN uses deep Q
learning, where each compound encountered by the model is a
state and every possible modification to the compound
constitutes the set of possible actions. It generates a set of
compounds derived from a starting structure which have the
desired properties, as predicted by a set of QSAR models; feed
forward neural networks with ReLU activation were used for
this task, employing mol2vec structural embeddings (see
Materials and Methods). The train—test scores for the metrics
of interest are shown for different optimized benchmarking
models in Table 1 and Figure S3, with hyperparameters for the
neural networks shown in Table 2. MolDQN was chosen due
to the ease with which changes could be made to the reward
function, allowing simultaneous optimization of the priority
metrics such as potency and CNS MPO, but also synthetic
accessibility (Figure S4) and predicted binding to the target,
provided by AutoDock Vina.*”

AutoDock Vina gives a predicted binding energy to a target
pocket, in this case a common binding pocket (Figure SS5)
identified in two amyloid fibril structures of aS obtained by
cryo-electron microscopy - 6cu7”” and 8a9L.”* The latter was
found to be prevalent in diseased brains containing Lewy
bodies.’* Both amyloid polymorphs are able to accelerate
aggregation by offering a surface for formation of further
aggregates, in a process called secondary nucleation.'”
Compounds targeted at this common site were previously
found to inhibit aggregation catalyzed by both fibril types,” in
accordance with the hypothesis that these compounds are
inhibitors of secondary nucleation."® The set of obtained
compounds are enriched in inhibitors, giving a hit rate of
~5%'® compared to high-throughput screening (HTS) hit
rates of <0.5% for this target.”> The AutoDock Vina binding
energy was therefore included to give a larger data set to train
on with relevance to the task at hand, which is the
identification of compounds with increased likelihood of
binding to fibrils and preventing secondary nucleation. In
this case, the binding scores were calculated for the drug-like
Cayman®® data set (8231 compounds). This metric was
optimized alongside CNS MPO scores also derived for the
Cayman data set, and the experimental potency metric, the
normalized half-time of aggregation (t,,,), from a separate set
of 225 inhibitors.'"*™>' The normalized half time is the time
taken for half of the monomer to convert to fibril in the
presence of the compound divided by the same time point for
the negative control.

Summary results for the MolDQN output are shown in
Figure S6, with the original data distributions of the Cayman
set training population (blue) and the QSAR model predicted
distributions on the generated population (orange) for the
different parameters of interest that were being simultaneously
optimized. An example subset of the generated compounds is
shown in Figure S7, with a schematic for the pipeline starting
from the inert parent compound with a perfect CNS MPO
score and low predicted inhibition and experimentally
validated low toxicity. We began with the Cayman set to
obtain a parent structure, and derivatized it using MolIDQN, as

593

this set is considered more drug-like and so more likely to
fulfill the overriding goal of this project of developing
compounds with good bioavailability and fewer critical off
targets. However, while the generated structures were
synthetically accessible, they were not commercially available.
The Cayman set is limited in its diversity, size and availability
so any exploration within it would also not be expected to yield
results. To address this issue, we ran a similarity search of the
generated compounds using Tanimoto similarity (ECFP4
fingerprints, bits = 2048, radius = 2) on the ZINC15"
database, to identify similar structures that were purchasable.
This set is considerably larger and more diverse and has greater
availability. The most similar structures within ZINC to the
parent and generated compounds, shown in Figure S8, are
within a Tanimoto similarity threshold of 0.40. Previous
studies indicated that a cutoff of Tanimoto similarity >0.40
removes compounds significantly dissimilar.”®*” Another study
indicated that a Tanimoto similarity threshold of 0.43 (when
calculated using ECFP4) was sufficient to detect half of the
maximal active pairs in an internal library of over 150,000
compounds and 23 protein targets."” The compounds in the
resulting data set were then further filtered using mol2vec
structural representations and a previously developed QSAR
model,*' fitted to the original aggregation data. Seven of the
compounds predicted to be potent were obtained. We note
that using a relatively low threshold for the Tanimoto similarity
with ECFP4 fingerprints, as we did here, could select
compounds with rather different bioavailability and toxicity
properties from the initial ones but also lowers the chances for
false positives." One could circumvent this problem by having
custom-made the compounds generated by MolDQN.

The results described below show that it was possible to
derive a compound with good potency from this inert starting
compound with good DMPK properties, including low toxicity
and good CNS MPO score. This derived compound, G1
(Figure 1A), had intermediate CNS MPO score (3.29), and
improved potency compared to Anle-138b in this experiment
(Figure 1B). Aggregation kinetics are shown in Figure 1B,
while Figure 1C shows an approximate overall rate of
aggregation at different concentrations of Anle-138b and Gl.
This approximate rate was taken as 1/t,,,, and fitted to a Hill
slope. A kinetic inhibitory constant (KICg,) - the concen-
tration of compound at which the ¢, is increased by 50% with
respect to the negative control as defined previously™ - was
then derived.

To ascertain cell viability upon treatment with these
compounds, human neuroblastoma cells (SH-SYSY) at a cell
density of 20k/well were incubated for 24 h with the inert
parent compound used at the start of generative modeling
(Figure 1D) and its derivative, G1 (Figure 1E). Staurosporine,
which induces apoptosis, was used as a negative control. Both
the parent sample and the G1 sample exhibited low toxicity,
with no reduction in viability up to 50 M for the parent, and a
small reduction in viability for G1 observed at the higher end
of the range tested, falling below 90% only at 50 uM. G1
therefore retained the low toxicity of its parent while gaining
functionality against the target. Additional experiments at
lower cell density are shown in Figure S9, with similar
outcomes.

We found that four of the seven predicted hit compounds
tested exhibited inhibition (Figure 1B and Figure S10), with a
potency approaching Anle-138b or better in the case of G1.
The core of the structures resembled those generated by

https://doi.org/10.1021/acs.jcim.3c01777
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MoIDQN, with the transfer of one aromatic ring group to the
other side of the structure and alterations of the heteroatom
number and distribution. While these compounds did exhibit
aggregation inhibition and low toxicity, these structural
changes also led to a drop in CNS MPO scores. For example,
the aggregation inhibitor G1 had a CNS MPO score of 3.29,
compared to the perfect score of 6 of its parent. The issue with
the structure of this compound was the TPSA and the number
of hydrogen bond donors, both of which could be addressed
by reducing the number of NH groups present within the
aromatic ring systems. These issues would have to be
addressed by custom synthesis, which would remove the
need for the intermediate step to map the generated
compounds onto what was commercially available and rescreen
them through QSAR models. However, this was outside the
scope of this work, which was intended to illustrate a proof of
concept of pushing an inert compound with good DMPK
properties toward target activity.

B DISCUSSION AND CONCLUSIONS

We have presented an approach to start a drug discovery
program from a compound with strong DMPK properties, as a
means of derisking a pipeline.

Our initial attempt consisted of a repurposing strategy for
drugs with poor efficacy against their original targets. This
attempt was found to be problematic due to reliance on
manually parsed, poorly recorded clinical trial data with limited
data set size. Furthermore, the complexity of endpoint drugs
did not predispose them to be favorable candidates for
structural alterations.

Our second attempt was aimed at improving the diversity of
compounds and the size of the data sets available as, at least in
principle, any compound data set could be screened using a
toxicity predictor, provided the compounds within that data set
had similar substructures to what the predictor was trained on.
After screening through a toxicity predictor trained on Cell
Painting cell perturbations, the predicted nontoxic fraction was
then screened through a QSAR model trained on the potency
metric of interest. However, out of the compounds that could
be obtained, the only compound that exhibited activity had a
poor CNS MPO score and high cytotoxicity concerns. These
results illustrate the challenge of attempting a direct search for
a compound with ideal properties by using computational
screening alone.

Based on the lessons from the first two attempts, in our third
attempt, we used a generative model to push a population of
compounds or a single structure from a position of strong
DMPK and low toxicity toward a position of desired potency.
This approach yielded a better compromise between DMPK,
toxicity, and potency. We used a single structure as a starting
point for ease of experimental illustration, but this could
equally be done with a population of compounds with desired
properties using newer models such as a more recently
reported chemical language generative model.”’ As a result of
the need to find purchasable material via the similarity screen
and subsequent QSAR filtering, there were structural
deviations from the original generated structures, including
the relocation of one of the aromatic groups and changes in the
heteroatom distribution. There were also difficulties retaining a
high CNS MPO score at this stage. Indeed, while the
MoIDQN implementation made conservative changes to a
core structure, those changes tended to involve addition of
polar groups to mimic the properties of the aggregation
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inhibitor set, which had higher polar surface area in general.
These changes had a harmful effect on the CNS MPO if
employed excessively. To more appropriately pursue the
strategy outlined in this work, a more stringent weighting
would be applied to the CNS MPO to ensure this was
degraded as little as possible during potency optimization, and
the structures themselves would then be synthesized rather
than utilizing similarity searches to find the closest option.

Overall, the aim of this work was to demonstrate that,
starting from compounds with strong DMPK properties, it is
possible to move toward compounds of promising potency.
This approach could be seen as the reverse of more commonly
used approaches, which start from compounds with promising
potency and then optimize their DMPK properties. In both
scenarios, machine learning can be a great aid in identifying
promising chemical matter.

We have demonstrated this approach by modifying a
compound with strong CNS MPO score and low experimental
toxicity from the Cayman set of drug-like compounds to obtain
potency in an assay relevant to drug discovery for Parkinson’s
disease. We anticipate that future approaches could utilize
generative adversarial networks to bias inert compound
populations toward regions of the chemical space with higher
potency while controlling the distance from the desirable
DMPK space.

B MATERIALS AND METHODS

Prediction Models. All coding was carried out in Python
3. Neural networks were created with Pytorch. Scikit-learn'
implementations of random forest, decision tree, and linear
regressors were tested for benchmarking and filtering of
molecules after the similarity searches (see Supporting
Information). For data handling, calculations, and graph
visualization the following software and packa7ges were used:
pandas,44 Seaborn,* Matplotlib,46 NumPy,4 SciPy,48 and
GraphPad Prism 9.1.2.

MoIDQN. MolDQN was not altered from the published
version aside from the tailoring of parameters and parameter
weights of the QSAR models to optimize the metrics of the
generated compounds such as the aggregation half time, CNS
MPO score, binding score, and synthesisability score.

Experimental methods can be found in the Supporting
Information.

B ASSOCIATED CONTENT

Data Availability Statement

Code and data for the toxicity filtering can be found at https://
gitio/Jkra8. Code and data for subsequent generative
modeling can be found at https://github.com/Jaredwg2000/
MoIDQN_CNS. Code and data for the previously developed
QSAR filter can be found at https://github.com/rohorne07/
Iterate.
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Metrics for molecules collated during manual clinical
trial parsing, model performance metrics on the different
data sets, aggregation data for ISF1 effects of
introduction of a synthetic accessibility penalty,
structural representations of the fibril binding pockets,
SH-SYSY toxicity data at different cell densities, metrics
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