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Summary

Multiple randomized controlled trials, each comparing a subset of competing interventions, can be 

synthesized by means of a network meta-analysis to estimate relative treatment effects between 

all interventions in the evidence base. Here we focus on estimating relative treatment effects 

for time-to-event outcomes. Cancer treatment effectiveness is frequently quantified by analyzing 

overall survival (OS) and progression-free survival (PFS). We introduce a method for the joint 

network meta-analysis of PFS and OS that is based on a time-inhomogeneous tri-state (stable, 

progression, and death) Markov model where time-varying transition rates and relative treatment 

effects are modeled with parametric survival functions or fractional polynomials. The data needed 

to run these analyses can be extracted directly from published survival curves. We demonstrate use 

by applying the methodology to a network of trials for the treatment of non-small-cell lung cancer. 

The proposed approach allows the joint synthesis of OS and PFS, relaxes the proportional hazards 

assumption, extends to a network of more than two treatments, and simplifies the parameterization 

of decision and cost-effectiveness analyses.
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1 | INTRODUCTION

Randomized controlled trials (RCTs) are considered the most appropriate study design to 

obtain evidence regarding relative treatment effects. However, an individual RCT rarely 

includes all alternative interventions of interest, and as such does not provide all the 

information needed to select the best alternative. Typically, the evidence base consists of 

multiple RCTs, each of which compares a subset of the interventions of interest. If each of 

these trials has at least one intervention in common with another trial such that the evidence 

base is represented by a single connected network, a network meta-analysis (NMA) can 

estimate relative treatment effects between all the competing interventions in the evidence 

base.1

Often there is an interest in estimating the relative treatment effects of alternative 

interventions regarding time-to-event outcomes. For example, in oncology treatment efficacy 

is often quantified by analyzing time from treatment initiation to the occurrence of a 

particular event. Very commonly, studies report data on overall survival (OS), where the 

event is death from any cause, and on progression-free survival (PFS), where the event is 

death from any cause or disease progression, whichever occurred first.2

NMA of time-to-event outcomes with a single effect measure per study are based on the 

proportion of patients alive at a specific time point, median survival, or reported hazard 

ratio (HR).3 The limitation of a NMA of survival at a specific time point is that we only 

focus on the cumulative effect of treatment at that time point and ignore the variation in 

effects over time up to, as well as beyond, that time point. NMAs of median survival 

times have similar limitations. The HR summarizes the treatment effect for the complete 

follow-up period of the trials, but only represents the treatment effect for each time point 

if the proportional hazards (PH) assumption holds. If the PH assumption is violated, trial 

specific HRs represent an average effect over the follow-up period, which can cause biased 

estimates in a NMA if trials have different lengths of follow-up.

As an alternative to a NMA with a univariate treatment effect measure, we can also 

use a multivariate treatment effect measure that describes how the relative treatment 

effects change over time.3 Ouwens et al, Jansen, and Cope et al presented methods for 

NMA of time-to-event outcomes where the hazard functions of the interventions in a 

trial are modeled using parametric survival functions or fractional polynomials and the 

difference in the parameters are considered the multi-dimensional treatment effects, which 

are synthesized across studies.4–7 By incorporating time-related parameters, these NMA 

models can be fitted more closely to the available data.

Both PFS and OS of an intervention determine its value and can inform decision-making. 

In combination with a baseline survival function for a reference treatment, the multivariate 

NMA models embedded in parametric survival functions can form the basis for partitioned-

survival cost-effectiveness models.8 Frequently, the pooled PFS and OS curves need to be 

extrapolated over time in order to obtain estimates of the expected quality adjusted life-years 

before and after disease progression. Since the separate meta-analyses of PFS and of OS 

data ignore the correlation between the outcomes, any required extrapolation may result 
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in possible crossing of PFS and OS curves. A state-transition model with three health 

states-stable (pre-progression), progression, and death—with parametric hazard functions 

for the three corresponding transitions avoids this issue. If we have individual patient data 

(IPD) regarding time to progression, time to death, and censoring for all trials included 

in the NMA, we can estimate these hazard functions using a statistical model with the 

same tri-state structure and avoid any inconsistency between the clinical evidence synthesis 

and the economic evaluation.9 Reality though is that for most, if not all, trials there is no 

access to IPD and the synthesis has to be based on reported summary findings. Although 

reported Kaplan-Meier curves for PFS and OS can be digitized and a dataset of “virtual” 

IPD event-times can be created with the algorithm by Guyot et al, it does not provide 

the information needed to determine which time-to-progression data point corresponds to 

which time-to-death data point.10 Markov-state-transition NMA models have been presented 

for disease progression11,12 and competing risks13 based on aggregate level data, but these 

models assumed constant hazards for transitions between states.

We introduce a method for the joint NMA of PFS and OS that is based on a tri-state (stable, 

progression, and death) transition model, where time-varying hazard rates and relative 

treatment effects are modeled with parametric survival functions or fractional polynomials. 

We illustrate parameter estimation based on aggregate level data.

2 | MULTI-STATE NETWORK META-ANALYSIS FRAMEWORK

2.1 | Model

At any time u, patients in study i randomized to treatment arm k can be in one of three 

health states: alive with stable disease (ie, not progressed), alive and progressed, and dead, 

with probabilities Sik u , P ik u  and Dik u , respectively, as shown in Figure 1. Let ℎik
SP u , 

ℎik
SD u , and ℎik

PD u  be the hazard rates for the stable-to-progression transition (ie, disease 

progression), the stable-to-death transition (ie, dying pre-progression), and the progression-

to-death transition (ie, dying post-progression).

A multi-state NMA that explicitly estimates each possible transition in a tri-state model and 

modeling time-varying hazard rates and relative treatment effects with survival functions 

parameterized as fractional polynomials can be expressed as follows:

ln ℎik
SP u = α1, ik + α2, iku p1 + ⋯ + αa, iku pa − 1

ln ℎik
SD u = αa + 1, ik + αa + 2, iku pa + ⋯ + αb, iku pb − 1

ln ℎik
PD u = αb + 1, ik + αb + 2, iku pb + ⋯ + αB, iku pB − 3
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α1, ik

⋮
αB, ik

=
μ1, i

⋮
μB, i

+
δ1, ik

⋮
δB, ik

δ1, ik

⋮
δB, ik

∼ MV N
d1, 1tik − d1, 1ti1

⋮
dB, 1tik − dB, 1ti1

, Σ

Σ =
σd1

2 ⋯ σd1σdBρd1dB

⋮ ⋱ ⋮
σd1σdBρd1dB ⋯ σdB

2

(1)

with δ1, i1 = δ2, i1 = , … , = δB, i1 = 0 and d1, 11 = d2, 11 = , … , = dB, 11 = 0 for identification.

In Equation (1), p1, … , pB − 3 are fractional powers and the round bracket notation denotes 

the Box-Tidwell transformation: u p = up if p ≠ 0 and u p = ln u  if p = 0. Equation (1) also 

includes the situation of repeated powers, where px = py for at least 1 pair of indices x, y , 

1 ≤ x < y ≤ a − 1, a ≤ x < y ≤ b − 1, or b ≤ x < y ≤ B − 3. In this situation, u py ln u  is used 

instead of u py  itself. A complete set of flexible fractional polynomials can be created with 

p1, … , pB − 3 ∈ −2, − 1, − 0.5, 0, 0.5, 1, 2 .

α1, ik, α2, ik, … , αa, ik are regression coefficients that represent the scale and shape parameters 

of the log-hazard function describing the stable-to-progression transition in study i for 

study arm k. αa + 1, ik, αa + 2, ik, … , αb, ik are the regression coefficients that represent the log-

hazard function for the stable-to-death transition. αb + 1, ik, αb + 2, ik, … , αB, ik are the regression 

coefficients that represent the scale and shape parameters of the log-hazard function 

describing the progression-to-death in study i for study arm k.

When α3, ik = , …, = αa, ik = 0, αa + 3, ik = , …, = αb, ik = 0, and αb + 3, ik = , …, = αB, ik = 0 the log-

hazard functions for each of the three transitions follow a first order fractional polynomial of 

which the Weibull and Gompertz are special cases when p1 = pa = pb = 0 and p1 = pa = pb = 1, 

respectively. When α4, ik = …, = αa, ik = 0, αa + 4, ik = , …, = αb, ik = 0, and αb + 4, ik = , …, = αB, ik = 0
the log-hazard functions for each of the three transitions follow a second-order fractional 

polynomial.

The μ ⋅ , i reflect the study effects regarding the scale and shape parameters in each study i. 
The δ ⋅ , ik are the study specific true underlying relative treatment effects for the treatment in 

study arm k relative to the treatment in arm 1 of that trial (with δ ⋅ , i1 = 0 for identification) 

regarding the scale and shape parameters of the log-hazard functions for the different 

transitions, which are modeled with normal distributions with the mean effect for treatment 
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t expressed in terms of the overall reference treatment 1, d ⋅ , 1tik − d ⋅ , 1ti1, and with a between-

study-heterogeneity covariance matrix Σ. d ⋅ , 1tik represents the relative treatment effect with 

treatment t in study arm k in study i relative to reference treatment 1 regarding the scale 

and shape parameters of the log-hazard functions. We make the assumption of a common 

between-study correlation ρd1, xydB, xy = ρd1dB  and σd .  represents the common between-study 

standard deviation.

A fixed effect model is obtained by replacing

δ1, ik

⋮
δB, ik

∼ MV N
d1, 1tik − d1, 1ti1

⋮
dB, 1tik − dB, 1ti1

, Σ  with 
δ1, ik

⋮
δB, ik

=
d1, 1tik − d1, 1ti1

⋮
dB, 1tik − dB, 1ti1

The random effects model presented with Equation (1) does not account for correlation 

between trial-specific δ ⋅ , ik s in multiple-arm trials (> 2 treatments), but can be extended 

to fit trials with three or more treatment arms by decomposition of a multivariate normal 

distribution as a series of conditional distributions according to Achana et al.14 The 

conditional distributions for arm k > 2, given all arms from 2 to k − 1 are:

δ1, ik

⋮
δB, ik

|

δ1, i2

⋮
δ1, i k − 1

⋮

δB, i2

⋮
δB, i k − 1

∼ MV N

d1, 1tik − d1, 1ti1 + 1
k − 1 ∑

z = 1

k − 1
δ1, iz − d1, 1tiz − d1, 1ti1

⋮

dB, 1tik − dB, 1ti1 + 1
k − 1 ∑

z = 1

k − 1
δB, iz − dB, 1tiz − dB, 1ti1

, k
2 k − 1 Σ

(2)

2.2 | Data and likelihood

For this paper we assume there is no access to IPD for the trials included in the NMA. 

The parameters will be estimated based on the conditional survival probabilities regarding 

PFS and OS that can be infered from the published Kaplan-Meier curves. (See Appendix 

A for the algorithm outlining construction of the dataset.) The total follow-up time can 

be partitioned into M successive non-overlapping intervals indexed by m = 1, …, M. We 

refer to interval m as Um and write u ∈ Um to denote um ≤ u < um + 1. The length of Um is 

Δum = um + 1 − um. For each interval m, we propose a binomial likelihood for the conditional 

survival probabilities regarding PFS and OS at time point u relative to the time point at the 

beginning of the interval Um according to:

riku
cPFS ∼ binomial pik

cPFS u , niku
cPFS and riku

cOS ∼ binomial pik
cOS u , niku

cOS

(3)
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where riku
cPFS are the observed number of patients who have not yet experienced progression 

or death at time u in the mtℎ interval in study i for treatment arm k and riku
cOS are the observed 

number of patients who have not died at time u in that interval. pik
cPFS u  is the underlying 

conditional survival probability regarding PFS and pik
cOS u  is the underlying conditional 

survival probability regarding OS, niku
cPFS and niku

cOS are the corresponding sample sizes at the 

beginning of the interval.

For the mtℎ interval, the conditional probabilities pik
cPFS u  and pik

cOS u  are related to the 

proportion of patients who are progression free (stable disease) Sik u  and the proportion of 

patients with progressed disease P ik u  according to:

pik
cPFS u = Sik u

Sik um
and pik

cOS u = Sik u + P ik u
Sik um + P ik um

(4)

Arbitrary hazard functions can be approximated with a set of discontinuous constant hazard 

rates over relative short successive time intervals. For each interval m, Sik u , P ik u , and death 

Dik u  are related to the hazards ℎikm
SP , ℎikm

SD, ℎikm
PD according to the following set of differential 

equations (See Appendix B):

Sik u = Sik um e− ℎikm
SP + ℎikm

SD u − um

P ik u = P ik um e−ℎikm
PD u − um +

Sik um ℎikm
SP e− ℎikm

SP + ℎikm
SD u − um − e−ℎikm

PD u − um

ℎikm
PD − ℎikm

SP − ℎikm
SD

Dik u = 1 − Sik u − P ik u

(5)

In order to estimate the three parameters ℎikm
SP , ℎikm

SD, and ℎikm
PD for each interval m, we need to 

define Equations (3), (4), and (5) for at least two time points per interval. In order to improve 

identifiability of hazard rates in the presence of a small number of events, we use three time 

points per interval: (1) a time point at 1/3 of the length of the interval um + 1
3Δum, which we 

define as um + 1
3
; (2) a time point at 2/3 of the length of the interval um + 2

3Δum, which we define 

as um + 2
3
; and (3) the time point at the end of the interval um + 1. The obtained estimates of the 

hazards for interval m are assigned to the time point um + 1
3
 for Equation (1).
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3 | ILLUSTRATIVE EXAMPLE

3.1 | Evidence base

An example of the multi-state models is presented for a NMA of first line treatment 

of adult patients with metastatic EGFR+ non-squamous non-small-cell lung cancer 

(NSCLC) with gefitinib, erlotinib, afatinib, dacomitinib, or platinum-based doublet 

chemotherapy (PBDC) regimens. Thirteen RCTs were obtained with a systematic literature 

review (ARCHER1050;15,16 LUX-LUNG 7;17,18 LUX-LUNG 3;19,20 LUX-LUNG 6;20,21 

EURTAC;22–24 ENSURE;25 OPTIMAL;26,27 First-SIGNAL;28 WJTOG3405;29 IPASS;30,31 

NEJ002;32,33 Han2017;34 Yang201435,36). The evidence network is presented in Figure 2 

and the trial-specific PFS and OS curves are provided in the online supplementary material.

3.2 | Network meta-analysis to estimate relative treatment effects

The following model was used for the NMAs, which is a simplification of Equation (1) to 

facilitate parameter estimation, yet believed to be sufficiently flexible to capture the true 

time-varying hazards for all three transitions in this cancer case study.

ln ℎik
SP u =

α1, ik + α2, ikup1 + α3, ikup2  if p1 ≠ p2

α1, ik + α2, ikup + α3, ikupln u  if p1 = p2 = p

ln ℎik
SD u = α4, ik + α5, ikup3

ln ℎik
PD u = α6, ik + α7, ikup4

α1, ik

α2, ik

α3, ik

α4, ik

α5, ik

α6, ik

α7, ik

=

μ1, i

μ2, i

μ3, i

μ4, i

μ5, i

μ6, i

μ7, i

+

δ1, ik

d2, 1tik − d2, 1ti1

d3, 1tik − d3, 1ti1

0
0

d4, 1tik − d4, 1ti1

0

δ1, ik ∼ N d1, 1tik − d1, 1ti1, σd1
2

(6)

with u0 = ln u  and δ1, i1 = 0 and d1, 11 = d2, 11 = d3, 11 = d4, 11 = 0 for identification.

When α3, ik = 0 and p1 ∈ 0, 1  the log-hazard functions for the stable-to-progression transition 

follow a Weibull or Gompertz distribution. When in addition α3, ik ≠ 0 and p2 ∈ 0, 1  the 
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log-hazard functions follow a second order polynomial that are extensions of the Weibull 

and Gompertz model to allow for arc- and bathtub shaped log-hazard functions. When 

α5, ik = 0 the stable-to-death transition follows an exponential distribution. When α5, ik ≠ 0 and 

p3 ∈ 0, 1  this transition is represented with a Weibull or Gompertz distribution, respectively. 

When α7, ik = 0 the log-hazard functions for the progression-to-death transition follow an 

exponential distribution. When α7, ik ≠ 0 and p4 ∈ 0, 1  this transition is represented with a 

Weibull or Gompertz distribution.

With this model we assume that the relative treatment effects act on all parameters of the 

stable-to-progression log-hazard function (d1, 1tik, d2, 1tik, and d3, 1tik). d4, 1tik represents the relative 

treatment effect on the scale parameter of the log-hazard function for the progression-to-

death transition. There is one between-study heterogeneity parameter, which is related to 

the relative treatment effect that acts on the scale of the log-hazard function for the stable-to-

progression transition: The δ1, ik are drawn from a normal distribution with the mean effect for 

treatment t expressed in terms of the overall reference treatment 1, d1, 1tik − d1, 1til, and between 

study heterogeneity σd1
2 . The relative treatment effects regarding the first d2, 1tik  and second 

d3, 1tik  shape parameters of the log-hazard function for the stable-to-progression transition 

were assumed to be fixed. To accommodate three-arm trials (although not included in this 

example) Equation (2) can be simplified for this model according to:

δ1, ik |
δ1, i2

⋮
δ1, i k − 1

∼ N d1, 1tik − d1, 1ti1 + 1
k − 1 ∑z = 1

k − 1 δ1, iz − d1, 1tiz − d1, 1ti1 , k
2 k − 1 σd1

2

(7)

If it is assumed that treatment only has an effect on the transitions from stable to 

progression, the model can be further simplified by setting d4, 1tik = 0.

The following prior distributions for the parameters of the model were used:

μ1, i

μ2, i

μ3, i

μ4, i

μ5, i

μ6, i

μ7, i

∼ MV N

0
0
0
0
0
0
0

, Tμ   Tμ =

1000 0 0 0 0 0 0
0 100 0 0 0 0 0
0 0 10 0 0 0 0
0 0 0 1000 0 0 0
0 0 0 0 100 0 0
0 0 0 0 0 1000 0
0 0 0 0 0 0 100

d1, 1t

d2, 1t

d3, 1t

d4, 1t

∼ MV N

0
0
0
0

, Td   Td =

100 0 0 0
0 10 0 0
0 0 10 0
0 0 0 100
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σd1 ∼ uniform 0, 2

(8)

3.3 | Meta-analysis of absolute effects with overall reference treatment

A NMA provides estimates of relative treatment effects between the competing interventions 

(ie, hazard ratios). In order to obtain estimates for the hazard rates over time for the 

transitions between health states for each treatment, we first need to estimate the time-

varying hazard rates for an overall reference treatment, defined as treatment 1, and 

subsequently apply the hazard ratios of each treatment relative to treatment 1 obtained with 

the NMA to these baseline hazard rates. As a final step, these time-varying hazard rates 

for each transition by treatment can be transformed into the distribution S, P , and D over 

time, and PFS and OS curves. In this example, gefitinib is defined as treatment 1. Different 

sources of evidence can be considered for estimating a baseline model, and in the context 

of cost-effectiveness analysis, it is standard practice to use a (large) observational study 

that reflects the outcomes in routine practice for the target population of interest. If that is 

not available, the trial most relevant for the target population can be selected. If multiple 

studies are deemed relevant then a meta-analysis can be considered. For this example, we 

still performed a meta-analysis of all gefitinib arms of the trials (instead of selecting one 

most relevant trial) to illustrate that the proposed framework can also be used to estimate a 

baseline model if indeed multiple studies are relevant. We used the following fixed effects 

model:

ln ℎi
SP u =

M1 + M2up1 + M3up2  if p1 ≠ p2

M1 + M2up + M3upln u  if p1 = p2 = p

ln ℎi
SD u = M4 + M5up3

ln ℎi
PD u = M6 + M7up4

(9)

We used the same data structure, likelihood, and link functions as used for the NMA. (See 

Equations 3,4, and 5). The prior distribution for this model was:

M1

M2

M3

M4

M5

M6

M7

∼ MV N

0
0
0
0
0
0
0

, TM   TM =

1000 0 0 0 0 0 0
0 100 0 0 0 0 0
0 0 100 0 0 0 0
0 0 0 1000 0 0 0
0 0 0 0 100 0 0
0 0 0 0 0 1000 0
0 0 0 0 0 0 100
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(10)

3.4 | Parameter estimation

The parameters of the different models were estimated using a Markov Chain Monte Carlo 

(MCMC) method implemented in the JAGS software package.37 All JAGS analyses were 

run using the rjags package of R statistical software.38 See the online supplementary 

material for the JAGS code for one of the models used to estimate relative treatment effects.

If the sample size or number of PFS or OS related events in interval Uikm is relatively small, it 

may be challenging with the MCMC algorithm to distinguish between the “correct answer” 

for ℎikm
SP , ℎikm

SD, and ℎikm
PD, and alternative estimates where either ℎikm

SP = 0 or ℎikm
PD = 0. As such, we 

set a constraint to avoid that ℎikm
SP  and ℎikm

PD is estimated to be zero. (See the JAGS code in the 

online supplementary material)

The residual deviance and the deviance information criterion (DIC) were used to compare 

the goodness-of-fit of the competing models.39 The DIC provides a measure of model fit 

that penalizes model complexity. In general, a more complex model results in a better 

fit to the data, demonstrating a smaller residual deviance. The model with the better trade-

off between fit and parsimony has a lower DIC. A difference of 5 points in the DIC is 

considered meaningful.39

3.5 | Results

For transparency purposes we first present the results of the meta-analysis of treatment 1 

(gefitinib), followed by the results of the NMA, and finally the PFS and OS curves obtained 

by applying the relative treatment effects obtained with the NMA to the pooled results for 

treatment 1.

In Table 1, ten competing models for the meta-analysis of treatment 1 that were evaluated 

are presented. The meta-analysis models with a second order fractional polynomial for 

the stable-to-progression transition (“SP second order FP(0.); SD …; PD …” ie, M3 ≠ 0) 

resulted in the smallest deviance and DICs. The models assuming a Gompertz distribution 

for this transition (“SP Gompertz; SD …; PD …”, ie, M2 ≠ 0, up1 = 1, and M3 = 0) resulted 

in the largest deviance and DIC. The parameter estimates of a selection of four competing 

models that show different patterns of time-varying hazards for the three transitions between 

the health states are presented in Table 2. The actual time-varying hazard rates and 

corresponding PFS and OS curves with treatment 1 are plotted in Figure 3.

For the NMA, 14 competing models were evaluated; ten fixed effects models and four 

random effects models. (See Table 1) The NMA models that assumed a second order 

fractional polynomial for the stable-to-progression transition had a lower deviance and 

DIC than the corresponding simpler models assuming a Weibull distribution for this 

transition. The models with a Weibull distribution for the stable-to-death transition had a 

lower DIC than the corresponding models assuming an exponential distribution for this 

transition. Models with a Weibull distribution for the progression-to-death transition were 

not a meaningful improvement over the corresponding models that assumed an exponential 
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distribution for this transition. Comparing models that assumed a relative treatment effect 

for the progression-to-death transition with the corresponding models without this relative 

treatment effect indicates that a relative effect may be a relevant component to include 

for this transition in some models. The second order fractional polynomial and Weibull 

random effects models performed better than their fixed effects equivalents, indicating that 

incorporating between-study heterogeneity is important.

Parameter estimates for the random effects second order fractional polynomial model (“SP 
second order FP(01) RE3; SD Weibull; PD Weibull FE1(scale)”), the random effects Weibull 

model (“SP Weibull RE2; SD exponential; PD Weibull FE1(scale)”), and two fixed effects 

models (“SP Weibull FE2; SD Weibull; PD exponential FE” and “SP Weibull FE2; SD 
exponential; PD exponential”) are presented in Table 3. The corresponding time-varying 

HRs with each treatment relative to treatment 1 for the stable-to-progression transition are 

presented in Figure 4, and the constant HRs for the progression-to-death transition in Figure 

5. (Please note that we did not assume a relative treatment effect for the stable-to-death 

transition). Applying the relative treatment effect parameter estimates describing the HRs 

over time obtained with these NMA models to the parameter estimates of the models used 

for the analysis of treatment 1, we obtain the PFS and OS curves by treatment, as presented 

in Figure 6. In order to illustrate the width of the 95% credible intervals of these survival 

curves due to the uncertainty in the time-varying HRs, we ignored the uncertainty for the 

reference treatment 1. (If the uncertainty of the meta-analysis would have been incorporated 

as well, the 95% credible intervals would have been a bit wider.)

4 | DISCUSSION

With this paper, we present a method for the joint NMA of PFS and OS that is based 

on a tri-state transition model. This method extends existing parametric NMA methods for 

time-to-event data4–7 by defining the structural relationship between PFS and OS according 

to the stable, progression, and death states that define the course of disease over time. 

Instead of modeling the time-varying hazard rates for PFS and OS separately, we model 

the time-varying transition rates between the three health states simultaneously. The primary 

advantage of this evidence synthesis framework is that estimates for PFS and OS remain 

consistent over time, which is needed for decision and economic modeling.

The primary reason to propose the method described in this paper is to facilitate 

parameterization of multi-state cost-effectiveness models based on summary level data. In 

order to do so, we describe the conditional survival probability for PFS and OS with two 

separate binomial likelihoods for a given interval m (See Equation 3), and capture their 

relationship with Equations (4) and (5). The implication of this approach is that we assume 

that ℎikm
PD is independent from ℎikm

SP , or ℎikm
SD, or both ℎikm

SP  and ℎikm
SD. The correlation between 

conditional PFS and conditional OS is explained by shared parameters ℎikm
SP  and ℎikm

SD. For the 

purposes of decision making, the uncertainty in estimates is at least as important as the 

point estimates themselves. If the structural assumption regarding the relationship between 

the likelihoods for conditional PFS and OS does not capture their correlation appropriately, 

the precision in some or all of the transition rates, and therefore OS, will be overestimated. 

We performed a simple simulation to assess the performance of estimating the hazard rates 
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for the three transitions in a given time interval using the three conditional PFS and OS 

data points for that interval. Overall, the coverage probabilities of the 95% credible intervals 

for the hazard rates are acceptable. (See online supplementary material for more detail.) 

However, more elaborate simulation studies are recommended to investigate this in more 

detail.

To estimate the model parameters, we opted to use three conditional PFS and three 

conditional OS data points for each time interval. In principle, two conditional PFS and 

OS data points (ie, four data points in total) would be sufficient to estimate the three constant 

hazard rates corresponding to the possible transitions in a given interval. When the number 

of events are small, however, the MCMC algortithm may not be able to distinguish between 

the “correct solutions” for the three hazard rates and alternative solutions corresponding to a 

situation where either ℎikm
SD or ℎikm

PD equates zero. By using three conditional PFS and OS data 

points for each time interval, this is less likely to be the case. (In our example, we also used 

a likelihood constraint to avoid ℎikm
SD or ℎikm

PD equate zero.) Using three conditional PFS and OS 

data points for each time interval implied 3-month constant hazards in our example, longer 

than if two conditional PFS and OS data points would have been used (ie, 2-month constant 

hazards). In principle, we want intervals sufficiently short to allow the models to reflect true 

changes in the hazards over time. However, the shorter the interval, the smaller the number 

of transitions in an interval and the greater the uncertainty of the interval-specific hazard 

rates. With our approach, the subsequent interval-specific rates are “connected” with the 

model thereby improving interval-specific estimates, but the uncertainty in scale and shape 

parameter estimates will be smaller when interval-specific estimates can be estimated with 

greater precision. In essence with longer time intervals we remove some of the parameter 

uncertainty in exchange for a greater structural assumption. As a first attempt in assessing 

the impact of the length of the interval on model estimates, we performed a comparison 

of the estimated time-varying hazards for the different transitions as obtained with the meta-

analysis of treatment 1 according to Model 1 based on an interval length of 3 months using 

three data points (as used in the example analyses) and an interval length of 1.5 months also 

using three data points. (See online supplementary material) Out of the presented models for 

the example, Model 1 is the most flexible in terms of capturing changes in the hazards over 

time and therefore best suited to compare the impact of the length of the time-interval. As 

depicted, the estimated hazards and patterns are similar between the two analyses, indicating 

that the method seems robust to the chosen interval length, at least for intervals between 1.5 

and 3 months. That being said, further research is needed to define the optimal length of 

intervals and number of data points to use per interval given the observed number of events 

in an interval, the population size at risk at the beginning of the interval, and rate of change 

of the hazards over time.

Given the flexibility of the proposed framework, decisions need to be made regarding 

potentially relevant model structures for its implementation for a specific study. For the 

illustrative example, we made model choices that we considered appropriate for a typical 

cancer case study where treatment aims to prolong survival. First, we assumed that a 

relative treatment effect for the stable-to-death transition was not needed reflecting the belief 

that differences in survival between treatments are only due to differences in delayed or 
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avoided tumor progression, and not due to other treatment-related (adverse) events. Second, 

we assumed that a function more complex than a first-order fractional polynomial with a 

constant relative treatment effect was not required for the progression-to-death transition 

because this transition is conditional upon experiencing progression and modeled in relation 

to follow-up time. One could even argue that a relative treatment effect for this transition is 

not needed when treatment is discontinued upon progression. However, the DIC indicated 

that adding this parameter to the models resulted in a meaningful improvement for the 

example analyses, which is primarily related to the PBDC trials. Reasons to include a 

treatment effect parameter for the progression-to-death transition is treatment cross-over 

upon progression in a subset of trials, if post-progression treatment between trial arms differ, 

or if the post-progression mortality patterns are expected to differ between treatments due to 

other reasons. Furthermore, there may be correlations between the time-to-progression and 

subsequent time-to-death that could induce treatment effects for the progression-to-death 

transition. For these reasons exploring incorporating a treatment effect for the progression-

to-death transition should be explored. Third, out of the possible fractional polynomials, we 

only evaluated exponential, Weibull and Gompertz models and their extensions where the 

additional parameter related the log-hazard to time or log-time. We did not consider any of 

the negative power transformations of time, primarily because these functions do not link 

to known survival distributions and the second-order models we did use have already the 

flexibility to capture arc-shaped hazard functions.

This brings us to the point of model selection in general. Factors to consider when defining 

a relevant subset of competing models available within the proposed framework include: 

(i) the required flexibility to capture time-related patterns of the hazard functions for the 

different transitions; (ii) which transitions do we expect to vary by treatment; (iii) does 

treatment only impact scale or also shape parameters; (iv) how do we incorporate between-

study heterogeneity; and (v) availability of data in relation to the number of parameters to 

estimate. The degree of flexibility of the competing log-hazards functions is arguably most 

important for the stable-to-progression transition as these hazards may vary substantially 

over time and between treatments. For the progression-to-death transition, the stability 

of estimates is arguably the most important given the potential need for overall survival 

extrapolation. For the stable-to-death transition, the importance of the appropriate function 

depends on the expected hazard rates in comparison to the rates for the other transitions. 

If the stable-to-death transition rates are relatively low, model misspecification may have a 

limited impact. In addition, these transitions may reflect background mortality and, as such, 

we do not need treatment effect-parameters. When selecting the preferred models out of the 

defined set of competing models of potential relevance, we can use DIC to inform model 

selection, as we did in our example, but estimating the total residual deviance and comparing 

this to the number of data points is a useful addition as it tells us how well the models are 

fitting the data. In general, evaluating all possible competing models of relevance regarding 

fit to the data may not be feasible from a practical perspective; even if we are estimating 

DIC using only a small number of exploratory MCMC samples, the computational burden 

is still substantial. Future research is recommended to inform a model selection strategy or 

algorithm that results in a set of models that is likely to cover the distribution of transition 

rates between the health states, results in realistic extrapolations over time, and, given the 
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computational burden of the more complex models for large datasets, can be evaluated in a 

reasonable amount of time.

The proposed evidence synthesis framework relates directly to clock-forward time-

inhomogeneous Markov decision and cost-effectiveness models where treatment specific 

transition rates between health states are only a function of time in the model. A frequently 

used approach for cost-effectiveness analysis of cancer treatments are partitioned survival 

models. However, the main limitation is that extrapolated parametric PFS and OS curves 

for a given treatment may cross. This will not be case with Markov models and, as such, 

are preferred as long as time-varying transition rates between health states can be estimated 

that reflect the actual PFS and OS of the treatments compared. As far as we know, the 

method presented in this paper is the first to facilitate this based on reported aggregate level 

data. In order to obtain the input parameter estimates for a model-based cost-effectiveness 

analysis we need to define a baseline model and a NMA model. The baseline model 

provides estimates for the absolute effect with the reference treatment, which in this case 

are the time-varying log-hazard rates between each of the three health states. The NMA 

model provides estimates of the relative treatment effects of each intervention in the network 

relative to the reference treatment, which in this case are the time-varying log hazard 

ratios. The absolute effect with each treatment is obtained by adding the relative treatment 

effects from the NMA to the absolute effect with the reference treatment from the baseline 

model, and subsequently transforming these to the natural scale by inverting the log-link 

function.40 In the current example we used the RCT evidence base to estimate the baseline 

meta-analysis model as well as the NMA model. However, for an actual cost-effectiveness 

analysis it is recommended using an evidence base that reflects expected outcomes with 

the reference treatment for the target population in routine practice for the baseline model, 

preferably a large long-term routine practice observational study. If that is not available, a 

meta-analysis of the most relevant or recent trials can be considered.

The estimates obtained with the proposed evidence synthesis models can also be used in 

semi-Markov individual-level simulation models (ie, models where some transitions are 

affected by time in an intermediate state). For example, imagine a cost-effectiveness model 

of first-line cancer treatment consisting of the three health states stable, progression, and 

death. The stable-to-progression and stable-to-death transitions can be estimated based 

on first-line trials using the proposed multi-state (network) meta-analysis method. The 

progression-to-death transitions in these trials no longer represent current standard of care 

and we need to estimate these transition rates based on overall survival data from second 

line trials of current treatment using a separate (network) meta-analysis model. Similarly, we 

can use the proposed evidence synthesis models in the context of semi-Markov treatment 

sequence models. Imagine a model consisting of four health states: (1) stable disease with 

first line treatment, (2) progression with first line treatment/stable disease with second line 

treatment, (3) progression with second line treatment, and (4) death. First-line treatment 

transitions from stable-to-progression and stable-to-death are estimated with one multi-state 

(network) meta-analysis model based on first line trials, and the second-line treatment 

transitions from stable-to-progression, stable-to-death, and progression to death (reflecting 

third line treatment and beyond) are estimated with another multi-state (network) meta-

analysis model based on second line trials. In general, for the transitions in a simulation 
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model for which the “clock is reset” a separate multi-state (network) meta-analysis needs to 

be performed.

Time-varying transition rates from an intermediate health state, for example, progressed 

disease, are typically modeled as a function of time since entering that state using (clock-

reset) semi-Markov models. For clock-forward Markov models, where transition rates are 

only a function of time in the model, typically constant transition rates are used for the 

transitions from intermediate health states. However, we want to highlight that this is not 

a requirement and time-varying transition rates in a clock-forward Markov model can be 

defended in certain situations. For example, a monotonically decreasing hazard function 

(corresponding to Weibull distribution) for the progression-to-death transition means that 

an individual progressing after (say) 6 months has a greater probability of dying in the 

subsequent month than (say) an individual who progressed after 24 months. This reflects the 

possible scenario that more severe individuals or individuals without any treatment response 

are more likely to die faster once progressed than less severe patients who did show an 

initial response and progressed slower. In fact, this is a potential benefit of this multi-state 

evidence synthesis method. Separate estimation of transition rates between health states 

cannot capture this aspect. To capture differential patterns between treatments, a relative 

treatment effect for the progression-to-death transition can be incorporated in the evidence 

synthesis model.

All studies provided PFS and OS Kaplan-Meier data in the example analyses. In principle, 

the NMA model can be extended to create a shared-parameter model to incorporate studies 

that only provide information for PFS or only for OS. Studies with only PFS data provide 

evidence regarding the stable-to-progression and stable-to-death transitions and contribute 

to estimating the corresponding treatment specific hazard ratios if these are assumed fixed 

or exchangeable across all studies providing direct or indirect evidence for that particular 

intervention. (When a meta-analysis of absolute effects with the overall reference treatment 

is performed, the fixed effects or exchangeability assumption applies to the transition rates.) 

Incorporating studies that only provide OS data for a particular intervention in the NMA will 

require the additional assumption of fixed or exchangeable rates for one of the transitions 

across all studies for that intervention, if treatment is assumed to impact more than just the 

stable-to-progression transition in order to facilitate parameter estimation. A related topic 

for future research is whether and how this framework can be used to validate PFS as a 

surrogate for OS and to predict OS for novel interventions for which only mature PFS is 

available. This will be of great benefit for cost-effectiveness analyses.

5 | CONCLUSION

We introduced a method for the joint meta-analysis of PFS and OS that is based on a 

non-homogenous Markovian tri-state transition model. Arbitrary hazard rate functions can 

be approximated by piecewise constant hazard rates at successive time intervals, and are 

flexibly modeled as (fractional) polynomial functions of time. The proposed approach 

relaxes the proportional hazards assumption, extends to a network of more than two 

treatments, and simplifies the parameterization of decision and cost-effectiveness analyses. 
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The data needed to run these analyses can be extracted directly from published survival 

curves.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A.: CONSTRUCTING DATASET FOR ANALYSES

Data inputs required are the coordinates extracted from digitally scanned PFS and 

OS Kaplan-Meier curves: time points (u), corresponding survival probabilities su , and 

corresponding population size at risk nu . These points must capture all steps in the curve, 

and may require adjustments to the extracted coordinates to ensure the survival probabilities 

are decreasing with time. For both curves it should include the times at which numbers at 

risk are reported below the curve.

The total follow-up time can be partitioned into M successive non-overlapping intervals 

indexed by m = 1, …, M. We refer to interval m as Um and write u ∈ Um to denote um ≤ u < um + 1. 

The length of Um is Δum = um + 1 − um. For each time interval m, we want to obtain four data 

points: At the beginning of the interval, um; at 1/3 of the length of the interval, um + 1
3Δum, 

which we define as um + 1
3
; at 2/3 of the length of the interval, um + 2

3Δum, which we define as 

um + 2
3
; and at the end of the interval, um + 1. It is desirable to have the time intervals defined in 

such a way that (some) of these time points are aligned with the time point for which the 

size of the at-risk population is reported below the published Kaplan-Meier curves, and are 

the same for PFS and OS where available. For the current study, we used intervals with a 

length of three months.

If no PFS or OS proportion have been recorded for a specific time point of interest (ie, 

whole months), a corresponding value for su can be obtained by linear interpolation of the 

first available extracted scanned survival proportions before and after this time point.

When the population nu is not reported below the PFS and OS Kaplan-Meier curve for 

certain time points u, it can be imputed. First, based on the reported size of the at-risk 
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population at subsequent time points nu + 1 , nu will be estimated according to nu
bc = nu + 1

bc / su + 1
su

. 

With this ‘backward calculation’ approach we implicitly assume that censoring occurs 

before the events happen within a time interval. However, this approach is not feasible if 

there is no information regarding the at-risk population for time intervals beyond the at-risk 

population reported at a certain time point. In other words, this approach is only feasibly 

for intervals up to the latest time point for which population is reported. Next, nu will 

be estimated according to nu
fc = nu − 1

fc / su
su − 1

. The disadvantage of this ‘forward calculation’ 

approach is that censoring is ignored and the sample size potentially too large for those 

timepoints. For intervals where both nu
bc and nu

fc was calculated, the actual estimate for 

the population at-risk is calculated as: nu = min nu
bc, nu

fc  to ensure the sample size is not 

overestimated. For time points where nu
bc could not be calculated, nu = nu

fc.

Based on the subsequent su for the four points at each interval (i.e. sum, sum + 1
3
, sum + 2

3
, and sum + 1), 

three conditional survival proportions are obtained:
sum + 1

3
sum

, 
sum + 2

3
sum

, and 
sum + 1

sum
. The corresponding 

sample sizes are defined as nu
c = num. The corresponding observed number of patients who 

have not yet experienced progression or death are calculated according to ru
c = nu

c ∗ su
sum

.

Applying this algorithm to PFS and OS of each arm i of each trial k, we get a data set with 

niku
cPSS, riku

cPFS, niku
cOS and riku

cOS.

We set-up the event dataset such that every row represents one time interval with niku
cPFS, riku

cPFS, 

niku
cos and riku

cOS corresponding to um + 1
3
, um + 2

3
, and um + 1. In addition, each row has a variable related 

to follow-up time um + 1
3
, three variables related to um + 1

3
− um, um + 2

3
− um, and um + 1 − um, the study 

number, and study-arm number within that study.

In addition to the event dataset, we create a study dataset indicating the compared 

interventions in each study along with the number of study arms. See the online 

supplementary material for example data structures.

APPENDIX B.: STATES AND BETWEEN-STATE TRANSITION RATES

B. 1 Dynamic transitions-Problem specification

Figure 1 represents a closed dynamic system Sik u + P ik u + Dik u = 1  whose evolution is 

determined by a known initial condition at time u = 0 and three differential equations:

Sik 0 , P ik 0 , Dik 0 = 1, 0, 0

∂Sik u
∂u = − Sik u ℎik

SP u − Sik u ℎik
SD u
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∂P ik u
∂u = Sik u ℎik

SP u − P ik u ℎik
PD u

∂Dik u
∂u = Sik u ℎik

SD u + P ik u ℎik
PD u

(B1)

with ℎik
SP u , ℎik

SD u , and ℎik
PD u  the time-varying hazard rates for the transitions in the figure.

B. 2 Approximating arbitrary ℎik
SP, ℎik

SD, and ℎik
PD

We can approximate arbitrary hazard rate functions with a set of discontinuous constant 

hazard rates over successive time intervals. We prefer this approximation because the system 

Equation (B1) can be solved analytically when the transition rates are constant using the the 

eigenvalue method for first-order differential equations. For u ∈ Um Equation (B1) become:

Sik um , P ik um , Dik um = known

∂Sik u
∂u = − Sik u ℎikm

SP − Sik u ℎikm
SD

∂P ik u
∂u = Sik u ℎikm

SP − P ik u ℎikm
PD

∂Dik u
∂u = Sik u ℎikm

SD + P ik u ℎikm
PD

(B2)

B. 3 Analytic solutions for Sik u , P ik u , and Dik u  where u ∈ Um

Write the system in Equation (B2) in matrix form:

∂Sik u
∂u

∂P ik u
∂u

∂Dik
u u

∂u

=
−ℎikm

SP − ℎikm
SD 0 0

ℎikm
SP −ℎikm

PD 0
ℎikm

SD ℎikm
PD 0

Sik u
P ik u
Dik u

,   or

∂Sik u
∂u = AikSik u

(B3)
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with the obvious notational correspondence between the two equations. For u ∈ Um the 

system is homogenous and its general solution is the superposition:

Sik u = c1, ikv1ikeλ1, ik u − um + c2, ikv2ikeλ2, ik u − um + c3, ikv3ikeλ3, ik u − um

(B4)

where λ1, ik, λ2, ik, and λ3, ik are the eigenvalues of the coefficient matrix Aik, v1ik, v2ik, and v3ik are 

the corresponding eigenvectors, and c1, ik, c2, ik, c3, ik scalar constants to be identified from the 

initial condition in Equation (B2). In our case:

λ1, ik = − ℎikm
SP − ℎikm

SD

λ2, ik = ℎikm
PD

λ3, ik = 0

(B5)

The eigenvectors are:

v1ik = ℎikm
PD − ℎikm

SP − ℎikm
SD

ℎikm
SD − ℎikm

PD , ℎikm
SP

ℎikm
SD − ℎikm

PD , 1
′

v2ik = (0, − 1, 1)′
v3ik = (0, 0, 1)′

(B6)

Identification of constants in the general solution

The constants c1, ik, c2, ik, c3, ik are identified from the proportions at the beginning of Um. Setting 

u = um in the general solution, and using the initial condition in Equations (B1) and (B2) we 

obtain:

c1, ik = Sik um
v11, ik

c2, ik = Sik um
v12, ik
v11, ik

− P ik um

c3, ik = 1 − Sik um − Sik um
v11, ik

− Sik um
v12, ik
v11, ik

(B7)

where vxy, ik is element x of eigenvector y.

Solution for Sik u , u ∈ Um

Substituting c1, ik, c2, ik, c3, ik from Equations (B7) in (B4) we obtain for Sik u :
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Sik u = c1, ikv11, ikeλ1, ik u − um + c2, ikv21, ikeλ2, ik u − um + c3, ikv31, ikeλ3, ik u − um

(B8)

which becomes:

Sik u = Sik um e− ℎikm
SP + ℎikm

SD u − um

Solution for P ik u , u ∈ Um

Substituting c1, ik, c2, ik, c3, ik from Equations (B7) in (B4) we obtain for P ik u :

P ik u = c1, ikv12, ikeλ1, ik u − um + c2, ikv22, ikeλ2, ik u − um + c3, ikv32, ikeλ3, ik u − um

(B9)

which becomes:

P ik u = P ik um e−ℎikm
PD u − um +

Sik um ℎikm
SP e− ℎikm

SP + ℎikm
SD u − um − e−ℎikm

PD u − um

ℎikm
PD − ℎik

SP − ℎikm
SD

Solution for Dik u , u ∈ Um

Using Equations (B1), (B8), and (B9) we obtain:

Dik u = 1 − Sik u − P ik u

(B10)
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FIGURE 1. 
Relationship between stable disease (S), progression (P), and death (D) as used in the 

multi-state network meta-analysis model.
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FIGURE 2. 
Evidence network of RCTs.

Jansen et al. Page 24

Stat Med. Author manuscript; available in PMC 2024 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Pooled estimates of hazard rates over time for the stable-to-progression transition (SP), 

stable-to-death transition (SD), and progression-to-death transition (PD), and PFS and OS 

curves with treatment 1 from a selection of alternative multi-state fixed effects meta-analysis 

models.
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FIGURE 4. 
Estimates of hazard ratios for the stable-to-progression transition with treatments 2–5 

relative to treatment 1 from a selection of alternative multi-state network meta-analysis 

models.
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FIGURE 5. 
Estimates of hazard ratios for the progression-to-death transition with treatments 2–5 relative 

to treatment 1 from a selection of alternative multi-state network meta-analysis models.
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FIGURE 6. 
Estimates of progression-free survival and overall survival for treatment 1–5 obtained with a 

selection of alternative multi-state network meta-analysis models.
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TABLE 1

Model fit criteria for alternative meta-analysis and network meta-analysis models.

Model Deviance pD DIC

Meta-analysis treatment 1

SP second order FP(01); SD Weibull; PD Weibull 1983 7.6 1991

SP second order FP(01); SD Weibull; PD exponential 1983 6.7 1990

SP second order FP(01); SD exponential; PD Weibull 2000 6.4 2007

SP second order FP(01); SD exponential; PD exponential 2001 5 2006

SP second order FP(00); SD exponential; PD Weibull 2018 6.8 2026

SP Weibull; SD Weibull; PD exponential 2057 5.4 2063

SP Weibull; SD exponential; PD Weibull 2050 4.9 2056

SP Weibull; SD exponential; PD exponential 2055 5.1 2061

SP Gompertz; SD exponential; PD Weibull 2116 4.6 2121

SP Gompertz; SD exponential; PD exponential 2155 4.8 2161

Network meta-analysis

SP second order FP(01) FE3; SD Weibull; PD Weibull FE1(scale) 5849 119 5968

SP second order FP(01) FE3; SD Weibull; PD exponential FE 5864 108 5972

SP second order FP(01) FE3; SD Weibull; PD exponential 5872 98 5970

SP second order FP(01) FE3; SD exponential; PD Weibull FE1(scale) 5943 91 6034

SP second order FP(01) FE3; SD exponential; PD Weibull 5970 91 6061

SP second order FP(01) FE3; SD exponential; PD exponential 5980 79 6059

SP Weibull FE2; SD Weibull; PD exponential FE 5977 75 6052

SP Weibull FE2; SD exponential; PD Weibull FE1(scale) 6005 81 6087

SP Weibull FE2; SD exponential; PD Weibull 6055 71 6126

SP Weibull FE2; SD exponential; PD exponential 6069 61 6130

SP 2nd order FP(01) RE3; SD Weibull; PD Weibull FE1(scale) 5803 129 5932

SP 2nd order FP(01) RE3; SD Weibull; PD exponential FE 5821 116 5937

SP 2nd order FP(01) RE3; SD exponential; PD Weibull FE1(scale) 5898 111 6009

SP Weibull RE2; SD exponential; PD Weibull FE1(scale) 5977 86 6063

Note: Deviance defined as −2 × log likeliℎood . DIC: Deviance information criterion, DIC = D + pD. D is the posterior mean of the 

deviance. pD: the posterior mean of the deviance minus the deviance of the posterior means, corresponds to the effective number of parameters. 
SP: stable-to-progression transition; SD: stable-to-death transition; PD: progression-to-death transition; FP(01) second order fractional polynomial 
with p1 = 0 and p2 = 1; FP(00) second order fractional polynomial with p1 = p2 = 0; FE3 and RE3: fixed and random effects model with 

relative treatment effects impacting the three parameters of the second order fractional polynomial log-hazard function for the stable-to-progression 
transition; FE2 and RE2: fixed and random effects model with relative treatment effects impacting the scale and shape parameters of the Weibull 
or Gompertz log-hazard function for the stable-to-progression transition; FE1(scale): fixed effects model with relative treatment effect impacting 
the scale parameters of the Weibull or Gompertz log-hazard function for the progression-to-death transition; FE: fixed effects model with relative 
treatment effect impacting the rate parameter of the exponential log-hazard function for the progression-to-death transition.
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TABLE 2

Parameter estimates with 95% credible intervals (low, high) regarding hazard rates over time for the stable-to-

progression transition, the stable-to-death transition, and progression-to-death transition with treatment 1 for a 

selection of alternative meta-analysis models.

Model 1 Model 2 Model 3 Model 4

Parameter Estimate Low High Estimate Low High Estimate Low High Estimate Low High

M1 −3.752 −4.081 −3.512 −3.758 −4.102 −3.514 −3.628 −3.777 −3.469 −3.136 −3.23 −3.041

M2 0.974 0.768 1.241 0.963 0.761 1.237 0.512 0.441 0.583 0.052 0.044 0.06

M3 −0.073 −0.101 −0.049 −0.069 −0.098 −0.046

M4 −4.786 −5.306 −4.378 −4.808 −5.34 −4.385 −4.587 −4.605 −4.513 −4.589 −4.605 −4.527

M5 −0.984 −1.17 −0.578 −0.992 −1.17 −0.615 0.013 −0.013 0.07

M6 −2.983 −3.431 −2.504 −2.779 −2.872 −2.681 −2.968 −3.059 −2.879 −2.97 −3.053 −2.881

M7 0.071 −0.092 0.227

Note: Model 1: SP second order FP(01); SD Weibull; PD Weibull. Model 2: SP second order FP(01); SD Weibull; PD exponential. Model 3: SP 
Weibull; SD Weibull; PD exponential. Model 4: SP Gompertz; SD exponential; PD exponential. Estimate: the median of the posterior distribution; 
low and high: lower and upper bound of the 95% credible interval corresponding to the 2.5 th and 97.5 th percentile of the posterior distribution.
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TABLE 3

Relative treatment effect parameter estimates with 95% credible intervals (low, high) regarding time-varying 

hazard rates for the stable-to-progression transition, stable-to-death transition, and progression-to-death 

transition for a selection of alternative network meta-analysis models.

Model 1 Model 2 Model 3 Model 4

Parameter Estimate Low High Estimate Low High Estimate Low High Estimate Low High

d1,11 0 0 0 0 0 0 0 0 0 0 0 0

d1,12 −0.661 −1.686 0.286 −0.483 −1.299 0.299 −0.481 −1.013 0 −0.531 −1.1 −0.048

d1,13 −0.096 −0.904 0.709 −0.131 −0.74 0.485 −0.069 −0.36 0.237 −0.14 −0.433 0.17

d1,14 0.222 −1.019 1.389 −0.019 −0.981 0.977 0.016 −0.41 0.445 0.042 −0.388 0.457

d1,15 0.7 0.137 1.254 0.636 0.208 1.056 0.685 0.449 0.932 0.689 0.459 0.918

d2,11 0 0 0 0 0 0 0 0 0 0 0 0

d2,12 −0.84 −1.635 −0.114 −0.152 −0.411 0.127 −0.085 −0.349 0.187 −0.019 −0.283 0.262

d2,13 −0.206 −0.645 0.169 −0.059 −0.209 0.089 −0.074 −0.227 0.074 −0.045 −0.199 0.101

d2,14 −0.547 −1.089 −0.013 −0.341 −0.535 −0.135 −0.347 −0.539 −0.156 −0.344 −0.536 −0.15

d2,15 0.127 −0.256 0.492 0.122 −0.005 0.249 0.156 0.026 0.28 0.084 −0.035 0.209

d3,11 0 0 0

d3,12 0.217 0.053 0.388

d3,13 0.024 −0.028 0.079

d3,14 0.029 −0.042 0.096

d3,15 −0.021 −0.093 0.049

d4,11 0 0 0 0 0 0 0 0 0

d4,12 −0.114 −0.997 0.37 0.339 0.003 0.696 0.046 −0.462 0.503

d4,13 −0.041 −0.273 0.181 0.051 −0.135 0.247 −0.134 −0.333 0.074

d4,14 0.24 −0.094 0.564 0.146 −0.18 0.48 0.207 −0.105 0.516

d4,15 −0.245 −0.393 −0.095 −0.299 −0.45 −0.148 −0.273 −0.43 −0.112

σd1 0.445 0.237 0.891 0.372 0.211 0.749

Note: Model 1: SP second order FP(01) RE3; SD Weibull; PD Weibull FE1(scale). Model 2: SP Weibull RE2; SD exponential; PD Weibull 
FE1(scale). Model 3: SP Weibull FE2; SD Weibull; PD exponential FE. Model 4: SP Weibull FE2; SD exponential; PD exponential. Estimate: 
the median of the posterior distribution. Low and high: lower and upper bound of the 95% credible interval corresponding to the 2.5th and 97.5th 
percentile of the posterior distribution. d1, 1t: relative treatment effect with treatment t versus treatment 1 regarding the scale of the log-hazard 

function describing the stable-to-progression transition. d2, 1t: relative treatment effect with treatment t versus treatment 1 regarding the first shape 

parameter of the log-hazard function describing the stable-to-progression transition. d3, 1t: relative treatment effect with treatment t versus treatment 

1 regarding the second shape parameter of the log-hazard function describing the stable-to-progression transition. d4, 1t: relative treatment effect 

with treatment t versus treatment 1 regarding the scale of the log-hazard function describing the progression-to-death transition.
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