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ABSTRACT The reliability of Fourier-transform infrared (FT-IR) spectroscopy for Klebsiella 
pneumoniae typing and outbreak control has been previously assessed, but issues 
remain in standardization and reproducibility. We developed and validated a repro­
ducible FT-IR with attenuated total reflectance (ATR) workflow for the identification 
of K. pneumoniae lineages. We used 293 isolates representing multidrug-resistant K. 
pneumoniae lineages causing outbreaks worldwide (2002–2021) to train a random forest 
classification (RF) model based on capsular (KL)-type discrimination. This model was 
validated with 280 contemporaneous isolates (2021–2022), using wzi sequencing and 
whole-genome sequencing as references. Repeatability and reproducibility were tested 
in different culture media and instruments throughout time. Our RF model allowed 
the classification of 33 capsular (KL)-types and up to 36 clinically relevant K. pneumo­
niae lineages based on the discrimination of specific KL- and O-type combinations. 
We obtained high rates of accuracy (89%), sensitivity (88%), and specificity (92%), 
including from cultures obtained directly from the clinical sample, allowing to obtain 
typing information the same day bacteria are identified. The workflow was reproduci­
ble in different instruments throughout time (>98% correct predictions). Direct colony 
application, spectral acquisition, and automated KL prediction through Clover MS Data 
analysis software allow a short time-to-result (5 min/isolate). We demonstrated that FT-IR 
ATR spectroscopy provides meaningful, reproducible, and accurate information at a very 
early stage (as soon as bacterial identification) to support infection control and public 
health surveillance. The high robustness together with automated and flexible workflows 
for data analysis provide opportunities to consolidate real-time applications at a global 
level.

IMPORTANCE We created and validated an automated and simple workflow for the 
identification of clinically relevant Klebsiella pneumoniae lineages by FT-IR spectroscopy 
and machine-learning, a method that can be extremely useful to provide quick and 
reliable typing information to support real-time decisions of outbreak management and 
infection control. This method and workflow is of interest to support clinical microbiol­
ogy diagnostics and to aid public health surveillance.

KEYWORDS Fourier-transform infrared spectroscopy, attenuated total reflectance, 
typing, bacteria, infection control, outbreak, machine-learning, classification model, 
KL-type, nosocomial, random forest

F ourier-transform infrared (FT-IR) spectroscopy is an analytical technique, where the 
interaction of the infrared light with the bacterial cell provides a biochemical 

fingerprint of its composition in main macromolecules. The high resolution, together 
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with the short time-to-result, and lower cost compared to whole-genome sequencing 
(WGS) and the simplicity of the procedure make it an attractive tool for bacterial 
discrimination and typing (1).

Different studies have demonstrated resolution for strain typing in different clinically 
relevant species, corroborated by WGS analysis (2–7). Moreover, we have provided 
a comprehensive analysis of the molecular features at the basis of spectral discrimi­
nation in different bacterial species (Klebsiella pneumoniae, Acinetobacter baumannii, 
Salmonella enterica, and Escherichia coli), contributing to the establishment of reliable 
genotypic–phenotypic correlations that support strain typing (2, 8–10). Subsequent 
studies have demonstrated its usefulness for outbreak management and infection 
control (11–15).

The application of FT-IR spectroscopy in routine clinical microbiology laboratories 
for outbreak investigation has been facilitated by the IR Biotyper integrated system 
launched by Bruker Daltonics (Germany) in 2017. This equipment is based on transmis­
sion FT-IR, an acquisition mode where the infrared beam crosses the sample to reach 
the detector (16). It requires the preparation of a standardized bacterial suspension 
that needs to be dried uniformly before spectrum acquisition (17, 18). The available 
software package allows comparative spectral analysis by using a clustering method to 
infer clonal relatedness; thus, the cutoff definition requires expertise since it is variable 
according to the data set or the species analyzed (3, 18, 19). Besides, several authors 
reported difficulties in standardization and reproducibility, with the variation being 
associated with culture conditions (culture media and incubation time) (17, 19). Available 
studies have demonstrated reliability in specific and variable experimental conditions, 
but evaluation of the reproducibility between equipments is still lacking. FT-IR instru­
ments with the attenuated total reflection (ATR) acquisition mode are also widely used, 
where the infrared light interacts with the sample through an evanescence wave that 
targets the detector (2, 8–10, 20, 21). In this case, a bacterial colony is directly applied to 
the ATR crystal, and the spectra are immediately acquired, avoiding additional reagents 
and time in the preparation of a bacterial suspension. For these reasons, it has been 
associated with a lower cost, easiness of the procedure, and a higher reproducibility (1).

K. pneumoniae is a critical pathogen identified by the World Health Organization 
and the European Centre for Disease Prevention and Control, for which the increasing 
rates of resistance to last-line beta-lactams and other antibiotics are mainly due to 
nosocomial spread (22). For these reasons, a reliable and quick method for strain typing 
is especially critical for early and effective infection control. In previous studies, we used 
FT-IR ATR to demonstrate the accuracy of the technique for K. pneumoniae (Kp) capsular 
(K)-typing by directly testing one bacterial colony (no suspension is required) and using 
an in-house spectral database and a machine-learning classification model (2, 11, 12, 23). 
The workflow used requires expertise in FT-IR, multivariate data analysis algorithms, and 
high-level programming knowledge to work on MATLAB (MathWorks, USA). Over the last 
years, we have shown that this workflow can reliably support outbreak control (11, 12) 
and epidemiological surveillance in humans (23) and animals (24, 25).

However, the translation of FT-IR to routine microbiology laboratory workflows for 
quick bacterial typing depends on (i) high resolution and accuracy for identification 
of bacterial lineages defined by reference typing methods; (ii) solid demonstration of 
spectral reproducibility between instruments throughout time; (iii) ability to provide 
meaningful and immediate information for infection control and surveillance; and (iv) an 
automated workflow accessible for non-expert users. In this study, we developed a quick, 
automated, and reproducible FT-IR ATR workflow for the identification of multidrug 
resistant (MDR) K. pneumoniae clinically relevant lineages, which provides meaningful 
information to support outbreak management and epidemiological surveillance in a 
simple and user-friendly manner on the same day that it is detected in the laboratory.
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MATERIALS AND METHODS

Bacterial isolates

We selected a set of 293 well-characterized isolates representative of the main clinically 
relevant K. pneumoniae lineages frequently associated with multidrug resistance and 
hospital-acquired infections, some of them responsible for outbreaks in the Iberian 
Peninsula and elsewhere. They included (i) 176 contemporaneous isolates identified 
in four hospitals from North of Portugal (n = 135; 2016–2021) and one reference 
hospital from South of Spain (n = 41; 2017–2021); (ii) 108 isolates from our previous 
study where we were able to discriminate 19 KL-types (2002–2015) (2); and (iii) nine 
isolates previously characterized from poultry (2019–2020) to enrich poorly represen­
ted classes (24) (Table S1). This bacterial collection was selected to capture a high 
coverage and diversity of genetic backgrounds and KL-types, hence avoiding a bias in 
the FT-IR-based classification model. The clonal relationship between isolates had been 
previously established by pulsed field gel electrophoresis, multi-locus sequence typing 
(MLST), and/or core genome MLST (cgMLST) using Ridom + SeqSphere software (2, 12, 
23, 24, 26) (unpublished data). These isolates are defined as the training set and were 
used to train a new machine-learning classification model with increased coverage and 
representativeness for K. pneumoniae clones and KL-types.

In addition, a set of another 280 K. pneumoniae isolates collected systematically 
between 2021 and 2022 in two hospitals from North of Portugal were used to validate 
the machine-learning classification model and constitute the validation set. They were 
divided into positive controls (n = 204, isolates belonging to KL-types included in the 
model) and negative controls (n = 76, isolates belonging to KL-types not included in 
the model). These isolates were used as an external collection of isolates to validate the 
model and the workflow developed and to test the reproducibility of the method in 
different culture media (Table S2). Sequencing of the wzi gene was used as the refer­
ence method to infer KL-types according to the Pasteur database (https://bigsdb.pas­
teur.fr/klebsiella/). WGS was performed in a subset of the validation set (n = 38/280; 14%) 
to confirm discrepancies between wzi sequencing and FT-IR spectroscopy, to identify 
potentially new clone/KL correlations, or to establish cgMLST types.

FT-IR spectra acquisition and automated analysis

Isolates were grown in standardized culture conditions regarding the medium (Muel­
ler-Hinton 2 from Biomérieux, France) and incubation (37°C for 18 h). Afterward, a 
colony was directly spread in the ATR accessory of the FT-IR instrument (Spectrum 2 
from PerkinElmer, USA) and air-dried. Three technical replicate spectra per strain were 
acquired in less than 5 minutes, in the region from 4,000 cm−1 to 600 cm−1, with 4 
cm−1 resolution and 16 scan co-additions. This procedure was repeated for at least one 
biological replicate per isolate (an independent culture obtained in the same conditions 
on a different day) (Fig. 1).

Spectra were analyzed using an automated and user-friendly Clover MS Data analysis 
software developed for spectral data analysis by Clover Bioanalytical Software (https://
www.clovermsdataanalysis.com; Granada, Spain). It uses the Python package scikit-learn 
to perform machine-learning algorithms. The existing workflow was adapted to optimize 
preprocessing, sample replicate analysis, and spectral analysis algorithms for FT-IR-based 
typing. FT-IR spectra were imported and preprocessed using the standard normal variate 
and Savitzky-Golay filter (window length: 9; polynomial order: 2; derivative order: 2), as 
previously established (2, 12). A region between 1,200 cm−1 and 900 cm−1 was selected to 
create a peak matrix that is used to create the classification algorithm.

A new machine-learning classification model based on random forest (RF) analysis 
was built using a total of 293 K. pneumoniae strains belonging to 33 KL-types (Table 1). 
The RF algorithm was created with the RandomForestClassifier and uses bagging and 
feature randomness to create an uncorrelated forest of decision trees, the prediction of 
which is more accurate than for any of the individual trees. The following parameters 
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were used: number of estimators or number of trees (n = 200); maximum features (n = 
12), indicating the number of features included in each tree, where normally a large 
number leads to better but slower training performance but can lead to overfitting; 
minimum split size (n = 2), specifying the minimum number of samples required to split 
an internal node; and minimum samples per leaf (n = 1), which is the minimum number 
of samples required to be considered a leaf node. The internal validation of the models 
was performed using the leave-one-out k-fold cross-validation algorithm.

External validation of the RF classification model

The new RF classification model was validated using the validation set (Table S2) and 
wzi sequencing as the reference method to infer the KL-type. Spectra from these isolates 
acquired in the same conditions as described above were queried in the RF model 
created, and the first two predicted categories (KL-type 1 and KL-type 2) with their 
corresponding probability scores (P1 and P2) were considered for analysis and interpre­
tation. We calculated the accuracy, the sensitivity, and the specificity of the method, 
taking into consideration the true-positive (TP), true-negative (TN), false-positive (FP), 
and false-negative (FN) results. The congruence of FT-IR spectroscopy with wzi sequenc­
ing for KL-typing was measured using Simpon’s index of diversity, the adjusted Rand, 
and the adjusted Wallace coefficients according to http://www.comparingpartitions.info/ 
(27).

Evaluation of the reproducibility and repeatability

Reproducibility among culture media was evaluated by testing the same workflow 
(spectra acquisition, preprocessing, and validation) in a subset of the validation set (n 
= 101/280) after growth in Columbia agar with 5% sheep blood (Biomérieux, France) at 
37°C for 18 h and comparison of the prediction results using the same criteria for the 
interpretation and validation of prediction, as described above. We chose this culture 
medium since it is commonly used in clinical microbiology laboratories for bacterial 
isolation from several clinical samples.

We also tested the repeatability and reproducibility of the FT-IR ATR workflow in the 
same or different FT-IR ATR instrument models from the same manufacturer using a 
subset of 90 isolates from the training set that represent 21 KL-types (Table S3). Repeat­
ability was assessed by testing different biological replicates in different time-points 

FIG 1 Workflow for typing using FT-IR ATR and a machine-learning model. Main steps of our workflow for Klebsiella pneumoniae typing and comparison of 

the time-to-result for FT-IR ATR typing with that of the gold-standard method (whole-genome sequencing using a short-read approach), both starting from the 

isolated bacterial culture. TPR = true positive rate; TNR = true negative rate; ACC = accuracy.
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(Equipment 1_TM; Equipment 1_TM2) by the same operator on the same instrument 
(PerkinElmer Spectrum 2), under the same experimental conditions (culturing and FT-IR 
spectra acquisition). For the same subset, reproducibility between instruments was 

TABLE 1 Nature and diversity of classes used to build the RF modela

Class KL-type wzi ST/cgMLST

1 KL2 2 ST14
KL2 72 ST25

2 KL9 9 ST22
3 KL13 243 ST11
4 KL14 14 ST54
5 KL15 50 ST37

KL15 50 ST16
6 KL16 16 ST14
7 KL17 137 ST101
8 KL19 19 ST15
9 KL21 262 ST323

KL21 262 ST6449
10 KL22.37 37 ST449

KL22.37 22 ST109
11 KL23 83 ST39

KL23 82 ST280
12 KL23-likeb 732 ST15
13 KL24 24 ST15

KL24 101 ST45
14 KL25 141 ST11
15 KL27 27 ST11

KL27 27 ST528
KL27 27 ST6393
KL27 187 ST392

16 KL30 273 ST2328
17 KL38 82 ST17
18 KL45 45 ST111

KL45 45 ST1/5115
19 KL48 151 ST15
20 KL60 201 ST253

KL60 201 ST392
21 KL62 94 ST348
22 KL64 64 ST147
23 KL81 81 ST252
24 KL102 173 ST307
25 KL105 75 ST11
26 KL106 29 ST258
27 KL107 154 ST258
28 KL110 89 ST15

KL110 89 ST716
KL110 199 ST35

29 KL112 93 ST15
30 KL125 177 ST378

KL125 177 ST219
31 KL127 202 ST11
32 KL151 143 ST405
33 KL163 150 ST336
aKL = capsular locus; ST = sequence type; cgMLST = core genome multi-locus sequence typing. b KL-type similar to 
KL23 not yet characterized biochemically.
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tested by comparing the prediction results for spectra acquired in a different instrument 
model (PerkinElmer Frontier—Equipment 2) using the same experimental conditions.

RESULTS

Improvement of database coverage and robustness

The updated RF classification model includes >2,000 spectra from 293 K. pneumoniae 
isolates belonging to 33 different KL-types. This represents a ~70% increase compared 
to our previous database (from 19 to 33 KL-types) due to the inclusion of 14 new 
KL-types (KL9, KL21, KL13, KL15, KL22.37, KL23-like, KL25, KL30, KL38, KL45, KL81/KL120, 
KL102, and KL125/KL114) in the current model (Table 1) (2). Besides, we improved the 
robustness of most previously existing classes by increasing the number of isolates per 
class on average by 130% (13%–300%), especially those that were poorly represented 
before (KL2, KL27, KL63, or KL107). The updated RF classification model, including the 33 
KL-types, allowed 90% correct predictions in an internal cross-validation step (Fig. S1).

In most classes (n = 21/33; 64%), each KL-type was linked to a unique ST (e.g., 
KL19-ST15, KL107-ST302, KL64-ST147, KL105-ST11, and KL62-ST348) and, occasionally, 
unique cgMLST types representing lineages circulating in wide geographic areas (Table 
S1). In some cases (KL23, KL24, KL27, and KL38), isolates were associated with diverse 
ST, O-, or cgMLST-types (Table 2). We thus hypothesized that FT-IR could discrimi­
nate O-antigen variation. To evaluate this possibility, we created partial-least squares 
discriminant analysis (PLS-DA) models to improve discrimination within KL23/KL38, KL24, 
and KL27. These models yielded 96%–100% correct predictions in an internal cross-vali­
dation test (Fig. 2; Fig. S2). Furthermore, among isolates predicted in silico as KL23 by 
KAPTIVE (https://kaptive.holtlab.net), FT-IR distinguished a variant profile (designated 
KL23-like) suggesting capsular biochemical variation (Table 2). Thus, by increasing the 
discriminatory power within KL-types, we have the potential to distinguish by FT-IR up 
to 36 K. pneumoniae lineages that are frequently associated with multidrug resistance 
patterns, high transmissibility, colonization, and/or persistence (Table S1).

Validation of the RF classification model

The positive controls from the validation set (n = 204 isolates) represented 22 out of the 
33 KL-types. Most (90%; n = 183/204) of these isolates were identified correctly, and a 
large proportion of these (95%; n = 175/184) yielded a probability score (P1) >25% and 
a P1-P2 difference >10% (Table S2). Henceforth, we set these parameters to distinguish 
TP from FP results. In accordance, the Simpon’s index of diversity for FT-IR was 0.894 
(CI = 0.872–0.916), the adjusted Rand was 0.911, and the adjusted Wallace was 0.947 
(0.926–0.968). False-negative results represented 12% of the sample, and a fraction of 
these (32%; n = 8/25) corresponded to isolates that were correctly identified but did 
not meet the set criteria. The remaining belonged to variable (n = 9) KL-types, such as 
KL23-like (31%; n = 4/13) or KL30 (27%; n = 3/11), being more frequently misidentified. As 
explained above, differentiation between KL23-like isolates has already been improved 
in a specific model (96% correct predictions, Fig. S2C). It is of note that 56% of false-neg­
ative results were correctly identified when re-evaluated after re-isolation in Columbia 
agar plates with 5% sheep blood.

TABLE 2 Typing data of isolates from closely related KL-types discriminated by specific modelsa

Submodels KL-type O-type ST wzi N° isolates

1 KL24 O1v1 ST15 24 10
KL24 O2a ST45 101 13

2 KL27 O2 ST11 27 11
KL27 O4 ST392 187 12

3 KL23 O1 ST39 83 8
KL23-like O2afg ST15 732 9
KL38 O2 ST17 82 6

aKL-type = capsular type; O-type = O antigen type; ST = sequence type.
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The negative controls from the validation set consisted of 76 isolates belonging to 33 
different KL-types/wzi alleles absent from the RF model (n = 1–15 isolates each; average 
4). Using the set criteria, 92% (n = 70/76) of these were correctly excluded. False positives 
(n = 6) were recorded for five different KL-types. All of them yielded high scores and 
represent KL-types not yet characterized biochemically (e.g., two isolates with the cps 
genotyped as KL139 were classified as KL27) (Table S2).

Considering the whole validation set, we obtained an accuracy rate of 89%, a 
sensitivity of 88%, and a specificity of 92% with the established workflow. Colony 
application, spectral acquisition, and automated KL prediction through Clover MS Data 
Analysis software yielded a time-to-result was of 5 min/isolate.

Repeatability and reproducibility of the workflow

We obtained 98% of correct predictions from biological replicates over time (Equipment 
1) and 100% from spectra obtained in a different FT-IR instrument (Equipment 2) (Table 
S3).

Using Columbia Agar plates with 5% sheep blood and the same prediction scores (> 
or =25% for P1 and P1–P2 > 10%), the accuracy (86%) and sensitivity (87%) were similar 
to those obtained with Mueller-Hinton, but the specificity was lower (83%) (Table S4). 
In accordance, Simpon’s index of diversity for FT-IR was 0.903 (CI = 0.872–0.934), the 
adjusted Rand was 0.831, and the adjusted Wallace was 0.881 (0.901–0.947). Sporadic 
false-negative (n = 10) and false-positive (n = 4) results were observed for strains 
belonging to 10 different KL-types. Of note, a high proportion (60%) of false negatives 
resulted correctly predicted when tested in the Mueller-Hinton media.

DISCUSSION

In this study, we developed a quick, automated, and reproducible FT-IR ATR workflow 
for typing up to 36 clinically relevant K. pneumoniae lineages frequently associated 
with multidrug resistance. Though KL2 is included in the model, hypervirulent genetic 
backgrounds and other typical KL-types (e.g., KL1) were not represented since they 

FIG 2 Specific models for the discrimination of closely related KL-types. (A) Discrimination between lineages carrying KL24. 

(B) Discrimination between lineages carrying KL27. (C) Discrimination of lineages carrying KL23 or KL38. All models were 

obtained using the partial-least square discriminant analysis method (A with four latent variables; B and C with three latent 

variables) and the region between 900 cm−1 and 1,200 cm−1 of the spectra. They were validated with the leave-one-out 

internal cross-validation method (96–100% correct predictions).
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are infrequent in nosocomial infections in Europe (28). The method is based on the 
recognition of biochemical patterns associated with the KL-type and, in some cases, of 
variable KL- and O-type combinations of specific lineages within the same (ST15-KL24 
or ST15-KL112) or different STs (ST15-KL24-O1 from ST45-KL24-O2 or ST11-KL27-O2 from 
ST392-KL27-O4). These data correlate well with those of lineages defined by whole-
genome sequencing, though not always at the core genome MLST level (this study) (4, 
29). Since intrahospital transmission is dominated by a few highly transmissible clonal 
lineages carrying the same capsular locus (2, 22, 30–33), assigning isolates to the same 
KL-type is highly suggestive of genetic relatedness and enough to support effective and 
real-time infection control (11, 12).

In fact, the high accuracy and sensitivity (~88%) obtained assure that few closely 
related isolates eventually involved in an outbreak will be missed, while most (if not all) 
unrelated isolates are discarded. In the context of an outbreak or cluster investigation, 
early elimination of isolates that are different from each other, as soon as they are 
detected by an antibiogram or other phenotypic methods, is a very useful tool for 
infection control teams. For these reasons, we propose the use of FT-IR as a screening 
tool for clustering and identification of closely related isolates upfront WGS (i) to support 
early infection control measures based on typing information obtained at the same time 
as bacterial identification and (ii) to reduce the number of isolates to be sequenced 
by WGS for a deeper epidemiological analysis. This would decrease the workload, time, 
and cost associated with typing (Fig. 1), not only for K. pneumoniae but also for other 
species of public health interest such as S. enterica, A. baumannii, or E. coli for which 
proof-of-concept studies are available (8–10, 18). Furthermore, the method can also 
be useful for public health surveillance in humans (23), animals (24, 25, 34), or water 
environments (35).

Pattern recognition techniques are increasingly being explored in other microbiol­
ogy diagnostic areas such as MALDI-TOF MS-based species differentiation or antibiotic 
resistance prediction (36–39). Similar strategies have also been used for FT-IR-based 
serotyping in Streptococcus pneumoniae (40), S. enterica (41), or Staphylococcus aureus 
(6) and differentiation of Enterococcus sp. (21). and yeasts (20). These applications are 
based on machine-learning classification models (using O or K antigens as classes) that 
are trained using a well-known spectral data set that is validated by challenging with 
new input data. We used RF considering the low risk of overfitting with the training 
set and the easiness to determine feature importance (42). We are aware that speed 
of analysis might be compromised in larger data sets, but improved RF algorithms 
might represent a solution (43). Hence, machine-learning will be crucial for future 
developments of the method, which include (i) the expansion of current databases 
for other lineages, including hypervirulent K. pneumoniae, as well as for other clinically 
relevant bacteria, (ii) validation in larger samples and in real-time contexts, and (iii) 
exploring the adequacy and limits of spectral databases that represent a historical 
record of an institution or a given geographic region. Therefore, a classifier, such as 
the one created here, must be periodically retrained and adapted to accommodate the 
K. pneumoniae lineages prevalent in the local area, the specific needs and strategies of a 
given setting or institution, and remain responsive to changes in the bacterial population 
over time. Hence, larger-scale validation studies are currently underway to optimize 
spectral databases and/or models, which will be openly shared with the scientific 
community to foster continued improvement and innovation. Once a machine-learning 
algorithm is trained and accessible through a user-friendly platform, users can employ 
the established workflow to obtain typing information without the need for expertise in 
spectral data analysis, similar to the experience with MALDI-TOF MS.

Notably, we showed that the spectral information required for typing is stable across 
time, instruments, and culture media. Robustness of ATR FT-IR has been previously 
demonstrated for yeast identification (44) and is associated with direct colony analysis 
and the use of a classification model, which prevents the inconsistencies associated 
with sample preparation and cluster cutoff definition described for IR Biotyper (Bruker 
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Daltonics, Germany) (17–19). False-negative results belonged to scattered isolates 
from different KL-types, most of which were correctly predicted in a different culture 
medium. Thus, to maximize both speed and sensitivity, we recommend testing directly 
in Columbia Agar with 5% sheep blood and re-test poorly predicted isolates in Muel­
ler-Hinton, after overnight culturing. Moreover, when misidentifications occurred with 
highly related KL-types, subsequent models improved discrimination and accuracy (e.g., 
KL23-like), a strategy that has been used previously (45). On the other hand, most 
false-positive results were obtained for non-characterized KL-types, suggesting a high 
relatedness to known capsules. Hence, FT-IR spectral information can also be used 
to confirm or disregard in silico predictions based on capsule genotype (cps) (46) or 
eventually to depict evolutionary events involving the capsule that can occur in vivo 
(47–49).

The workflow developed is comparable to that of MALDI-TOF MS, using directly the 
bacterial colony and obtaining the result in <5 min, including from the Columbia Agar 
culture isolated directly from the clinical sample. Not only the simplicity of the protocol 
and automated data analysis make this technique suitable for non-expert users, but also 
the extraordinary short time-to-response represents a great advantage when compared 
with that of in-house implemented whole-genome sequencing (usually 48–72 h) (Fig. 
1). Furthermore, the possibility to obtain typing information the same day the bacteria 
are identified constitutes a hallmark of infection control. The Clover MS Data analysis 
software is simple and flexible and does not require knowledge on spectral data analysis, 
allowing non-expert users to type through a user-friendly workflow (36, 37). Develop­
ments from this study (e.g., spectral processing workflow, algorithm development, and 
data visualization) were already incorporated into the software, which is available to 
potential users by subscription. Different entry-level FT-IR ATR instruments from different 
manufacturers (e.g., PerkinElmer, Thermo-Fisher, and Shimadzu) can be used. The cost 
of these instruments is lower than that of other specialized equipments (IR Biotyper, 
MALDI-TOF MS, Illumina, and MinION), and the costs of the reagents are negligible, 
turning the method especially attractive for low-resource settings (44).

In conclusion, we demonstrated that FT-IR ATR spectroscopy is an accurate, quick, 
and reproducible tool providing meaningful and accurate information at a very early 
stage (at the same time as bacterial identification) to support infection control and 
public health surveillance. Furthermore, the high robustness of the established workflow 
together with the availability of spectral databases and/or ML models through flexible 
and user-friendly platforms (Clover MS Data analysis or others) will facilitate adoption of 
the method and provide opportunities to enhance and consolidate real-time applica­
tions at a global level.
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