Skip to main content
. 2024 Jan 17;15(2):e02867-23. doi: 10.1128/mbio.02867-23

TABLE 2.

Logistic regression and CART prediction models

Variable N Cut-pointc Sensitivitye Specificitye Accuracye AUCb P valuea
Siderophore 49 >100f .82 (13/16) 0.33 (11/33) 0.49 (24/49) 0.502 0.860
Mucoviscosity LB 49 >0.11 .63 (10/16) 0.76 (25/33) 0.71 (35/49) 0.723 0.034
Mucoviscosity c-M9-CA-te 49 >0.088 1.0 (16/16) 0.70 (23/33) 0.80 (39/49) 0.869 0.001
Marker count 49 5 0.94 (15/16) 0.94 (31/33) 0.94 (46/49) 0.962 0.004
Marker count 49 ≥4d 1 (16/16) 0.76 (25/33) 0.84 (41/49)
Kleborate score 49 >4.05 0.44 (7/16) 0.94 (31/33) 0.78 (38/49) 0.768 0.003
Mash 29 <0.008 0.77 (7/9) 0.9 (18/20) 0.86 (25/29) 0.900 <0.001
Jaccard 29 <0.318 0.77 (7/9) 0.95 (19/20) 0.90 (26/29) 0.919 <0.001
a

Exact test about the odds ratio from logistic regression model.

b

Area under the ROC curve.

c

Derived from classification and regression tree (CART) prediction model.

d

Assessment at a potentially clinically relevant cut-point.

e

Computed using cut-point values.

f

Determined from ROC curve.