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Abstract
Telemedicine (TM) has augmented healthcare by enabling remote consultations, diagnosis, treatment, and monitoring 
of patients, thereby improving healthcare access and patient outcomes. However, successful adoption of TM depends on 
user acceptance, which is influenced by technical, socioeconomic, and health-related factors. Leveraging machine learning 
(ML) to accurately predict these adoption factors can greatly contribute to the effective utilization of TM in healthcare. The 
objective of the study was to compare 12 ML algorithms for predicting willingness to use TM (TM try) among patients with 
rheumatic and musculoskeletal diseases (RMDs) and identify key contributing features. We conducted a secondary analysis 
of RMD patient data from a German nationwide cross-sectional survey. Twelve ML algorithms, including logistic regression, 
random forest, extreme gradient boosting (XGBoost), and neural network (deep learning) were tested on a subset of the 
dataset, with the inclusion of only RMD patients who answered “yes” or “no” to TM try. Nested cross-validation was used 
for each model. The best-performing model was selected based on area under the receiver operator characteristic (AUROC). 
For the best-performing model, a multinomial/multiclass ML approach was undertaken with the consideration of the three 
following classes: “yes”, “no”, “do not know/not answered”. Both one-vs-one and one-vs-rest strategies were considered. 
The feature importance was investigated using Shapley additive explanation (SHAP). A total of 438 RMD patients were 
included, with 26.5% of them willing to try TM, 40.6% not willing, and 32.9% undecided (missing answer or “do not know 
answer”). This dataset was used to train and test ML models. The mean accuracy of the 12 ML models ranged from 0.69 to 
0.83, while the mean AUROC ranged from 0.79 to 0.90. The XGBoost model produced better results compared with the other 
models, with a sensitivity of 70%, specificity of 91% and positive predictive value of 84%. The most important predictors 
of TM try were the possibility that TM services were offered by a rheumatologist, prior TM knowledge, age, self-reported 
health status, Internet access at home and type of RMD diseases. For instance, for the yes vs. no classification, not wishing 
that TM services were offered by a rheumatologist, self-reporting a bad health status and being aged 60–69 years directed 
the model toward not wanting to try TM. By contrast, having Internet access at home and wishing that TM services were 
offered by a rheumatologist directed toward TM try. Our findings have significant implications for primary care, in particular 
for healthcare professionals aiming to implement TM effectively in their clinical routine. By understanding the key factors 
influencing patients' acceptance of TM, such as their expressed desire for TM services provided by a rheumatologist, self-
reported health status, availability of home Internet access, and age, healthcare professionals can tailor their strategies to 
maximize the adoption and utilization of TM, ultimately improving healthcare outcomes for RMD patients. Our findings are 
of high interest for both clinical and medical teaching practice to fit changing health needs caused by the growing number 
of complex and chronically ill patients.
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Background

Telemedicine (TM), which is a natural evolution of 
healthcare in the digital world, has a crucial role in clinical 
practice and has the potential to greatly affect public and 
global health by improving long-term health and increasing 
access to preventive care. TM, a rapidly evolving field 
at the intersection of healthcare and technology, has 
revolutionized the delivery of medical services by enabling 
remote consultations, diagnosis, treatment and monitoring of 
patients. It has become a high potential tool in overcoming 
geographical barriers, improving access to healthcare and 
enhancing patient outcomes [1]. Despite the potential, the 
successful implementation of TM stands or falls on the 
acceptance of the users [2, 3]. This is strongly dependent 
on the technical, socio-economic and health-related factors 
[1]. A previous study revealed that patients’ willingness 
to use TM (TM try) in rheumatology care was associated 
with several factor such as their perceived health status, 
age, disease type and access to technical equipment and 
infrastructure [4].

Yet, it is still unclear which of these factors are good 
predictors of TM try. For clinicians, reliable predictors of 
TM try can guide the development of more patient-centered 
TM services, improving patient engagement and efficiency 
of care. The identification of such factors, and in particular 
modifiable predictors, could be paramount and useful for 
practitioners to help them implement new practices to 
develop and spread the use of TM among patients with 
rheumatic and musculoskeletal diseases (RMDs). For 
researchers, these insights can inspire further studies on the 
barriers and facilitators to telehealth adoption, contributing 
to a deeper understanding of the digital transformation of 
healthcare. Knowledge of these factors will not only help 
predict patient behavior, but also help shape future telehealth 
strategies and policies, ultimately benefiting the healthcare 
system as a whole.

Artificial intelligence (AI) offers valuable opportunities 
to identify predictors of TM acceptance by analyzing 

large-scale and diverse datasets and uncovering complex 
relationships. AI algorithms can identify key predictors, 
understand their interactions and continuously adapt to new 
data, aiding in the development of targeted interventions and 
strategies to increase TM utilization and improve patient 
outcomes [5]. Scaling up effective TM interventions is 
essential for long-term population health benefits.

This study aimed to predict TM try among RMD patients 
and to identify key features contributing to TM try. To that 
end, we compared 12 machine learning (ML) algorithms 
using data (secondary analysis) from a German nationwide 
cross-sectional survey conducted earlier [3].

Methods

The data utilized in this study has been previously described 
[3]. In summary, the study presents findings from a secondary 
analysis of data obtained through a cross-sectional, self-
administered paper survey conducted in collaboration 
with the patient organization German League against 
Rheumatism (Deutsche Rheuma-Liga, Landesvertretung 
Brandenburg) and outpatient rheumatologists. This 
survey was part of an exploratory mixed-methods study 
spanning over 2 years, aiming to investigate the acceptance, 
opportunities, and barriers to the implementation of TM 
[3]. Data collection took place between September 1 and 
December 30, 2019. The questionnaire’s preliminary 
version was crafted by a team comprising two healthcare 
researchers and two rheumatologists. This initial draft was 
informed by insights gathered from expert interviews [3]. In 
the subsequent phase, the draft underwent a comprehensive 
review and modification process at the hands of the German 
League against Rheumatism (Deutsche Rheuma-Liga, 
Landesvertretung Brandenburg e.V.). The feedback of the 
patient representatives was discussed during a teleconference 
and then incorporated into the questionnaire. To refine 
the questionnaire further, a pretest involving 30 RMD 
patients was conducted. This evaluation aimed to assess 
the questionnaire's clarity, wording and the exhaustiveness 
of predefined response options. Subsequent to this pretest, 
minor revisions were applied to enhance its precision 
and relevance. The final version of the questionnaire 
(Supplementary Material), spanning five pages, 
encompassed 24 questions thoughtfully grouped into four 
essential sections: (1) medical care, (2) technology usage, 
(3) telemedicine and (4) personal data. Response options 
were categorized as nominal or ordinal, ensuring a nuanced 
understanding of participants' experiences. Additionally, 
the questionnaire featured open-ended queries, encouraging 
participants to express their thoughts freely. Supplementing 
the questionnaire was pertinent study information, 
including a definition of telemedicine illustrated through 
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practical examples: "Telemedicine involves the utilization 
of information and communication technology in medical 
treatment to bridge geographical gaps. For instance, this 
could involve a video consultation with a physician for a 
visual joint examination or a phone conversation with a 
doctor to assess the effectiveness of prescribed medication". 
This contextual information aimed to enrich participants' 
understanding of the survey's scope and purpose.

The survey's inclusion criteria required participants to 
meet the following conditions: (1) receiving treatment in 
rheumatology care; (2) being 18 years or older; and (3) 
residing in Germany. Sampling was conducted through 
a non-probability, voluntary approach, which involved 
collaborating with (1) patient organization German League 
against Rheumatism's working groups, (2) outpatient 
rheumatology practices and (3) inpatient rheumatology 
wards. The questionnaires were provided to representatives 
from these institutions, who then distributed them to eligible 
individuals meeting the specified inclusion criteria.

Data selection/population considered

From the aforementioned German nationwide survey, a 
dataset of 438 patients in total was available. Each patient 
answered 24 questions related to socio-demographics and 
health characteristics. Individuals with missing answer 
or that answered “do not know” regarding TM try were 
considered as a distinct category leading to three categories: 
“yes”, “no” and “not answered/do not know”.

Statistical analysis

All statistical analyses were performed using R software 
4.1.2® (R Core Team, Vienna, Austria) for Windows 10©.

Machine learning algorithm selection

To select the best ML algorithm, a subset of the dataset was 
used, with the inclusion of only RMD patients that answered 
“yes” or “no” to TM try. For this algorithm selection, 
294 patients (67.1%) were considered. A total of 12 ML 
algorithms were used to identify key features contributing 
to TM try, namely logistic regression, Lasso regression, 
ridge regression, support vector machine (SVM) using 
linear classifier, SVM using polynomial basis kernel, SVM 
using radial basis kernel, random forest, neural network, 
AdaBoost, k-nearest neighbors, naive Bayes and extreme 
gradient boosting (XGBoost).

Downsampling was used to produce a balanced 
80%/20% train/test split [6]. The training split was 
used to generate the learned models, while the testing 
dataset was used for the validation phase to assess the 
performance of each model to predict the class labels 

(answering yes or no to TM try). One-hot encoding was 
applied to all categorical variables with more than two 
categories, with missing data considered as a category and 
the elimination of one category for each factor to avoid 
multicollinearity [7]. Collinear covariates, with a variance 
inflation factor > 2.5, were excluded from the analysis [8]. 
Continuous variables were standardized by removing the 
mean and scaling them to unit variance before ML [9].

Nested cross-validation was used for each model to 
limit overfitting [10]. More specifically, each of the models 
underwent a tenfold cross-validation and the classifier 
hyperparameters were tuned. A random-search approach 
for model parameter tuning was used to determine the 
optimal combination of hyperparameters for maximizing 
accuracy to generate the best model parameters [7]. To 
ensure robust results, the cross-validation was performed 
ten times using a different random number generator seed 
each time [7].

Evaluation indicators, including area under the receiver 
operator characteristic (AUROC), precision (positive 
predictive value), recall (sensitivity), balanced accuracy, 
F1 measure, kappa, specificity, detection rate, detection 
prevalence, no information rate, average precision, and 
prevalence were calculated to compare ML algorithms. 
The best performing model was selected based on the mean 
AUROC.

Lasso and ridge regression were performed using the 
glmnet package version 4.1–6 [11]. The XGBoost algorithm 
was computed using the xgboost package version 1.6.0.1 
[12]. The caret package version 6.0–93 was used to perform 
all other ML models as well as to calculate the confusion 
matrix [13]. The pROC package version 1.18.0 [14] was 
used to calculate the AUROC, while the MLmetrics package 
version 1.1.1 [15] was used to compute evaluation metrics 
not provided by the caret package.

Identification of TM try predictors

For the best performing ML model, a multinomial/multiclass 
ML approach was performed with the consideration of the 
three following classes: “yes”, “no”, “do not know/not 
answered”. Both one-vs.-one and one-vs.-rest strategies 
were used. Hence the following binary classifications were 
performed: no vs. rest, yes vs. rest, not answered/do not 
know vs. rest, yes vs. no, yes vs. not answered/do not know, 
and no vs. not answered/do not know. For each classification, 
the feature importance was investigated using Shapley 
additive explanation (SHAP) that showed each feature’s 
impact on the model prediction [16, 17]. This analysis 
indicates to which extent and in which direction (wanting 
to use TM versus not wanting to use TM) a certain feature 
influences the ML model.
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Results

Patients’ characteristics

Among the 438 patients from the nationwide survey, 
144 patients (144/438, 32.9%) either did not answer the 
question regarding TM try (22/438, 5%) or answered 
with the “do not know” option (122/438, 27.9%). A 
total of 116 patients (265%) were willing to try TM (i.e. 
answered yes to the TM try question), while 178 were not 
(40.6%). Most patients were female (309/438, 70.5%), 
were on average 59 years old (SD = 14.4) and lived in 
a provincial town or rural area (254/348, 58.0%). Most 
of the patients lived up to 5 km from the GP’s office 
(302/438, 68.9%), with only 6.39% of the patients 
living more than 15 km from the GP’s office. Most of 
the patients lived up to 10 km from the rheumatologist’s 
office (144/438, 32.9%), with 19.9% of the patients living 
more than 30 km from the rheumatologist’s office. Half 
of the patients considered they had a bad or very bad 
health status (205/438, 46.8%), while 41.7% (183/438) 
considered their health status as moderate. Most patients 
had a rheumatology treatment (394/438, 90.0%). The 
most common RMDs were rheumatic arthritis (210/438, 
47.9%), arthrosis (104/438, 23.7%), osteoporosis (58/438, 
13.2%) and psoriatic arthritis (62/438, 14.2%). Most 
patients had Internet access at home (357/438, 81.5%) 
and owned an electronic device (392/438, 89.5%), but 
did not document their health status (265/438, 60.5%). 
Most patients had prior TM knowledge (225/438, 51.4%) 
and electronic contact with physician (336/438, 76.7%).

Performance of machine learning models

Table 1 presents the evaluation performance metrics for 
each model.

The mean accuracy from the 12 ML models ranged 
from 0.69 for the k-nearest neighbors model to 0.83 for 
XGBoost, respectively. The mean AUROC ranged from 
0.79 for both logistic regression and SVM linear classifier 
to 0.90 for XGBoost, respectively (Table 1, Fig. 1). The 
XGBoost model produced better results compared with 
the other models, with sensitivity that was 70%, speci-
ficity 91% and positive predictive values 84% (Table 1).

The XGBoost model was then used to perform the 
multiclass classification for all one-vs.-rest and one-vs.-
one strategies, yielding an overall AUROC of 0.80 and 
an accuracy of 0.82. For each binary classification, the 
AUROC ranged from 0.71 to 0.90 and the accuracy from 
0.64 to 0.88 (Table 2).

Feature importance

The feature analysis included a total of 28 survey features 
(answers to 25 questions). Figure 2 lists the most important 
features using the XGBoost model for the multiclass clas-
sification. Most of these features are modifiable. The most 
important features were the possibility that TM services 
were offered by a rheumatologist, prior TM knowledge, age, 
self-reported health status, Internet access at home and type 
of RMD diseases.

Regardless of the binary classification considered, results 
were mostly similar. Figure 3 lists the ten most important 
features for the yes vs. no classifications. The same fig-
ure for all the 28 features is available in the additional file 
(Fig. S1). The top five predictors of TM try in RMD patients 
using XGBoost were self-reported wish regarding the pos-
sibility that TM services were offered by a rheumatologist, 
self-reported health status, Internet access at home and age. 
Most of these features are modifiable. Not wishing that TM 
services were offered by a rheumatologist was the most 
important feature by far (mean absolute SHAP value (maS-
HAP) = 2.75), followed by self-reporting a bad health status 
(maSHAP = 0.79), being aged 60–69 years (maSHAP = 0.70) 
and living more than 40 km from the rheumatologist's office 
(maSHAP = 0.24) or 10–20 km (maSHAP = 0.46). These 
aforementioned features directed the model toward not 
wanting to try TM. By contrast, wishing that TM services 
were offered by a rheumatologist (maSHAP = 0.97), hav-
ing Internet access at home (maSHAP = 0.41) and not being 
diagnosed with rheumatoid arthritis (maSHAP = 0.45) were 
top features directing toward wanting to try TM.

Figures S2–S6 present the list of the most important 
features for all the other binary classifications. For the 
yes vs. not answered/do not know classification, the top 
five predictors of TM try were wishing that TM services 
were offered by a rheumatologist (positive impact—toward 
yes), living in a provincial town (positive impact), living 
in a city (positive impact), living 5–10 km from the GP’s 
office (negative impact—toward do not know/not answered) 
and not wishing that TM services were offered by a 
rheumatologist (negative impact) (Fig. S2).

For the no vs. not answered/do not know classifica-
tion, the top five predictors of TM try were not wish-
ing that TM services were offered by a rheumatologist 
(positive impact—toward no to TM try), having Internet 
access at home (negative impact—toward do not know/
not answered), living in a town (positive impact), self-
reporting a bad health status (positive impact) and being 
diagnosed with rheumatoid arthritis (negative impact) 
(Fig. S3). For the yes vs. rest classification, the top five 
predictors of TM try were wishing that TM services were 
offered by a rheumatologist (positive impact—toward 
yes), not wishing that TM services were offered by a 
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rheumatologist (negative impact—toward no of do not 
know/not answered), not having prior TM knowledge 
(negative impact), being age > 60 years (negative impact) 
and being diagnosed with rheumatoid arthritis (negative 
impact) (Fig. S4).

For the no vs. rest classification, the top five predictors 
of TM try were not wishing that TM services were offered 
by a rheumatologist (positive impact—toward no to TM 
try), being 60–69 years (positive impact), not having prior 
TM knowledge (positive impact), having Internet access 
at home (negative impact—toward yes or do not know/not 
answered), and being diagnosed with rheumatoid arthritis 
(positive impact) (Fig. S5).

For the not answered/do not know vs. rest classification, 
the top five predictors of TM try were not wishing that 
TM services were offered by a rheumatologist (negative 
impact—toward no and yes), wishing that TM services 
were offered by a rheumatologist (negative impact), 
living in a city (negative impact), self-reporting a bad 
health status (negative impact), and being diagnosed with 
arthrosis (negative impact) (Fig. S6).

Discussion

We have performed a secondary analysis using data from 
a German nationwide cross-sectional survey among RMD 
patients in [3] to compare 12 ML algorithms to identify 
an accurate ML model to predict the patient’s motivation 
to try TM.

Principal results

The XGBoost model produced better results compared 
with the 11 other models tested. XGBoost is a flexible 
nonlinear tree-based ML algorithm that is commonly used 
for cohort and survey data in the medical field [6, 18–20]. 
XGBoost is one of the most widely used methods in data 
science that has been shown to perform usually better than 
other ML algorithms in several studies [21, 22].

The XGBoost model analysis revealed that the pri-
mary predictors of TM try in RMD patients were identi-
fied as self-reported wish for TM services offered by a 

Fig. 1  Comparison of machine 
learning model performance. 
AUC: area under the receiver 
operator characteristic
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rheumatologist, self-reported health status, Internet access 
at home, and age. While age is a non-modifiable factor and 
self-reported health status changes only during therapy, 
home Internet access and the desire for the rheumatologist 
to provide TM can be altered.

Comparison with prior work

In the field of rheumatology, various ML and deep learning 
algorithms have been employed for tasks such as clinical 
profiling, patient classification, diagnosis identification, 
image analysis and predicting treatment response, primarily 
for rheumatoid arthritis and systemic lupus erythematosus 
[10, 19, 20, 23–25]. However, to the best of our knowledge, 
this study represents the first attempt to utilize ML 
techniques to predict TM try among RMD patients and 
identify the key contributing factors based on nationwide 
survey data. This novel approach extends our understanding 
of the factors influencing TM adoption in the context of 
rheumatic diseases.

In other healthcare domains, ML has already been applied 
to the adoption and acceptance of TM [26–29]. Békes et al. 
successfully developed a predictive model to understand 
psychotherapists' acceptance of telepsychotherapy during 
the COVID-19 pandemic [26]. These authors found that 
therapists' professional self-doubt and the quality of their 
working alliance with their online patients appear to be the 
most relevant factors associated with therapists' acceptance 
of telepsychotherapy technology. Zobair et al. used a two-
staged structural equation modeling and artificial neural net-
work approaches to forecast care seekers' satisfaction with 
TM [27]. The study results show that enjoyment, which 
refers to the perception that the use of TM services will 
be enjoyable or pleasant in its own right, predominantly 
contributes to patients' satisfaction decision regarding TM 
usage. This indicates that TM approaches should also pro-
vide enjoyment to their users in order to be utilized. This 
points to the relevance of gamification in the development 
of eHealth approaches to achieve high adoption rates.

ML approaches also have significant potential in 
smartphone-based prevention and health promotion to 

Table 2  results of the multiclass classification

95% CI 95% confidence interval, Acc accuracy, AUROC area under the receiver operator characteristic, knn k-nearest neighbors, NIR No 
Information Rate, NPV negative predictive value, PPV positive predictive value

Evaluation 
metric

Overall One-vs-Rest One-vs-One

No vs. rest Yes vs. rest Not answered 
vs. rest

Yes vs. no Yes vs. not 
answered

No vs. not 
answered

Accuracy (95% 
CI)

0.82 (0.75; 
0.88)

0.83 (0.76; 
0.89)

0.88 (0.81; 
0.93)

0.77 (0.69; 
0.84)

0.83 (0.71; 
0.91)

0.64 (0.59; 
0.77)

0.83 (0.71; 0.91)

AUC 0.80 (0.72; 
0.88)

0.83 (0.76; 
0.90)

0.83 (0.75; 
0.91)

0.74 (0.66; 
0.82)

0.90 (0.82; 
0.98)

0.71 (0.57; 
0.85)

0.82 (0.71; 0.92)

Kappa 0.60 0.66 0.68 0.48 0.63 0.28 0.65
No Information 

Rate
0.41 0.59 0.74 0.67 0.60 0.54 0.53

P-value 
[Acc > NIR]

2.6e-14 1.7e-9 9.3e-5 8.6e-3 2.0e-4 0.11 6.4e-7

Mcnemar's Test 
P-value

0.36 0.83 0.80 1.00 0.34 0.17 0.55

Sensitivity/
Recall

0.74 0.82 0.74 0.65 0.70 0.54 0.88

Specificity 0.86 0.84 0.93 0.83 0.91 0.75 0.77
Average 

precision
0.65 0.51 0.82 0.61 0.74 0.53 0.80

Precision/PPV 0.74 0.79 0.78 0.65 0.84 0.71 0.81
NPV 0.87 0.87 0.91 0.83 0.82 0.58 0.85
F1 score 0.74 0.80 0.76 0.65 0.76 0.61 0.85
Prevalence 0.34 0.41 0.26 0.33 0.40 0.54 0.53
Detection Rate 0.26 0.34 0.19 0.21 0.28 0.29 0.47
Detection 

Prevalence
0.35 0.43 0.24 0.33 0.33 0.40 0.58

Balanced 
Accuracy

0.80 0.83 0.83 0.74 0.81 0.64 0.83
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understand user perspectives and tailor targeted interventions 
to users. For example, ML algorithms have been used by 
Vera et al. and Etter et al. to identify independent predictors 

of smoking cessation, smoking reduction and relapse in 
mHealth users [28, 29]. Another example is the assessment 
of the popularity and perceived effectiveness of smartphone 

Fig. 2  Overall feature importance according to SHAP values

Fig. 3  Feature importance (top 10) according to SHAP values for the yes vs. no classification



531Rheumatology International (2024) 44:523–534 

tools that track and limit smartphone use to promote mental 
health [30]. Despite the above-mentioned studies, the 
potential of ML in studying and promoting the use of digital 
health is far from being fully explored.

Implications

The self-reported wish for TM services offered by a 
rheumatologist emerged as the most important predictor 
of TM try. This underscores the crucial role of healthcare 
providers in promoting telehealth adoption among their 
patients. Similar results were reported by Dahlhausen et al. 
on the adaption of digital therapeutics [31]. Kernder et al. 
[32] identified a lack of supporting evidence for TM as a 
main barrier for rheumatologists and poor usability of TM 
tools as the main barrier from a patient perspective.

These findings highlight significant implications for 
medical education and training, particularly underscoring the 
necessity to integrate courses focused on TM, digital health 
technologies and AI. This integration is crucial to enhance 
physicians' knowledge and proficiency in utilizing digital 
technologies. Moreover, it is essential for empowering 
physicians to effectively propose, elucidate, and engage in 
discussions about these technologies with their patients. 
Such an educational advancement is pivotal in aligning 
medical training with the rapidly evolving digital health 
landscape. By empowering patients and rheumatologists 
and ensuring their active involvement in TM initiatives, 
healthcare systems could tackle workforce shortage while 
achieving high quality and easy to access rheumatology care 
[33, 34].

Furthermore, the identified predictors, such as Internet 
access at home and self-reported health status, offer 
opportunities for intervention. Initiatives aiming at 
expanding Internet access and digital literacy can facilitate 
the adoption of TM services, particularly among patients 
who currently face barriers related to connectivity, for 
instance in rural areas. The high relevance of self-perceived 
health-status on TM acceptance shows that the timing of 
addressing TM in therapy and appropriateness is crucial. 
Accordingly, we agree with Rossen et al. that it is important 
to identify vulnerable sub-populations with particular needs 
when introducing health technology to offer appropriate 
medical care and support individuals in taking advantage 
of technology [35]. Thus, the evaluation of the individuals’ 
receptiveness to use technology is important to reduce 
the risk of alienating low-resource individuals before 
introducing technology into healthcare. Similarly, Kulcsar 
et al. suggest a triage mechanism to ensure that patients are 
appropriately paired with the proper type of rheumatology 
care in the future [36].

ML could play a key role in identifying potential TM users 
and tailoring TM concepts to the specific needs of patients 

and healthcare professionals. By addressing these modifiable 
factors and tailoring interventions accordingly, healthcare 
providers and policymakers can work collaboratively to 
increase TM use and enhance patient engagement in the 
management of rheumatic diseases. This can lead to improve 
access to specialized care, better disease management, and 
enhance patient outcomes in the realm of TM.

Limitations

The relatively small sample size is a limitation that bears an 
intrinsic risk of over-fitting though we used ten-fold cross-
validation as the resampling method to avoid overfitting.

The primary data on which this analysis is based was 
collected until 30 December 2019, i.e., shortly prior to 
SARS-CoV-2 outbreak in Germany (27 January 2020). Due 
to the need to reduced physical contacts and thus minimize 
the risk of infection, usage of TM initially received a major 
uptake in global healthcare delivery [37]. Hence, more RMD 
patients and likely other subgroups will have tried TM by 
now [38]. A replication of the initial survey is essential 
to identify whether and how the identified factors have 
changed. Apart from this, the limitations of the primary data 
still apply [3]. These are primarily the high potential of self-
selection and non-response bias.

Conclusions

The XGBoost ML model produced the best results to 
predict patients’ motivation to try TM compared with the 
11 other models tested. The model revealed, that the primary 
predictors of TM try in RMD patients were identified as self-
reported wish for TM services offered by a rheumatologist, 
self-reported health status, Internet access at home and 
age. Our findings have significant implications for primary 
care because they emphasize the pivotal role of healthcare 
professionals in driving the TM implementation and digital 
transformation in healthcare. By understanding the key 
factors influencing patients' acceptance of telemedicine, 
healthcare professionals can tailor their strategies to 
maximize the adoption and utilization of telemedicine, 
ultimately improving healthcare outcomes for patients. Our 
findings are of high interest for both clinical and medical 
teaching practice to fit changing health needs caused by the 
growing number of complex and chronically ill patients. 
By strengthening healthcare professionals and actively 
engaging them in TM initiatives, health systems could 
address workforce shortages while providing high-quality 
and accessible healthcare, which is paramount for long-term 
population health benefits.
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