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Identification and characterization 
of intact glycopeptides in human 
urine
Fernando Garcia‑Marques 1, Keely Fuller 1, Abel Bermudez 1, Nikhiya Shamsher 1, 
Hongjuan Zhao 2, James D. Brooks 1,2, Mark R. Flory 3 & Sharon J. Pitteri  1*

Glycoproteins in urine have the potential to provide a rich class of informative molecules for 
studying human health and disease. Despite this promise, the urine glycoproteome has been largely 
uncharacterized. Here, we present the analysis of glycoproteins in human urine using LC–MS/
MS-based intact glycopeptide analysis, providing both the identification of protein glycosites and 
characterization of the glycan composition at specific glycosites. Gene enrichment analysis reveals 
differences in biological processes, cellular components, and molecular functions in the urine 
glycoproteome versus the urine proteome, as well as differences based on the major glycan class 
observed on proteins. Meta-heterogeneity of glycosylation is examined on proteins to determine the 
variation in glycosylation across multiple sites of a given protein with specific examples of individual 
sites differing from the glycosylation trends in the overall protein. Taken together, this dataset 
represents a potentially valuable resource as a baseline characterization of glycoproteins in human 
urine for future urine glycoproteomics studies.

Glycosylation of proteins encompasses an extraordinarily diverse post-translational modification class wherein 
complex carbohydrate structures are linked, principally via hydroxyl (O-linkage) and asparagine (N-linkage) 
attachments, to the side chains of polypeptide backbones. The glycan additions, in myriad branched-chain struc-
tures, are formed from building blocks of mannose, high mannose, fucose, and sialic acid and are assembled, 
modified, and removed by a highly regulated set of enzymatic activities in cells1. The diversity of glycosylation 
modifications on proteins contributes significantly to the estimated millions of proteoforms, or protein variant 
isoforms, estimated to comprise the full cellular proteome2. Since proteins are the direct effectors of most biologi-
cal processes, a more thorough characterization of this modification class is critical to both a better understanding 
of cellular mechanisms and for discovery of new disease biomarkers.

At a functional level, emerging data indicates that protein glycosylation is integrated with fundamental 
biological processes including cell–cell recognition, signal transduction, and protein trafficking3, and protein 
glycosylation figures prominently in health and disease1. Multiple congenital disorders have long been associated 
with inborn glycosylation defects that often present with phenotypes including neurologic abnormalities and 
intellectual disabilities4. Furthermore, a growing body of evidence demonstrates critical linkages between protein 
glycosylation and cancer progression. For example, in serous ovarian carcinoma, glycoproteomic signatures can 
be used to classify disease subtypes that have distinct clinical outcomes5. Discrete classes of protein glycosylation 
have been observed in tissue specimens collected from patients with benign prostatic hyperplasia that can be 
distinguished from prostate cancer6. Separate studies in prostate cancer have identified specific glycoproteomic 
profiles that correlate with tumor aggressiveness and include markers potentially specific to metastatic disease7,8. 
The wealth of glycoproteomic data demonstrate that glycoproteins specifically mark cancers and suggest that 
these glycosylation changes may play critical roles in promoting important biological state changes that occur 
during tumor development, invasion, and metastasis, underscoring the importance of gaining a better under-
standing of their biological functions.

Glycoproteins, often secreted from cells and tissues and detectable in body fluids, also provide a rich source 
of noninvasive biomarkers for cancer detection. For example, non-invasive detection and treatment monitor-
ing in pancreatic cancer diagnosis involves assaying for glycosylated proteins in the serum that are detected by 
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the monoclonal antibody CA19-9 which is known to bind a specific sialyl glycan class9. Measurement of serum 
glycoprotein prostate serum antigen (PSA) is widely used to screen for and monitor prostate cancer. PSA dem-
onstrates a number of glycosylation modifications, resulting in PSA “glycoforms”, that can differ between benign 
and malignant prostate tissues and have been proposed as candidate biomarkers that improve PSA performance 
as a screening biomarker10,11. While substantial biomarker discovery work has focused on plasma and serum from 
blood, much less effort has been directed at measuring biomarkers in more accessible fluid types such as urine. 
Urine has been shown to harbor a rich variety of modified proteins with over 2600 glycoproteins identified to 
date12. While urinary glycoproteomics is a logical frontier for discovery of biomarkers for urologic indications 
such as prostate, kidney and bladder cancers, glycoprotein alterations in urine have also been described for organs 
not in direct continuity with the urinary tract, including liver, lung and stomach cancers12.

Given the potential of urine glycoproteins as disease biomarkers, there is a need to develop improved urinary 
glycoproteomic workflows aimed toward biomarker discovery in this highly accessible biofluid. One roadblock 
of comprehensive glycoproteomic profiling in urine and other body fluids has been the inability of mass spec-
trometry (MS) and downstream analytic tools to effectively identify the vast diversity of attached glycan struc-
tures. To circumvent this challenge, MS-based glycoproteomic profiling efforts have often employed enzymatic 
removal of glycans prior to downstream MS, typically involving shotgun mode data acquisition on derivative 
tryptic peptide digests. In this approach, glycosylated amino acids retain a small chemical adduct after enzymatic 
deglycosylation that is detectable by MS. While these studies have provided a critical foundation by identifying 
glycosylated amino acid residues, including those in urine, the ability to understand more granular informa-
tion encoded in the complex glycan structures themselves is forfeited because of the upfront deglycosylation 
step13. More recently, methods for characterization intact glycopeptides and determining structures for attached 
glycans using MS with companion bioinformatic tools like Byonic have enabled mass-based identification of 
a growing list of peptide-attached glycans14. In addition, the efficiency of glycoproteomic workflows continue 
to improve with the advent of chromatographic strategies including hydrophilic-lipophilic balance (HLB) and 
C18-faciliated reversed-phase chromatography modes and combined approaches13,15, 16, as well as hydrophilic 
interaction (HILIC) chromatography17, that have improved sample desalting and glycoprotein enrichment for 
urinary samples. Finally, choice of mass spectrometry configuration also has been shown to markedly impact the 
efficiency of glycopeptide detection. High-energy C trap-based dissociation (HCD) has emerged as an effective 
choice for peptide fragmentation improving the ability to detect and analyze structures of intact glycopeptides18. 
Here, we present an optimized workflow that combines elements of the sample processing steps and employs a 
new database of intact glycopeptides, resulting in an eightfold improvement in urinary glycopeptide detection 
over prior reports.

Methods
Glycoproteomics workflow
Pooled urine from healthy individuals was purchased from Innovative Research and 5 and 10 mL aliquots of 
pooled urine were each concentrated to 200 µL using 4 mL Amicon filters (Sigma-Aldrich) via multiple rounds 
of centrifugation (45 min, 3500×g, 4 °C). Filters were washed with an additional 3 mL of 50 mM ammonium 
bicarbonate (Sigma-Aldrich) and the concentrated solution was split into 3 aliquots of equal volumes. Each ali-
quot was adjusted to 120 µL with 50 mM ammonium bicarbonate solution followed by the addition of 12 µL or 
14 µL of 10% sodium dodecyl sulfate (SDS, Invitrogen) for the initial 5 mL and 10 mL urine aliquots respectively. 
The disulfide bonds on cysteine residues on concentrated proteins were reduced with 5 µL of 200 mM Tris(2-
carboxyethyl) phosphine (TCEP) (Sigma-Aldrich) at 70 °C for 1 h. The free thiol groups were alkylated with 
7.5 µL of 200 mM iodoacetamide (Acros Organics) followed by an incubation of 45 min at room temperature 
in the dark. Proteins were precipitated with 1 mL of cold acetone and stored overnight at − 20 °C. Samples were 
centrifuged at 14,000×g for 10 min at 4 °C. Acetone was removed and the protein pellets were allowed to dry for 
5 min. Pellets were reconstituted with 80 µL of 50 mM ammonium bicarbonate and vortexed. Urinary proteins 
were digested with 2 µg of sequencing grade modified trypsin enzyme (Thermo Fisher Scientific) for 18 h at 
37 °C. The three separate 120 µL aliquots from each urine sample were combined, vortexed, and glycopeptides 
were enriched using strong anion exchange and electrostatic repulsion hydrophilic interaction chromatography 
(SAX-ERLIC) as described previously19. Briefly, the SOLA SAX solid phase extraction column was equilibrated 
with 3 mL of acetonitrile (Fisher Scientific), activated with 3 mL of 100 mM triethylammonium acetate (Fluka, 
Honeywell), and followed by adding 3 mL of 1% trifluoracetic acid (TFA, Sigma-Aldrich) in water (Fisher Sci-
entific). 3 mL of equilibration solution consisting of 95% acetonitrile with 1% TFA in water were passed through 
the SOLA SAX column for equilibration. The combined tryptic peptides were diluted with 3 mL of equilibration 
solution, loaded, and passed through the column at a rate of 1 mL/min. Non-binding peptides were washed off 
with 6 mL of equilibration solution. Then, glycopeptides were eluted from the column by adding two 850 µL 
aliquots of 50% acetonitrile with 0.1% TFA in water followed by another two 850 µL aliquots of 5% acetoni-
trile with 0.1% TFA in water. The resulting glycopeptides were dried down using a speed vacuum (LabConco) 
and further fractionated using a high pH reversed-phase fractionation kit (Thermo Fisher Scientific) following 
manufacturer’s recommended protocol. The fractionated glycopeptides were dried down using a speed vacuum 
and reconstituted with 12 µL of 0.1% formic acid (Fisher Scientific) in HPLC MS grade water (Fisher Scientific) 
for LC/MS–MS analysis.

A Dionex Ultimate Rapid Separation Liquid Chromatography system (Thermo Fisher Scientific) was used 
to load 10 µL of the reconstituted glycopeptides onto a PEPMAP 100 C18 5 µm trap column (Thermo Fisher 
Scientific) with a flow rate set at 5 µL/min for 10 min. Glycopeptides were separated by reversed-phase chro-
matography on a 25 cm long C18 analytical column (New Objective) packed in-house with BEH C18, 130 Å, 
1.7 µm particle size (Waters). An external column heater (MSWIL) was used to heat the analytical column to 
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60 °C. Glycopeptides were eluted by changing the mixture of mobile phase A (0.1% formic acid in water) and 
mobile phase B (0.1% formic acid in acetonitrile). The gradient program consisted of holding mobile phase B at 
2% for the first 10 min, slowly ramped up to 35% over the next 85 min, followed by an increase to 85% over 5 min 
with a 5 min hold. The analytical column was re-equilibrated for 15 min prior to the next sample injection. The 
flow rate throughout the gradient was set to 0.3 µL/min. Eluted glycopeptides were analyzed using an Orbitrap 
Eclipse Tribrid mass spectrometer (Thermo Fisher Scientific). The cycle time was set at Top-speed for 3 s with 
an MS1 mass scan range of 375–2000 m/z and Orbitrap resolution of 120,000. The normalized AGC target was 
set to 250 percent and the maximum injection time to auto. The most abundant precursor ions were fragmented 
with higher energy collisional dissociation (HCD) and with a collision energy set to 38%. Dynamic exclusion 
was enabled for 15 s with the mass tolerance to 10 ppm. The normalized AGC target for the MS2 was set to 200%. 
MS2 fragments were detected in the Orbitrap with a mass resolution of 30,000 with injection time set to auto.

Byonic software 4.0.12 (Protein Metrics) was used to search raw files against a focused-human-urine protein 
database (2021; 2421) generated from shotgun proteomics of urine and the 309 mammalian N-glycan library 
provided in the Byonic software for glycopeptide identification. Parameters included trypsin digestion with a 
maximum of two missed cleavages and precursor mass tolerance of 10 ppm. Fixed cysteine carbamidometh-
ylation and variable methionine oxidation, asparagine deamination, and N-glycan modification on asparagine 
contained within a N-X-S/T (where X can be any amino acid except proline) N-glycosylation amino acid con-
sensus sequence were also specified.

Data processing and analysis
Peptide identifications were filtered for Byonic Score greater than 150, and log probability greater than 1.5. The 
mass difference between two fucoses and one sialic acid is 1 Da and can lead to misidentifications of glycopeptides 
when the incorrect monoistopic peak is identified. We corrected for this problem by: (1) selecting glycopeptide 
identifications containing two or more fucoses where the mass accuracy was determined to be greater than 
− 1 Da, (2) determining the maximum number of sialic acids possible (= the number of hexoses minus 3), and 
(3) if the maximum number of sialic acids in the glycopeptide was less than the maximum number of sialic acids 
possible, two fucoses were replaced by one sialic acid in the glycopeptide identification.

Glycopeptides were classified according to the numbers of each combined sugar into seven glycan types 
(high mannose, hybrid, complex undecorated, complex sialylated, complex fucosylated, complex fucosylated 
plus sialylated, and other) using the decision tree in the Supplementary Fig. 1. All glycan structures contain-
ing two or less HexNAc, and three or less Hex were classified as “other”. If the number of HexNAc equaled two 
and the number of Hex was greater than three, the glycans were classified as “high mannose”. If the number of 
HexNAc was greater than or equal to 3, the number of Hex was greater than or equal to 3, and the number of 
Hex in the glycan main core was lower than HexNAc, the glycan was classified as “hybrid glycan”. For complex 
glycans: (1) those that did not contain Fuc or NeuAc, were classified as “complex undecorated”, (2) those con-
taining NeuAc but no Fuc were classified as “complex sialylated”, (3) those containing Fuc but no NeuAc were 
classified as “complex fucosylated”, and (4) those containing both Fuc and NeuAc, were classified as “complex 
fucosylated plus sialylated”.

Each identified glycoprotein was quantified using each assigned identification and distributed according to 
each glycan type after correction (if needed), dividing each spectral count per protein and glycan type by the 
total number of spectral counts per glycoprotein.

To better understand the relationship between the total urine proteome and the urine glycoproteome, we 
compared our glycoproteome data and a reference urine proteome20 by applying an overrepresentation analysis 
using the protein annotations according to GO biological process, GO cellular component, GO molecular func-
tion, biological pathway, protein domain, and site of expression, using the total human proteome as background. 
The analysis included only protein categories with greater than four proteins, and adjusted p-value of enrichment 
lower than 0.01, in at least one the datasets. Using these same criteria, we analyzed the protein sets determined 
by significant correlation (P < 0.01) against each of the seven glycan types considered in the analysis.

Results
Characterization of urine glycoproteome
Tandem mass spectrometry-based glycoproteomic analysis of pooled human urine samples collected from 
healthy individuals resulted in 45,303 total high quality intact N-linked glycopeptides (i.e. glycan attached to 
peptide backbone, GSMs). These glycopeptides corresponded to 8135 unique combinations of peptide sequences 
and glycan structures that mapped to 751 glycosites on 347 unique glycoproteins (Supplementary Table 1). 
Approximately 50% of the total identified glycopeptides corresponded to five abundant proteins (Fig. 1A). Uro-
modulin (UMOD), the most abundant protein in urine, accounted for ~ 28% of the total identified glycopeptides. 
Approximately 70% of the glycoproteins were identified by more than one unique glycopeptide (Fig. 1B). Fur-
thermore, 44% of the glycoproteins had two or more unique glycosites for which we were able to characterize 
the glycan composition (Fig. 1B). The glycan compositions on the glycopeptides included more than 269 unique 
structures which were classified by glycan group (Fig. 1C, Supplementary Table 2). The complex decorated gly-
cans (complex fucosylated, complex sialylated, and complex fucosylated and sialylated) were the most abundant 
glycan structures, with complex fucosylated and sialylated being the most abundant types. Complex undecorated, 
high mannose, hybrid, and other glycan structures were less abundant, comprising 21.3% of the total glycans.

To further study the biological properties of glycoproteins in urine, we performed gene enrichment analysis 
using Gene Ontology (GO) databases and biological pathway, protein domain, and site of expression databases. 
For each of these classes, enrichment analyses of the glycoproteins we identified and a large urine proteome 
dataset were performed20 (Fig. 1D, Supplementary Table 3). GO biological process including immune response 
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and cell growth and/or maintenance were the most significantly enriched categories in the urine glycoproteome 
and showed higher fold enrichment compared to the urine proteome. Integrin-related cell surface interactions 
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and epithelial-to-mesenchymal transition were the most highly enriched biological pathways in the urine gly-
coproteome. Not surprisingly in the urine glycoproteome, “urine” was the most significantly (lowest adjusted 
p-value) enriched site of expression, with cerebrospinal fluid, amniotic fluid, nipple aspirate fluid, and semen 
also showing significant enrichment.

The GO cellular components showed significant enrichment in urine glycoproteins for extracellular, exosomes, 
lysosome, and extracellular region/space, an expected finding since secreted proteins are commonly glycosylated. 
Molecular functions showed a significant enrichment in the urine glycoproteome dataset including proteins 
associated with the extracellular matrix structural constituents, cell adhesion molecule activity, receptor activity, 
complement activity, and hydrolase activity. Protein domains related to signal peptide, immune response (e.g. 
IG and IGc2) and EGF (a domain present on cell surface proteins) were found to be significantly enriched in 
the urine glycoproteome.

Classification of glycoproteins by dominant glycan type
Glycoproteins can be classified by the predominant putative type of glycan (e.g. complex undecorated, complex 
fucosylated, complex sialylated, complex fucosylated + sialylated, high mannose, hybrid, or other). For each 
glycan type, the spectral counts were normalized to the total number of identified glycopeptides per protein and 
the glycoproteins were then clustered using a Pearson correlation analysis to display proteins with a significant 
correlation (P < 0.01) based on the glycan types (Fig. 2). For most of the glycoproteins (76%), complex struc-
tures were the predominant glycan type, and of the complex glycans, complex fucosylated and sialylated were 
most commonly observed (Figs. 1C and 2). Notably, four immunoglobulin proteins were found in the complex 
fucosylated glycoprotein cluster.

The only protein with a complex undecorated dominant glycan type was thrombospondin-1 (THBS1), an 
adhesive glycoprotein that mediates cell-to-cell and cell-to-matrix interactions21. As shown in Fig. 3, we detected 
19 total glycopeptides, 84% of which are complex undecorated glycans, that map to a single glycosite (ASN1067) 
in the C-terminal region of thrombospondin-1, with the remaining glycans including complex fucosylated (11%) 
and hybrid (5%) types. According to Interpro and Gene Ontology cross-reference databases, this glycoprotein 
domain is present in proteins involved in calcium binding and cell adhesion.

Since the complex fucosylated and sialylated glycoproteins were the most common glycan type in the urine 
glycoproteome, we performed a gene enrichment analysis to compare these glycoproteins to the human proteome 
(Fig. 4A). We observed significant enrichment of proteins related to immune response. The complex fucosylated 
and sialylated glycoproteins were enriched for extracellular, exosomes, plasma membrane, and lysosome proteins, 
as well as molecular functions related to receptor activity.

Using the same approach, we compared complex sialylated glycoproteins, the second most abundant glycan 
type, to all human proteins (Fig. 4B). Once again, there was enrichment for glycoproteins involved in the immune 
response. Interestingly, complex sialylated proteins were enriched in similar cellular compartments compared 
to the complex fucosylated and sialylated glycoproteins, showing enrichment in extracellular, exosomes, and 
lysosome -related proteins. Complex sialylated proteins also showed significant enrichment in defense/immunity 
protein activity and protease inhibitor activity, as well as signal peptide and SERPIN (a specific type of protease 
inhibitor) domain.

When we compared predominantly high mannose glycoproteins to all human proteins (Fig. 4C), we did not 
observe significant enrichment in any GO biological processes, GO molecular functions, or protein domains. 
However, we did observe enrichment in subcellular locations of extracellular, exosomes, and lysosome.

Identification and characterization of protein glycosites
The information provided by intact glycoproteomics analysis allows the identification of the specific amino acid 
that is glycosylated in a protein (i.e. glycosite) and characterization of the glycan composition at the glycosite. 
In this study, we evaluated the meta-heterogeneity22 (i.e. the variation in glycosylation across multiple sites of 
a given protein), to determine whether dominant glycan types differed between individual glycosites within a 
single protein. We compared the observed glycan species for the overall protein to the glycans observed at each 
individual glycosite. Figure 5 shows proteins (with three or more characterized glycosites) that have significant 
meta-heterogeneity, as defined by the dominant glycan type on one or more glycosite(s) differing from the gly-
cosylation information from combining information across glycosites for a given protein. For example, cubilin 
(CUBN), an endocytic receptor important in metabolism by facilitating the uptake of lipoproteins, vitamins and 
iron23–27, shows predominantly complex fucosylated glycans when the protein is viewed as a whole (Fig. 6A). 
However, when examining the individual glycosites, CUBN showed a high degree of meta-heterogeneity with the 
dominant glycans for N781/N1802, N2400, N2923, and N3457 dominated by complex fucosylated, complex sialylated, 
high mannose, and complex undecorated glycans respectively.

An additional example of a protein exhibiting meta-heterogeneity in glycosylation is uromodulin (UMOD). 
UMOD is the most abundant glycoprotein in urine and contributes to colloid osmotic pressure, retards passage 
of positively charged electrolytes, prevents urinary tract infections, and inhibits formation of liquid containing 
supersaturated salts and subsequent formation of salt crystals28. We identified 12,614 total glycopeptides corre-
sponding to 1485 unique glycopeptides, containing 269 unique glycan structures that mapped to five glycosites 
on UMOD (Fig. 6B). The overall protein was found to have the highest percentage of sialylated and complex 
fucosylated glycans, consistent with a recent study specifically characterizing glycans from UMOD in urine29 
and which was consistent with four of the five glycosites. However, N275 exhibited a strikingly different pattern 
with 71% of all glycopeptide identifications contain high mannose structures. Interestingly, glycan structures at 
this site differed from a previous study30 which identified only high mannose structures at N275. To determine if 
the difference in glycosylation on this specific site may be due to amino acid’s location on the three dimensional 
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structure of the protein, we calculated the residue depth31 of each glycosite as shown in Fig. 6B. Interestingly, 
N275 had a larger residue depth than the other four glycosites which were mapped to more solvent-accessible 
areas on the protein. These results are consistent with the previous observation that protein structure dictates 
formation of N-glycan type32. Therefore, it is possible that the dominant high mannose glycans on N275 may be, 
at least partially explained by the limited accessibility of the glycosite therefore restricting access to the glycans 
at that site by glycosotransferases.
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Figure 2.   Heatmaps showing the distributions of glycan types identified on proteins. The relative intensity of 
each glycan class is calculated based on the number of GSMs for the corresponding glycopeptides. Proteins are 
clustered by dominant glycan class.
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Alterations in glycosylation of proteins such as cubilin and uromodulin can have profound implications 
for protein structural conformation, molecular interactions, and biological functions due to the pivotal role of 
glycosylation in protein folding, stability, trafficking, and receptor-ligand interactions3. In the case of cubilin, a 
protein expressed in renal and intestinal cells, and a receptor involved in renal reabsorption and cellular transport, 
changes in glycosylation patterns can impact its ligand-binding affinity and transport efficiency33. Modulations in 
the glycosylation profile of cubilin may disrupt the proper recognition and binding of specific ligands, potentially 
compromising its role in renal transport processes and overall renal function33. Similarly, uromodulin, is a gly-
coprotein exclusively produced in the kidney, where it participates in urine concentration regulation and kidney 
defense mechanisms34. Alterations in uromodulin glycosylation can affect its structural stability, intracellular 
trafficking, and interactions with other urinary components and proteins. These modifications may influence 
uromodulin’s polymerization, ion transport regulation, and involvement in immune responses within the kidney.

The specific consequences of glycosylation changes in cubilin and uromodulin are likely dependent on the 
nature and site of the altered glycans. These changes can result in functional modifications, modulated pro-
tein–protein interactions, modified receptor binding affinities, and potential effects on intracellular signaling 
pathways. Elucidating the precise effects of these glycosylation alterations is crucial for comprehending the 
underlying mechanisms and their implications for physiological processes and diseases.

In summary, urine is a highly attractive sample type for developing clinical assays, and this study describes 
deep analysis of the urine glycoproteome spanning more than four orders of magnitude of dynamic range of 
protein abundance. We describe the protein composition of the urine glycoproteome and how that differs from 
the overall urine proteome. This study also provides detailed characterization of glycans on specific glycosites 
of identified proteins and examples of meta-heterogeneity in glycosylation are shown with possible explanation 
by residue depth. This dataset may also find utility as a resource for future studies as a baseline characterization 
of pooled normal human urine.
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Complex undecorated
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Figure 3.   Glycans identified on asparagine- 1067 (N1067) of thrombospondin (THBS1). Classes of glycans are 
shown in the inner pie chart and the breakdown of glycans corresponding to the respective classes are shown in 
the outer doughnut chart. A schematic of the THBS1 protein sequence is shown at the bottom with the different 
protein domains and the purple line indicating the location of N1067.
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Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 
partner repository with the dataset identifier PXD038923.
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