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Abstract

This systematic review examines the recent use of artificial intelligence, particularly machine learning, in the manage-
ment of operating rooms. A total of 22 selected studies from February 2019 to September 2023 are analyzed. The review
emphasizes the significant impact of Al on predicting surgical case durations, optimizing post-anesthesia care unit resource
allocation, and detecting surgical case cancellations. Machine learning algorithms such as XGBoost, random forest, and
neural networks have demonstrated their effectiveness in improving prediction accuracy and resource utilization. However,
challenges such as data access and privacy concerns are acknowledged. The review highlights the evolving nature of
artificial intelligence in perioperative medicine research and the need for continued innovation to harness artificial intelli-
gence’s transformative potential for healthcare administrators, practitioners, and patients. Ultimately, artificial intelligence

integration in operative room management promises to enhance healthcare efficiency and patient outcomes.
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Introduction

The operating room (OR) is healthcare’s epicenter, effi-
cient OR resource management, personnel, equipment, is
vital for top-tier surgical care [1]. Recently, Artificial Intel-
ligence (AI) and Machine Learning (ML) integration are
transforming OR management, redefining surgical plan-
ning and optimization [2]. The journey towards Al and ML
in OR management began with a realization: healthcare’s
data held untapped potential from patient demographics to
surgery histories, anesthesia protocols to recovery room
dynamics [3]. In 2015, research on ML in medicine grew
exponentially, transitioning from theory to real-world appli-
cations [4]. With increased ML understanding and com-
puting power, healthcare is using this technology to tackle
complex challenges [5]. In the era of data-driven healthcare,
ML became a cornerstone for OR tasks, predicting surgi-
cal durations, optimizing schedules, and improving resource
use [6]. ML algorithms, like decision trees and random
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forests, redefined OR efficiency, promising more accurate
predictions and proactive decision-making [7]. This sys-
tematic review updates our prior work, “Artificial Intelli-
gence: A New Tool in Operating Room Management. Role
of Machine Learning Models in Operating Room Optimi-
zation” focusing on Feb 2019 to Sep 28, 2023 [4]. In the
prior review, we explored ML’s pivotal role in reshaping OR
management, emphasizing Al-driven algorithms’ potential
for scheduling, case duration prediction, and resource allo-
cation streamlining. In this update, we delve into the latest
ML developments in perioperative medicine, exploring how
they redefine OR efficiency and patient care. We explore
ML’s expansion into perioperative medicine, from Post
Anesthesia Care Unit (PACU) resource allocation to reduc-
ing surgical case cancellations. We’ll also spotlight integra-
tion challenges and opportunities as we aim to maximize
Al’s potential for all in healthcare.

Methods
Search Strategy
This comprehensive update was conducted in accordance

with the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines. A systematic
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search was performed across multiple databases, includ-
ing PubMed, EMBASE, and Scopus databases from Feb-
ruary 2019 to September 28, 2023. The search string was
adapted from the previous review and comprised various
combinations of the following terms: “machine learning,”
“anesthesia,” “perioperative,” “PACU,” “operating room,”
“recovery room,” and “robotic assisted surgery.”

Inclusion and Exclusion Criteria

We considered all relevant studies that employed ML tech-
niques in the context of OR, anesthesia, Recovery Room
(RR), and PACU management. Studies published before
February 2019, abstracts and those not written in English
were excluded. Additionally, pediatric and veterinary stud-
ies were excluded from the analysis.

Screening and Selection

Two independent reviewers conducted the screening process
in two stages: title/abstract screening and full-text screening.
Any discrepancies or uncertainties were resolved through
discussion and consensus. After removing duplicates, an
initial screening process excluded reviews and conference
papers, resulting in a refined pool of potential studies. The
remaining full-text articles were assessed, and studies not
directly related to ML application were excluded. The final
selection included studies published between February 2019
and September 28, 2023, that met the eligibility criteria.

Data Extraction

Data extraction followed a structured approach, with a focus
on study characteristics related to ML methods, patient
populations, trial settings, variables, and outcomes. The
extracted data were synthesized narratively, focusing on the
key themes and findings related to the role of new technolo-
gies in perioperative management from an administrative
and managerial standpoint. The findings were summarized
and presented in a comprehensive manner.

Results

The search returned 90,492 papers published between Feb
2019 and Sep 28, 2023, without duplicates; 44,723 were full
text. Only 2,009 were clinical trials and randomized con-
trolled trials. We further skimmed, keeping only English
studies involving the adult human population (18 + years),
totaling 1,071 studies. After screening the remaining 30
studies, we discarded eight papers: two were not strictly
related to ML application, and six were theoretical studies.

@ Springer

In the final selection, 22 studies were included in the analy-
sis [8-29]. Figure 1 displays the PRISMA flowchart.

Tables 1 and 2, and 3 summarize key study characteris-
tics, focusing on ML methods, populations, trial settings,
variables, and outcomes. Table 1 predicts surgical interven-
tion duration, Table 2 covers PACU stay prediction, and
Table 3 focuses on surgical procedure cancellations.

Among the 22 studies analyzed [8-29], sixteen primarily
focused on predicting the duration of surgical cases [8—13,
15-24], three centered on predicting the length of stay in
the PACU [25-27]. One study addressed both aspects [14],
while only two studies examined the identification of surgi-
cal cases at high risk of cancellation [28, 29]. Additionally,
it is noteworthy that only one of the studies is a randomized
clinical trial [23], suggesting a need for more robust experi-
mental designs in this research domain. In the selected
studies, the most frequently used machine learning algo-
rithms are represented by Random Forest, XGBoost, Linear
Regression, Support Vector Regression (SVR), Neural Net-
works, Bagging, Ensemble Methods, Perceptron, CatBoost,
and Logistic Regression. All of them [8-29] demonstrated
the capability to enhance predictive accuracy for surgical
durations, PACU length of stay, and high-risk surgical case
cancellation predictions. Notably, XGBoost exhibited the
best overall performance when used. Ensemble methods,
like Bagging and Random Forest, improved prediction accu-
racy by combining models [14]. ML models also optimized
scheduling and resource allocation. For instance, Hassan-
zadeh et al. [11] predicted daily operating theatre arrivals
with 90% accuracy, optimizing staffing and resource alloca-
tion. Several studies, including those from Bartek et al. [8]
and Lam et al. [13], emphasized the importance of tailoring
ML models to individual surgeons or considering additional
patient and surgery-related factors.

The observed trend in scientific paper publications on
ML in perioperative medicine showed an increase from
2015 to 2019 [4], followed by a decline (Fig. 2).

This may be indicative of several factors. Initially, there
was a surge in interest and investment in ML applications,
optimizing OR management, cost reduction, and patient
care quality improvement. However, the decrease from
2020 onwards may be due to promising research already
being published, practical challenges, or a need for deeper
understanding and resources. Characteristic of the learning
curve are represented in (Fig. 3).

This trend reflects the evolving nature of ML in perioper-
ative medicine, necessitating a detailed analysis of research
landscape, funding, technology, and evolving priorities.
Although studies have demonstrated the effectiveness of
AI/ML systems in OR applications, physicians’ hesitancy
or reluctance to incorporate these systems into decision
making remains a significant barrier. This phenomenon
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is caused by many factors. The complex nature of AI/ML
technologies, particularly in healthcare setting, can contrib-
ute to slow adoption in clinical practice. For clinicians, it
may be a challenge to understand the algorithms and pro-
cesses that underpin these systems. The novel and evolving
nature of Al technologies may create a perceived risk, caus-
ing clinicians to hesitate to fully embrace and trust these
tools. Clinicians may not be sufficiently familiar with the
concepts and operation of ML/AI systems. Failure to edu-
cate and train on how these technologies work can lead to
skepticism. Filling this knowledge gap is essential to build
trust and confidence among clinicians. Furthermore, in the
OR, where patient safety is paramount, clinicians may be
particularly reluctant to adopt technologies that may impact
patient outcomes. Concerns about the reliability and safety
of Al systems may contribute to a conservative approach
to their adoption. While studies have demonstrated the effi-
cacy of AI/ML systems in controlled environments, clini-
cians may be reluctant to consider their applicability and
generalisability in the real world. Limited clinical validation
and insufficient evidence of improved patient outcomes in
diverse scenarios can hinder the acceptance of these tech-
nologies. Moreover, clinicians often face ethical and legal
considerations when integrating Al into patient care. Issues

related to data privacy, liability, and the ethical implications
of automated decision-making can contribute to hesitancy
in adopting ML/AI systems in ORs. Finally, effective com-
munication and collaboration between data scientists, engi-
neers, and clinicians are crucial. Misalignment in goals,
expectations, and language between these interdisciplinary
teams can lead to misunderstandings and hinder the suc-
cessful deployment of Al in clinical settings. Addressing
these factors involves not only improving the explainabil-
ity and transparency of Al models but also implementing
robust education and training programs for clinicians [30].
Building a collaborative environment that involves clini-
cians in the development process, ensuring rigorous clini-
cal validation, and addressing ethical and legal concerns
are essential steps toward fostering trust and acceptance.
Overcoming these challenges can contribute to accelerating
the integration of AI/ML systems in OR decision-making
processes. Figure 4 Illustrates a comparison of the number
of publications in each area between the previous version of
the review and this update.
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Table 3 Main studies about risk of surgery cancellation

Author, Country  Study Type of  Main Objective Final  Type of AI  Prediction Performance External
year design  procedure outcomes Cohort validation
Zhang  China Obser-  Elective  Risk of Identification 5125 Random The average AUCs in the test No
F.J vational, urologic  surgeries of surgeries cases  Forest, set exceeded 0.65, with the
Healthc retro- surgeries  cancellation with high can- logistic maximum of AUC (0.7199,
Eng. spective, cellation risk regression, RF, original sampling, and
2021. mono- XGBoost-  backward selection strategy).
centric tree, sup-
study port vector
machine-
linear, and
neural
networks.
LuoL. China Obser-  Elective  Risk of Identification 5125 Random The optimal performances No
Health vational, urologic  surgeries of surgeries cases  Forest, of the identification
Infor- retro- surgeries  cancellation with high risks XGBoost models were as follows:
matics spective, of cancellation linear and  sensitivity —0.615; speci-
J. 2020 mono- tree, SVM  ficity — 0.957; positive
Mar. centric linear and  predictive value — 0.454;
study radial. negative predictive

value — 0.904; accu-

racy —0.647; and area
under the receiver operating
characteristic curve —0.682.
The random forest

model achieved the best
performance.

AUC: Area under the Curve. RF: Random Forest. SVM: Support Vector Machine
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Fig. 2 Publication per year since 2019. Note: the timeline counts all publication dates for a citation as supplied by the publisher. These dates may
span more than one year. This means the sum of results represented in the timeline may differ from the search results count
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Discussion

Out of the 22 selected papers [8-29], 17 focus on predict-
ing the duration of surgical planning [8-24]. This finding
underscores the crucial role of accurate estimation in sur-
gical case duration for effective operating room manage-
ment. It presents a complex and multifaceted challenge that
profoundly impacts OR scheduling, resource allocation,
and overall operational efficiency. Our previous review [4]
primarily highlighted the promising results of a proprietary
algorithm known as leap Rail® [31]. While it exhibited an
improvement in predictive accuracy compared to traditional
methods, our updated review reveals a more nuanced pic-
ture. More recent studies, such as the work by Bartek and
colleagues [8], have delved deeper into the use of machine
learning models, emphasizing the importance of surgeon-
specific models. These newer models outperform service-
specific ones and significantly enhance the accuracy of
case-time predictions, offering substantial benefits in terms
of operating room management. Our updated analysis also
demonstrates the dominance of XGBoost in machine learn-
ing models over other algorithms, including the random
forest model and linear regression. XGBoost’s superior
predictive capabilities are showcased, which is a notable
deviation from the earlier review’s focus on leap Rail® [30].

@ Springer

=—=Pubblications2

=——=| earning curve

This underlines the rapid advancements in machine learning
technology and its potential to refine surgical case duration
predictions. However, is important to keep in mind that dif-
ferent outcomes could require different ML algorithms. [32]
Another key finding in the previous review was the potential
cost savings associated with accurate surgical case duration
predictions in robotic surgery. However, our updated review
provides new insights. Jiao and colleagues [11] introduced
the use of modular artificial neural networks (MANN) for
predicting remaining surgical duration. MANNs are neu-
ral networks equipped with external memory. They excel
at tasks requiring context and sequential reasoning, making
them suitable for certain clinical applications. They lever-
aged anesthesia records from a diverse range of surgical
populations and hospital types, showcasing the robustness
and adaptability of their model. MANN consistently out-
performed Bayesian statistical approaches, particularly dur-
ing the last quartile of surgery, indicating its potential for
cost savings and operational efficiency improvements. The
study also assessed the generalizability and transferability
of the MANN model. It found that even healthcare systems
with lower operative volumes could benefit from fine-tun-
ing a model trained at larger nearby systems. It also high-
lighted the lack of meaningful information in the anesthesia
record during certain phases of surgery, suggesting room for
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Fig.4 Number of publications
per area

First review

= Prediction of surgery time

= PACU LOS = Risk of cancellation

Update review

= Prediction of surgery time

improvement. This study underscores the rapid advances in
machine learning algorithms and their application in real-
world surgical scenarios. Variational autoencoders (VAEs),
which are generative models designed for learning latent
representations of data, also fit in this context. They con-
sist of an encoder and a decoder. The encoder maps input
data to a probability distribution in a latent space, and the
decoder reconstructs data from samples in this latent space.
Linking advanced models like MANNs and VAEs to clini-
cal sense implies that these models could contribute to the
field of personalized medicine by learning patient-specific
representations, enabling tailored treatment plans and also
address clinical needs, enhance diagnostics, improve patient
outcomes, or streamline healthcare processes [33]. The
work conducted by Stromblad et al. [23], a single-center,

= PACU LOS

= Risk of cancellation

randomized clinical trial brought additional insights. They
explored the accuracy of predicting surgical case durations
using a machine learning model in comparison to the exist-
ing scheduling-flow system. This research emphasized the
benefits of a comprehensive and data-driven prediction
approach, which resulted in a significant reduction in mean
absolute error (MAE), contributing to enhanced prediction
accuracy. Importantly, this decrease in MAE translated into
reduced patient wait times without adversely affecting sur-
geon wait times or operational efficiency, indicating a har-
monious balance between efficiency and patient outcomes.
This study is the first and only randomized clinical trial on
the subject, to our knowledge, representing a significant
milestone.

@ Springer
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When comparing the reviews, both the previous [4]
and the updated one underscore the potential benefits of
improved prediction accuracy in surgical scheduling and
operating room management. However, the newer studies
provide more specific insights into practical implications.
Bartek and colleagues’ work [8] shows a reduction in wait
times and resource utilization through the implementation
of machine learning-driven models. This has a significant
impact on patient outcomes without disrupting opera-
tional efficiency, reinforcing the value of these predictive
models in real-world healthcare settings. In comparing the
updated review of predictive models for PACU length of
stay with the previous version [4], we can discern a sub-
stantial evolution also in this field. The earlier review had
already acknowledged the importance of improving hos-
pital organization and internal logistics to reduce the costs
associated with time and space waste in healthcare [4]. It
had highlighted issues of congestion in the PACU due to
inadequate surgical planning, which often led to patients
being held in the OR when PACU beds were unavailable,
incurring higher costs. In the current update, we have
expanded our analysis to include more recent studies, spe-
cifically focusing on predicting PACU length of stay, and
their findings are striking. One study conducted by Schulz
and colleagues [25] utilized a dataset of 100,511 cases to
develop predictive models for PACU length of stay. They
considered variables such as patient age, surgical urgency,
duration of surgery, and more to create a neural network
model. Notably, the study evaluated individual anesthe-
siologists, categorizing them based on their mean PACU
length of stay. The predictive model, relying on routinely
collected administrative data, significantly explained varia-
tions in individual anesthesiologists’ mean PACU length of
stay. This study underscored the practicality of deploying
predictive models within existing hospital infrastructure.
Tully and colleagues’ research [27], another notable study
in this field, aimed to develop a model that could classify
patients at high risk for a prolonged PACU stay of >3 h.
The study considered factors like surgical procedure, patient
age, and scheduled case duration. The most effective model
was XGBoost, which significantly improved the ability to
predict prolonged PACU stays. Furthermore, by using the
XGBoost model’s predictions, cases were re-sequenced
based on the likelihood of a prolonged PACU stay, which
led to a substantial reduction in the number of patients in
the PACU after hours. These recent studies collectively
signify a remarkable shift in the field of PACU length of
stay prediction. They highlight the potential of predictive
models, machine learning, and data-driven approaches to
enhance healthcare quality and operational efficiency. The
adoption of big data analytics and optimization of case
sequencing have clear implications for improving patient

@ Springer

outcomes and resource allocation. It is evident that these
models hold significant promise for healthcare institutions,
potentially offering considerable cost savings and enhanced
patient care. When comparing these recent findings with the
previous version of the review, we see a marked advance-
ment in the sophistication of predictive models. The earlier
version primarily emphasized the issue of inefficient PACU
use and its financial implications, highlighting the potential
for cost savings through improved surgical planning. The
new studies demonstrate not only the cost-saving potential
but also the power of data-driven predictive models, which
can significantly enhance the efficiency and effectiveness of
healthcare operations.

One of the significant challenges in the healthcare indus-
try is the unexpected cancellation of surgical cases. Surgical
cancellations not only disrupt the workflow of healthcare
facilities but also pose risks to patient safety and satisfaction
[34]. To address this issue and optimize surgical schedul-
ing, ML techniques have emerged as a promising solution
for the early detection of potential cancellations. Compar-
ing the updated review with the previous version [4] reveals
substantial advancements in this critical aspect of health-
care management. In the earlier review [4], the focus was on
the high costs associated with surgical case cancellations,
particularly highlighting the cost variation across different
types of surgeries. It underscored the need for automatic
classification methods to detect high-risk cancellations
from large datasets. Furthermore, the review discussed the
potential for ML algorithms, specifically random forest, in
identifying surgeries at high risk of cancellation, with the
promise of optimizing healthcare resource utilization and
cost-efficiency. The current review continues to emphasize
the significance of addressing surgical case cancellations in
healthcare. For example, Luo et al. [28] significantly con-
tribute to the field by leveraging ML to identify high-risk
cancellations. Their research focuses on a dataset of elec-
tive urologic surgeries, comprising over 5,000 cases, with
the aim of identifying surgeries prone to cancellation due to
institutional resource- and capacity-related factors. Authors
employed three ML algorithms, including random forest,
support vector machine, and XGBoost, and evaluated their
performance across various metrics. Their findings revealed
the suitability of ML models for identifying surgeries at low
risk of cancellation, effectively narrowing down the pool
of surgeries with higher risk. Moreover, the random forest
models displayed good efficacy in distinguishing high-risk
surgeries, with an area under the curve (AUC) exceeding
0.6, indicating an interesting result in this context. Different
sampling methods allowed for adjustments in model per-
formance, highlighting the trade-offs between sensitivity
and specificity. The study concluded that ML models are
feasible for identifying surgeries at risk of cancellation. In
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a subsequent study by Zhang and colleagues [29] from the
same center, the focus shifted to providing effective meth-
odologies for recognizing high-risk surgeries prone to can-
cellation. They also utilized the same dataset but explored a
variety of machine learning models, including random for-
est, logistic regression, XGBoost, support vector machine,
and neural networks. The study identified the random forest
model as the top-performing algorithm, achieving a high
accuracy of 0.8578 and an AUC of 0.7199. Despite the high
specificity and negative predictive value, the study acknowl-
edged the need for improving sensitivity and positive pre-
dictive value in identifying high-risk cases. In summary,
both studies [28, 29] aim to address the challenge of surgi-
cal case cancellations in healthcare using machine learning
techniques. They highlight the importance of selecting the
right machine learning algorithm for this task and acknowl-
edge the need for improving sensitivity and positive predic-
tive value. Both studies [28, 29] acknowledge limitations
related to their focus on elective urologic surgeries within a
single hospital and suggest the potential for future research
to expand to diverse healthcare settings for improved gen-
eralizability. Comparing the two reviews, the earlier ver-
sion [4] emphasized the need for ML algorithms to address
surgical case cancellations but did not delve into specific
research findings for a lack of studies on the argument. In
contrast, in the current version we provide in-depth insights
into the suitability of different ML models for identifying
high-risk surgeries. Both reviews share a common theme:
the critical role of ML techniques in addressing surgical
case cancellations to enhance healthcare resource utilization
and cost-efficiency.

In summary, the comparison between the two editions of
the systematic reviews on the artificial intelligence integra-
tion in operative room management highlights a remark-
able evolution in each domain. In the case of surgical case
duration estimation, the newer review showcases a shift
towards machine learning-based models, notably XGBoost,
and a heightened focus on surgeon-specific models. This
means the realization of machine learning’s potential,
promising increased precision in predictions, cost reduc-
tion, and enhanced operating room management. Similarly,
in the PACU length of stay prediction domain, the updated
review underscores the transformative potential of predic-
tive models, emphasizing the value of big data analytics,
optimized case sequencing, and risk-adjusted metrics for
improving patient outcomes and resource allocation. It
acknowledges the challenges of real-world implementation
and the need for further validation through prospective stud-
ies and collaborative efforts. Overall, the updated review
provides deeper insights into the practical applications of
these advanced techniques, offering healthcare providers
and managers valuable tools to enhance efficiency, reduce

costs, and improve patient care. The shift towards center-
specific models in healthcare, particularly for organizational
aspects, merits in-depth exploration. This trend reflects the
growing recognition that customization based on center-
specific variables, such as the type of surgeon or anesthetist,
can lead to more accurate predictions and better resource
allocation. The balance between clinical and organizational
applications in these models remains a key consideration.
While clinical models focus on patient-specific factors,
organizational models, including center-specific ones, pri-
marily address resource optimization, scheduling efficiency,
and cost reduction. The choice between center-specific and
clinical models ultimately depends on the specific goals
and priorities of a healthcare institution. Regarding clini-
cal implementation, it is crucial to investigate how many
of these advanced models will progress beyond research to
practical application. The shift towards real-world usability
is gaining traction, but not all studies provide tools or soft-
ware for direct application. A critical aspect is the integra-
tion of these models into daily work routines. Successful
implementation often involves interdisciplinary collabora-
tion between data scientists, healthcare professionals, and
administrators. These tools can be used by a range of stake-
holders, including surgeons, anesthetists, scheduling teams,
and hospital administrators. Different outputs from these
models serve varied purposes. For example, clinical models
can guide treatment decisions, while organizational models
can enhance resource allocation and scheduling efficiency.
The extent to which these models are designed for easy inte-
gration and use in daily healthcare operations is a key area
of investigation, ultimately impacting their practical utility
and impact on patient care and healthcare management.

Limitations

The limitations of this systematic review include the poten-
tial for publication bias, as only articles published in Eng-
lish were included. Additionally, the availability of relevant
literature may vary across different databases, potentially
impacting the comprehensiveness of the review even if,
efforts were made to mitigate these limitations by employ-
ing a rigorous search strategy and conducting a thorough
screening process. Nevertheless, conducting a comprehen-
sive assessment and formulating definitive conclusions
regarding the optimal algorithm for predictive models of
perioperative complications remains a challenge due to the
diverse nature of settings and variations in the algorithms
under review. The lack of standardization across studies
has impeded our ability to conduct a meta-analysis utiliz-
ing both univariate and multivariate random effect models.
Furthermore, most studies exhibit a deficiency in external
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validation of their models. While the use of AUC as an eval-
uation criterion is practical, it is essential to acknowledge
its limitations, particularly in scenarios involving imbal-
anced datasets within the realm of Al. The significance of
ensuring data quality for the successful application of Al
extends across various domains, including research, clinical
practice, and health system organization. However, achiev-
ing datasets of both high quality and quantity necessitates
rigorous scrutiny at every stage of the process, spanning
from data collection to the selection of ML models and their
algorithms.

Conclusion

In conclusion, this systematic review provides a compre-
hensive overview of the recent advancements in the applica-
tion of artificial intelligence, particularly machine learning,
in the management of operating rooms. The analysis of the
22 selected studies spanning from February 2019 to Sep-
tember 28, 2023, sheds light on the evolving landscape of
Al-driven solutions in perioperative medicine. The review
highlights the pivotal role of machine learning in predict-
ing surgical case durations, optimizing resource allocation
in the PACU, and detecting surgical case cancellations.
These Al-driven models have demonstrated their potential
to significantly enhance the efficiency, cost-effectiveness,
and safety of surgical procedures. It is evident that machine
learning techniques are increasingly integrated into health-
care management to address complex challenges. Further-
more, the review recognizes that the adoption of machine
learning in perioperative medicine is not without its chal-
lenges. Issues such as data access, privacy concerns, and
the need for extensive validation studies pose hurdles to the
widespread implementation of Al solutions. The review also
suggests that as the field matures, researchers and practi-
tioners must develop a deeper understanding of Al applica-
tions, which may lead to a slowdown in new publications
as they tackle more complex questions and challenges.
Overall, this systematic review underlines the transforma-
tive potential of artificial intelligence, particularly machine
learning, in reshaping the management of operating rooms.
It calls for continued research, collaboration, and innovation
to overcome existing challenges and unlock the full benefits
of Al for healthcare administrators, practitioners, and most
importantly, patients. As we move forward, the integration
of Al into operating room management holds the promise of
further enhancing healthcare delivery and improving patient
outcomes in the years to come.
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