Skip to main content
. 2023 Nov 15;12(2):1046–1055. doi: 10.1002/fsn3.3818

TABLE 3.

Simple and multiple linear regression of associations between acrylamide concentration and potato samples of different compositions (n = 50).

Simple linear regression Multiple linear regression
Acrylamide concentration (μg kg−1) Acrylamide concentration (μg kg−1)
β (95% CI) β (95% CI)
Potato models
Asn‐GFS (model 1) 390.2 (182.5–597.93), p < .0001 490.93 (−20.54, 72.01), p < .001
Glu‐Fru (model 3) 305.66 (86.32, 524.99), p = .007 413.15 (274.33, 551.97), p < .001
Sucrose (model 4) 172.80 (−58.41, 404.02), p = .14 290.93 (152.10, 429.75), p < .001
Potato cultivars
Agria 295.76 (−20.34, 611.86), p = .06 415.87 (225.08, 606.670), p < .001
Kennebec 188.60 (−134.36, 511.52), p = .25 321.98 (152.10, 429.75), p < .001
Monalisa 49.87 (−277.36, 377.09), p = .76 179.81 (−10.97, 370.61), p = .064
Temperature
170°C 98 (−118, −137), p = .88 90 (−95, −113), p = .26
190°C 0 0
Technique
Air frying −76 (−212, −59), p = .26 −57 (−168, −54), p = .31
Deep frying 0 0

Note: β of the dependent variable acrylamide concentration is presented with 95% CI using simple and multiple linear regression. Significance at p < .05. 190°C and deep‐frying cooking techniques were taken as references in the statistical analysis.