Gene Discovery through Expressed Sequence Tag Sequencing in *Trypanosoma cruzi*

RAMIRO E. VERDUN,¹ NELSON DI PAOLO,¹ TURAN P. URMENYI,² EDSON RONDINELLI,² ALBERTO C. C. FRASCH,¹ AND DANIEL O. SANCHEZ^{1*}

Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, Buenos Aires, Argentina,¹ and Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil²

Received 15 May 1998/Returned for modification 2 July 1998/Accepted 10 August 1998

Analysis of expressed sequence tags (ESTs) constitutes a useful approach for gene identification that, in the case of human pathogens, might result in the identification of new targets for chemotherapy and vaccine development. As part of the *Trypanosoma cruzi* genome project, we have partially sequenced the 5' ends of 1,949 clones to generate ESTs. The clones were randomly selected from a normalized CL Brener epimastigote cDNA library. A total of 14.6% of the clones were homologous to previously identified *T. cruzi* genes, while 18.4% had significant matches to genes from other organisms in the database. A total of 67% of the ESTs had no matches in the database, and thus, some of them might be *T. cruzi*-specific genes. Functional groups of those sequences with matches in the database were constructed according to their putative biological functions. The two largest categories were protein synthesis (23.3%) and cell surface molecules (10.8%). The information reported in this paper should be useful for researchers in the field to analyze genes and proteins of their own interest.

Partial cDNA sequencing to generate expressed sequence tags (ESTs) is being used at present for the fast and efficient obtainment of a detailed profile of genes expressed in various tissues, cell types, or developmental stages (1). Genome projects have taken advantage of EST studies because ESTs represent a particular type of sequence-tagged sites useful for the physical mapping of genomes (24). ESTs can serve the same purpose as sequence-tagged sites, with the additional bonus of pointing directly to expressed genes.

One of the most interesting applications of the EST database (dbEST) is gene discovery (6). A significant development with important implications in this field has been the enormous growth of the dbEST (5). Novel genes can be found by querying the dbEST with a protein or DNA sequence. Among a number of recent examples of findings made by following this approach, a new member of the human Ly-6 family was detected (10) and 66 human ESTs were identified and mapped based on their resemblance to 66 *Drosophila* genes (3).

In 1994, the Special Programme for Research and Training in Tropical Diseases of the World Health Organization launched an initiative to analyze the genomes of the parasites *Filaria*, *Schistosoma*, *Leishmania*, *Trypanosoma brucei*, and *Trypanosoma cruzi*. Five networks were established, with the aims of (i) gaining significant knowledge on the molecular biology of these parasites; (ii) identifying new genes and their products which could be used to design new drugs, to speed up vaccine development, and to improve diagnosis; and (iii) sharing material and expertise and providing an information system that is accessible globally to researchers in the field (32).

T. cruzi is the agent of the American trypanosomiasis, Chagas' disease, for which there is neither a definitive chemotherapeutic treatment nor a vaccine being tested at present. This parasite has a complex life cycle in the Triatomine insect vector (epimastigote and metacyclic trypomastigote parasite stages) and in the mammalian host (the bloodstream trypomastigote and the intracellular amastigote stages). Thus, the expression of a number of stage-specific genes might be related to the different environments and requirements of each parasite stage. Given these facts, and as part of the T. cruzi genome project (32), we have started a project on gene discovery through EST sequencing. A total of 1,949 ESTs were sequenced from a normalized epimastigote cDNA library of the parasite clone (CL Brener) selected for this genome project (31). Their analysis revealed that the putative functions of about 18.4% of the ESTs might be deduced by sequence comparison with genes from other organisms, while about 67% have no sequence homologies in the databases and thus might represent some T. cruzi-specific sequences.

MATERIALS AND METHODS

cDNA library. Poly(A)⁺ RNA isolated from CL Brener epimastigotes was used to construct a directional cDNA library in the plasmid vector pT7T318D with a modified polylinker, which consists of the restriction sites for *SfiI*, *Eco*RI, *Sna*BI, *Bam*HI, *Pac*I, *Not*I, and *Hin*dIII placed between the T7 and T3 promoters (7). This reduced polylinker was necessary for the efficiency of the subsequent normalization procedure. Normalization was done by partial reassociation kinetics and hydroxyapatite chromatography, whereby the excess of abundant cDNA clones was removed (7). Further details of the construction and characterization of the normalized library will be described elsewhere. Around 23,040 clones were randomly picked and plated in 384-well microplates in the laboratory of Ulf Pettersson (Uppsala, Sweden).

Nucleotide sequencing. Aliquots $(1 \text{ to } 2 \mu)$ of each clone from 384-well microplates were grown overnight at 37°C in 3 ml of 2xTY containing 100 μ g of ampicillin per ml (26). The template DNA for the sequencing reaction was prepared from 1.5 ml of culture by an alkaline lysis method with minor modifications (26), followed by a polyethylene glycol 8000 precipitation. The amount of isolated DNA template was estimated on a 1.0% agarose gel by comparison to serial dilutions of pBluescript II KS(+) (Stratagene). Sequencing reactions were performed in a Genius thermal cycler (Techne) by using a Dye Terminator Cycle Sequencing Ready Reaction Kit with AmpliTaq DNA polymerase (FS enzyme) (Applied Biosystems) according to the protocols supplied by the manufacturer and were analyzed in an ABI prism 377 sequencer (Applied Biosystems). Single-pass sequencing was performed on each template with T7 primer, and sequences longer than 100 bases were further analyzed. The ESTs were edited to remove

^{*} Corresponding author. Mailing address: Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, INTI (Ed. 24), Av. Gral Paz entre Constituyentes y Albarellos, 1650 San Martín, Provincia de Buenos Aires, Argentina. Phone: (54-1) 752-0021. Fax: (54-1) 752-9639. E-mail: dsanchez@inti.gov.ar.

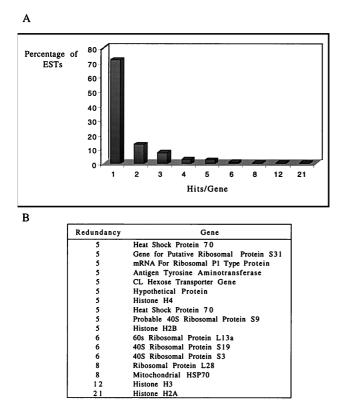


FIG. 1. Level of redundancy of ESTs that matched sequences in the NCBI nonredundant databases. (A) Percentage of ESTs with the indicated number of matches to the same gene. (B) Genes with five or more hits. The analysis was performed on a total of 644 ESTs.

vector sequences from 5' ends and to remove unreliable data from the 3' ends by using the program Factura (Perkin-Elmer).

Sequence analysis. The sequences were compared against the National Center for Biotechnology Information (NCBI) nonredundant protein database by using the program BLASTx (2) on the BLAST network service at NCBI. Sequences that did not match sequences in the protein databases were further analyzed by searching for similarities at the nucleotide level by using the BLASTn program against the nonredundant nucleotide sequence database.

Nucleotide sequence accession numbers. EST sequence data has been deposited in the dbEST with the following accession numbers: AA867894 to AA867980, AA882519 to AA883010, AA890742 to AA891021, AA908031 to AA908158, AA926379 to AA926628, AA952317 to AA952754, AA958023 to AA958272, and AA960728 to AA960749.

RESULTS AND DISCUSSION

A normalized cDNA library was used to reduce considerably the number of high- and intermediate-abundance sequences and to maximize the chances of finding new genes through random sequencing (28). A total of 1,994 clones were randomly selected, and the 5' ends of the inserts were sequenced. After deletion of vector sequences and unreliable data, an average length of 420 bases per clone was obtained and used for database searches. Sequence similarities identified by the BLAST programs were considered statistically significant with a Poisson *P* value of $\leq 10^{-5}$. Among the 1,994 sequences, 31 contained no insert and 14 exhibited homology with rRNA and were excluded from further analysis.

We first estimated the redundancy of our data on the basis of the redundancy of homology with sequences in the databases. A total of 644 ESTs were identified by homology with 398 different genes in the databases, representing a calculated level of redundancy of 27.9%. As shown in Fig. 1, data were

 TABLE 1. Database match categories of ESTs

 sequenced in T. cruzi

EST category	No. of ESTs	% of ESTs
Total	1,949	100
Database matches to:		
Total	644	33
T. cruzi	285	14.6
Other trypanosomatids	80	4.1
Other organisms	279	14.3
No database match ^a	1,305	67

^{*a*} ESTs without significant matches ($P > 10^{-5}$) to database sequences.

classified according to the number of matches (hits) per gene. Among the 644 ESTs, 357 appeared more than once (redundant EST group), representing 111 putative genes, and 287 appeared only once. The most frequently represented genes in the library were those encoding histone H2A (accession no. gnl|PID|e290647) and histone H3 (gi|442456), which appeared 21 and 12 times, respectively (Fig. 1B). In contrast to the case for other organisms, histone transcripts in trypanosomatids are polyadenylated (19). Since the clones were picked from a normalized library, the redundancy of a cDNA clone should not be thought to represent the expression level of the gene.

On the basis of database searches, the 1,949 EST sequences were classified into four groups, as shown in Table 1. About 18.7 and 14.3% matched sequences from trypanosomatids and from other organisms, respectively. About 67% did not have a database match and thus might represent *T. cruzi*-specific genes. The percentage of ESTs with matches was somewhat higher (33%) than that obtained in other EST studies of protozoan parasites (11, 16, 20).

Further analyses of our data were performed by taking into account only nonredundant ESTs. That is, when more than one EST showed homology to a gene annotated in the databases, only one EST was considered in the analysis.

ESTs with predicted or known functions were classified into putative cellular roles (4). The proportion of ESTs in each role category is shown in Fig. 2. Of the 398 nonredundant ESTs

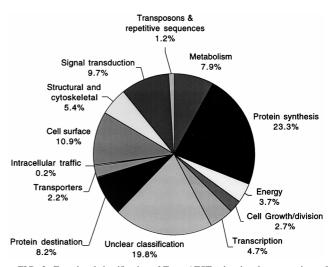


FIG. 2. Functional classification of *T. cruzi* ESTs, showing the proportions of predicted genes according to their putative biological functions. A total of 398 nonredundant ESTs having a *P* value of $\leq 10^{-5}$ were classified into 13 categories.

TABLE 2. T. cruzi EST matches to k	known sequences from trypanosomatids	ls (not T. cruzi) and other organisms in NCBI databases ^a	

EST (TENS no.) ^b	Putative identification ^c	Accession E	BLAST ^d	EST (TENS no.) ^b	Putative identification ^c	Accession no.	$BLAST^d$
Other trypano-				1468	Actin-interacting protein 2	sp P46681	X
somatids	400 vitano materia I 14	ID559421	v	1830	Acyl carrier protein	spIP536651	X
1273 0051	40S ribosomal protein L14	spIP558421 spIQ032531	X X	1801	Adenosylhomocysteinase	pir A45569	X X
0057	40S ribosomal protein S12 40S ribosomal protein S14	spiQ052551 spiP198001	X	1946 0459	ADP-ribosylation factor 1 Af-9 Protein	spIP356761	X
1630	60S ribosomal protein L18	spiP508851	X	1326	Alpha NAC/1.9.2. protein	sp P42568 gi 1142653	X
1451	60S ribosomal protein L30	sp P49153	X	1289	Alpha proteasome	gnl PID e321980	X
1271	Activated protein kinase C receptor	gbIU722051	Ν	1374	Alpha-adaptin	gnl PID d1022258	X
	homolog mRNA	0		1381	Alpha-enolase/tau-crystallin	gi 213085	Х
1408	Activated protein kinase C receptor	gi 2952301	Х	1520	Alpha-gliadin storage protein pseudogene	gb1U513051	Ν
	homolog TRACK			1944	TBP-interacting protein (TIP 49)	gnl PID d1029109	Х
0472	Cyclophilin A	gi 1532210	X	1301	Alternative oxidase	dbj AB003176_1	X
1314 1285	Cytochrome <i>c</i> oxidase polypeptide I	sp P04371	X X	1358	Arg kinase	prf 2020435A	X X
1354	Fructose-bisphosphate aldolase GP63-3 surface protease homolog	pir A54500 gi 2196917	X	1329	ATP synthase delta' chain, mitochondrial precursor	sp Q41000	Λ
1942	GP63-3 surface protease homolog	gi 2196917	X	1582	ATP synthase F1 subunit alpha	gi 2258360	Х
0362	H^+ -transporting ATPase (EC 3.6.1.35)	pir A45598	X	1242	ATP-dependent RNA helicase, DEAD	gi 2648271	X
1233	Hypothetical protein 2	pir A05123	X		family (Dead)	B1120102711	
1614	Intergenic region from the EF-1alpha	gb U52680	Ν	1300	B0025.2 gene product	gi 1938574	Х
	upstream-associated gene-1 to the EF-1alpha gene	0		0281	BAC-146N21 chromosome X contains iduronate-2-sulfatase gene	gb AC002315	Ν
1421	Kinetoplastid membrane protein 11	gnl PID e225864	Х	0265	BBC1 protein	gnl PID d1024629	Х
0020	mRNA for S12-like ribosomal protein	emb Z15031	Ν	1303	Bop1	gi 1679772	Х
1636	mRNA, clone Q14R1	emb Z86119	Х	1322	C25a1.6	gnl PID e275630	Х
1943	Nucleic acid-binding protein	gi 1841864	Х	1635	CAGH26 mRNA	gb U80739	Ν
0506	ORF 1	gnl PID e37082	Х	0644	Calmodulin	gi 167676	Х
1439	Phosphoglycerate kinase	sp P41760	Х	0259	Caltractin	gb U03270	Х
1204	Phosphoglycerate kinase, glycosomal	sp P41762	X	1184	Cctalpha chaperonin subunit	gi 2231589	Х
0072	Probable 40S ribosomal protein S9	spIP179591	X	1281	Cell binding factor 2	splQ461051	X
1291 0021	Putative serine/threonine protein kinase	sp Q08942	X N	0416	Chaperonin containing T complex poly-	gi 2559012	Х
1345	Ribosomal protein L27a	gb1U967571	X	1227	peptide 1, beta subunit; CCT-beta	ab A E015720	N
Other organisms	Thioredoxin peroxidase	spIQ266951	Λ	1227	Chromosome 21q22.2 PAC clone	gb AF015720	Ν
1260	1,5-Heptosyltransferase I (Rfac) and	gb1U408621	Ν	1599	P169K17, complete sequence Cnjb	gi 161752	Х
1200	Flax genes, complete Cds	g010 100021	14	1331	Contains similarity to enoly-coenzyme A	gi 2854202	X
0451	10-kDa heat shock protein, mitochon-	pir \$47532	Х	1551	hydratases	g1120542021	71
1352	drial (Hsp10) 14-3-3-Like protein	gi 1773328	X	1592	Contains similarity to human spliceo-	gi 2384908	Х
1290	2-Oxoglutarate dehydrogenase E1	spIP209671	X	1862	some-associated protein Cyclophylin	gnl PID e267528	Х
1270	component precursor	spi1 209071	71	1294	Cytochrome b_5	gi 2062405	X
1838		sp P42125	Х	1856	Cytochrome P450-like TBP	gnl PID d1011583	X
1264	31.1-kDa protein In Dcm-Seru inter-	sp P31658	X	1304	Cytoplasmic malate dehydrogenase	gi 2286153	X
	genic region	1		1272	Deoxyhypusine synthase mRNA	gb U40579	N
1485	40S ribosomal protein	splQ065591	Х	1435	Dihydrolipoamide acetyltransferase com-	sp P08461	Х
0047	40S ribosomal protein S10	sp Q07254	Х		ponent (E2) of pyruvate dehydroge-	-	
1750	40S ribosomal protein S13	sp Q05761	Х		nase complex (Pdc-E2)		
0904	40S ribosomal protein S15	sp P20342	Х	1279	Dihyroorotate dehydrogenase	sp P28272	Х
0046	40S ribosomal protein S16	sp P46294	Х	1851	DNA polymerase delta small subunit	gnl PID e243837	Х
0084	40S ribosomal protein S17	sp O01692	X	1376	DNA-directed DNA polymerase	pir A55874	Х
0037	40S ribosomal protein S19	sp P40978	X	1338	Dnaj protein	spIP355151	X
0012 1725	40S ribosomal protein S2 40S ribosomal protein S23	sp P25444	X X	1293	Drome Pelota protein	sp P48612	X X
0063	40S ribosomal protein S25	sp P39028 sp P46301	X	1406 1274	Dynein beta chain, flagellar outer arm Enolase 1	spIQ395651 P51555	X
0079	40S ribosomal protein S25	spiP21772	X	1320	Enoyl-coenzyme A Hydratase, mitochon-	sp P14604	X
0053	40S ribosomal protein S2	spiQ06559	X	1520	drial precursor	spi1 14004i	Λ
0045	40S ribosomal protein S4	sp P47961	X	0438	Estb = esterase II	gb S79600	Ν
0038	40S ribosomal protein S6	sp/P02365	X	0501	Eukaryotic translation initiation	sp P38912	X
0056	40S ribosomal protein Sa	sp P38981	Х		factor 1a	•	
0077	50S ribosomal protein L13	sp O06260	Х	1633	Excision repair protein Ercc-6	sp Q03468	Х
0949	55.2-kDa protein in Hxt8 5' region	sp P39976	Х	1602	F21b7.26	gi 2809257	Х
0028	60S ribosomal protein L10	sp Q09127	Х	1313	F421: this 421-aa ORF is 31% identical	gi 1787042	Х
0027	60S ribosomal protein L11	sp P42922	Х		(3 gaps) to 91 residues of an approxi-		
0075	60S ribosomal protein L12	sp P30050	Х		mately 864-aa protein, LOX3_SOYBN		
0954	60S ribosomal protein L13a	sp P35427	X		SW: P09186		
1482	60S ribosomal protein L17	sp P24049	X	1699	F44g4.1	gnl PID e236517	X
1794	60S ribosomal protein L18a	sp P41093	X	0581	Fast tropomyosin isoform	gi 2660868	Х
0054	60S ribosomal protein L2	spIP297661	X X	1284	G10 protein homolog	spIP343131	NT
1589 1003	60S ribosomal protein L21 60S ribosomal protein L22	sp Q43291 sp P13732	X X	0002	Gene for putative ribosomal protein S31 Genes for OPE1 OPE2 OPE3 OPE4	emb X14247 dbi D64116	N N
1923	60S ribosomal protein L22	spIP137521 spIP386631	X	0351	Genes for ORF1, ORF2, ORF3, ORF4, and Srb. partial and complete Cds	dbj D64116	1N
0049	60S ribosomal protein L24	spIP478321	X	1356	and Srb, partial and complete Cds Glucosamine-6-phosphate isomerase	sp P44538	Х
0003	60S ribosomal protein L26-B	spiP53221	X	1722	Glycine cleavage system H protein pre-	spIP23434	X
0008	60S ribosomal protein L3	spiP35684	N	1/22	cursor	SP11 20 10 TI	21
0043	60S ribosomal protein L31	spiP46290	X	1308	GTP-binding protein Ypt3	sp P17610	Х
1875	60S ribosomal protein L32	sp Q94460	X	1400	Guanine nucleotide-binding protein al-	sp P43151	X
0081	60S ribosomal protein L35	sp P42766	X		pha subunit		
0085	60S ribosomal protein L37a	sp P32046	Х	1327	H protein subunit of glycine decar-	gb AF022731	Х
0953	60S ribosomal protein L5	sp Q26481	Х		boxylase mRNA, complete Cds		
0061	60S ribosomal protein L7	sp P11874	Х	1687	Heat shock protein 10	gi 2623879	Х
	60S ribosomal protein L7b	sp P25457	Х	1493	Heat shock protein 75	gi 2865466	Х
1925							
1925 0033 1917	60S ribosomal protein L9 Acidic ribosomal protein P1	sp P49209 gi 2865615	X X	0670 1437	Heat shock protein HSLV Helicase	sp P31059 gi 780410	X X

Continued on following page

TABLE 2-Continued

EST (TENS no.) ^b	Putative identification ^c	Accession no.	BLAST ^d	EST (TENS no.) ^b	Putative identification ^c	Accession no.	BLAST ^d
0088	Histone H3	sp P40285	Х	1353	Phosphotyrosyl phosphatase activator	gi 974837	Х
0094	Histone H4	gnl PID e324304	Х	1762	Potential Caax prenyl protease 1 (pre-	sp Q10071	Х
1192	Hit family protein 1	splQ04344	X	0055	nyl protein-specific endoprotease 1)	-D (0100)	
0448	Homologous to acyl-coenzyme A	gi 436861	Х	0055	Probable 60S ribosomal protein L35	sp P49180	X
0421	dehydrogenase Hydroproline-rich protein mRNA	gb J03625	Х	1370	Probable cell division control protein P55cdc	pir A56021	Х
1380	Hypothetical 20.8-kDa protein in	spIP21286	X	1382		pir \$51473	Х
1500	Fgf-Vubi intergenic region	spii 212001		1382	Probable membrane protein Probable reductase protein	pir A32950	X
1341	Hypothetical 22.6-kDa protein	sp P52879	Х	1844	Proteasome iota chain (macropain iota	sp P34062	X
	F46c5.8 in chromosome Ii	•			chain)	-P	
1328	Hypothetical 23.5-kDa protein in	sp P42844	Х	1377	Proteasome subunit P112	gnl PID d1008506	Х
	Rfa2-Stb1 intergenic region			1581	Protein kinase isolog	gi 2347199	Х
1910	Hypothetical 24.9-kDa protein in	sp P39219	Х	1359	Protein transport protein Sec61 alpha	sp P79088	Х
1330	Sura-Hepa intergenic region Hypothetical 31.9-kDa protein in Gog5-	cp/P53081	Х		subunit	10000000	
1550	Clg1 intergenic region	spi1 550811	Λ	1393	Putative dimethyladenosine transferase	gi 2529685	X
1302	Hypothetical 39.3-kDa protein in Gcn4-	sp P40004	Х	1390 1371	Putative mevalonate kinase Putative protein	splQ09780	X X
	Wbp1 intergenic region	-F		0016	Putative ribosomal protein L7A	gnl PID 1253348 gi 2529665	X
1364	Hypothetical 41.9-kDa protein in	sp P40506	Х	1250	Pyruvate dehydrogenase E1 compo-	sp Q09171	X
	Sds3-Ths1 intergenic region			1250	nent, beta subunit precursor	spiQ091/11	1
1177	Hypothetical 44.5-kDa protein in Pgpb-	sp P45576	Х	1947	RAS homolog GTPase rab28 isof-	sp P51157	Х
	Pyrf intergenic region precursor				orm S	1	
1824	Hypothetical 47.3-kDa protein in Ompx-	sp P38821	Х	1948	RAS-related protein RAB-2	spIQ059751	Х
1505	Moeb	am [D20021]	v	0394	RAS-related protein Rab-23 (Rab-15)	sp P35288	Ν
1585	Hypothetical 54.2-kDa protein in Cdc12-Orc6 intergenic region	sp P38821	Х	1240	Red-1	gnl PID e209012	Х
0386	Hypothetical 90.8-kDa protein T05h10.7	sp[Q10003]	Х	0062	Rer1 protein	spIP255601	Х
0500	in chromosome Ii	spiQ100051	Λ	1612	Ribonucleoprotein La	pir A53781	X
1298	Hypothetical protein	gnl PID e326877	Х	0026	Ribosomal protein	gnl PID d1019682	X
1385	Hypothetical protein	pir S57550	Х	0010 0022	Ribosomal protein (Rp112) Ribosomal protein 15a (40S subunit)	gb L04280 emb Z21673	N N
1323	Hypothetical protein	gnl PID e339926	Х	1882	Ribosomal protein L10, cytosolic	pir JN0273	X
1618	Hypothetical protein	gnl PID e276614	Х	0065	Ribosomal protein L13.E, fruit fly	pir S42877	X
1360	Hypothetical protein	gnl PID d1018647		0078	Ribosomal protein L15.E	sp P30736	X
1185	Hypothetical protein and to PIR:C48583	gi 1213541	Х	0004	Ribosomal protein L3	sp P39023	X
1106	stress-inducible protein ST11		v	1207	Ribosomal protein S11 homolog	pir A48583	Х
1186 1812	Hypothetical protein YDR531w Hypothetical protein YPL235w	pir S69586 pir S61029	X X	1526	Ribosomal protein S30	gnl PID e1173009	Х
1476	Initiation factor 5a (Eif-5a) (Eif-4d)	spIP56332	X	1332	SC2 = synaptic glycoprotein	pir I56573	Х
1741	Insulinase	pir SNHUIN	X	1318	Serine/threonine protein phosphatase	sp P20651	Х
1369	Isocitrate dehydrogenase	gi 1277203	X	1007	2b catalytic subunit, beta isoform		
1431	JC8.C	gnl PID e1247056		1297	Seryl-tRNA synthetase	pir S71293	X
1580	KIAA0107-like protein	gi 2982297	Х	1758 1256	Similar to acetyltransferases	gi 1825778 gi 1255428	X X
1805	Kiaa0305	gnl PID d1021601		1230	Similar to mammalian ZFP36 proteins in zinc finger regions	gi112554261	Л
1317	L1231-38	gi 2194152	Х	1819	Similar to pig tubulin-tyrosine ligase	gnl PID d1012156	Х
1315	L1231-6d	gi 2194149	X	1387	Similar to Saccharomyces cerevisiae	dbj D89136_1	X
1609 1407	L1439-18 L4 protein (aa 1–256)	gi 2266918 gi 4396(X17204)	X X		BCS1 Protein, SWISS-PROT	· _	
0069	Large ribosomal subunit protein L13	sp P38014	X		Accession no. P32839		
1392	Male sterility 2-like protein	gnl PID e258459	X	1720	Similar to S. cerevisiae unknown,	gnl PID d1014559	Х
1395	Meiotic spindle formation Protein Mei-1	sp P34808	X		EMBL Accession no. Z68195		
0287	Mel-13a transcript	gb U35309	Ν	0319	Spermidine synthase mRNA	gnl PID e267359	X
1889	Membrane-associated diazepam-binding	prf 1911410A	Х	1253	Succinate dehydrogenase	gnl PID e341165	X
	inhibitor			1191	Succinyl coenzyme A synthetase alpha	gb1U234081	Ν
1692	Mex-1	gi 1899062	X	1193	Subunit mRNA Succinvl Cop ligase (Gdp forming)	sp P13086	Х
1399	Mitochondrial trifunctional enzyme beta	sp Q60587	Х	1195	Succinyl-Coa ligase (Gdp-forming) Sulfated surface glycoprotein SSG185	prf 1604369	X
1275	subunit precursor	mmfU2102270 A	v	1397	Symbiosis-related protein	gi 2072023	X
1375 1515	Mitotic centromere-associated kinesin mRNA for ribosomal protein L12	prf 2103270A emb X53504	X N	1684	T-complex protein 1, alpha subunit	sp O15891	X
0018	mRNA for ribosomal protein S17	emb X07257	N	1309	Thermostable carboxypeptidase 1	sp P42663	X
1443	mRNA for surface antigen P2	emb/X56810	N	1288	Thyroid receptor-interacting protein 12	spIQ146691	Х
1336	No definition line found	gi 2384956	X	1949	Translation initiation factor 5A	gnl PID e266087	Х
1900	No definition line found	gi 2570931	Х	1416	Triacylglycerol lipase	sp P21811	Х
1391	Novel serine/threonine protein kinase	gnl PID d1006875	5 X	1368	Ubiquinolcytochrome C reductase	pir A44033	Х
1335	N-terminal acetyltransferase complex	sp Q05885	Х	1389	UDP-glucose 4-epimerase (Gale-2)	gil26485151	Х
	Ard1 subunit homolog			1405	Unknown	gnl PID e223630	X
1941	NUC-1 negative regulatory protein PREG	sp Q06712	Х	1436	Vacuolar aminopeptidase I precursor	gi 699234	X
1505	Nucleoside diphosphate kinase	spIP27950	X	1307	Wd40 repeat protein 2	spIP546861	X X
0667	Peptidase T (aminotripeptidase) (tripeptidase)	spIP297451	X	1182	Weak similarity to SP:YAD5_CLOAB (P33746) hypothetical protein and to	gi 1213541	Λ
1311	Peptidylprolyl Isomerase	pir \$50141	X		PIR:C48583 stress-inducible protein		
1905	Peroxisome targeting signal 2 receptor	gi 1907315	X	1225	STI1 White	ai12192794	v
1373	Phosphoglucomutase isoform 1 (glucose	sp P00949	Х	1325 0449	White Yeast probable phosphatidylinositol-4-	gi 2182784 sp P34756	X X
1347	phosphomutase) Phosphoinositide-specific phospholipase C	prf 2123392A	Х	0442	phosphate 5-kinase	SPIE 577501	Λ
1945	Phosphorylation regulatory protein HP-10	pir A61382	X	1324	ZK795.D	gnl PID e1188511	Х
	- marginerity regamory protein in -10	r		11 102.		0	

^{*a*} All significant similarities ($P \le 10^{-5}$) of nonredundant ESTs against non-*T. cruzi* entries in NCBI nonredundant databases are listed, together with the accession numbers and the program used for the search. Matches are sorted according to the "Other trypanosomatids" and "Other organisms" categories. A complete (including matches to *T. cruzi*) and more detailed table is available at http://www.iib.unsam.edu.ar/genomelab/tcruzi/5ests.html.

^b EST names in the dbEST are the four-digit numbers given here preceded by TENS. ^c ORF, open reading frame; aa, amino acids. ^d N, BLASTn; X, BLASTx.

analyzed, the largest number (23.3%) was related to protein synthesis; other categories include sequences related to metabolism (7.9%), protein destination (8.2%), transcription (4.7%), and energy (3.7%). Interestingly sequences related to cell surface proteins accounted for 10.9% of the analyzed ESTs (the second-largest category of known functions). It is well known that *T. cruzi* has a large number of surface proteins belonging to at least two main families: the mucin gene family and the superfamily of surface antigens.

The mucin gene family, for which a minimum of 484 genes has been estimated (15), is composed of two groups of genes, as defined by their central domains. One group contains genes having a variable number of tandem repeats, whereas genes in the second group have nonrepetitive sequences (14). Six ESTs matched members of the mucin gene family; one matched members belonging to the former group (TENS0234), whereas the other five ESTs matched different members belonging to the second group of genes (TENS0206, TENS0592, TENS1868, TENS0163, and TENS1740).

The superfamily of surface antigens is composed of hundreds of members that can be grouped into four families (groups I to IV) based on their similarities (9, 13).

Several ESTs showed significant matches to members belonging to group II, which comprises the so-called GP85 surface glycoproteins (TENS0211, TENS0203, TENS0196, TENS0182, TENS0142, TENS0215, TENS1365, TENS0190, TENS0229, TENS1292, and TENS0222). Interestingly, the top-ranking sequences of the BLAST searches corresponding to the last two ESTs matched the sequences coding for amastigote surface protein-2 and -1, respectively, which have recently been described as the first *trans*-sialidase (TS) superfamily members preferentially expressed in the amastigote stage (21, 27). In contrast, members of group I (which contains some members that express TS activity), group III, and group IV were hit by only one EST each (TENS0149, TENS0779, and TENS1235, respectively).

The results reported above show that several ESTs have significant matches to trypomastigote- and amastigote-expressed members of the TS superfamily. Although these molecules are stage-specific proteins not present at detectable levels in the epimastigote stage, this result might be expected for trypanosomatids. Unlike transcriptional gene regulation in other organisms, gene regulation in these parasites takes place mainly by posttranscriptional mechanisms (23), even for the expression of stage-specific proteins (29). Thus, it is possible that a low level of trypomastigote- and amastigote-specific mature mRNAs coding for these proteins is present at the epimastigote stage, even though the encoded proteins are absent. Another possibility is that these cDNAs are derived from contaminating metacyclic trypomastigote forms (estimated to be at about 1%) present in the epimastigote culture.

We next organized the EST data set according to matches to the NCBI nonredundant databases. Table 2 lists all significant matches to non-*T. cruzi* entries in GenBank sorted according to matches to the "other trypanosomatids" and "other organisms" categories. In cases where several entries from various species had significant scores, only the top-ranking score is given. A complete (including matches to *T. cruzi*) and updated listing of matches to known sequences present in GenBank can be found at our laboratory home page (http://www.iib.unsam .edu.ar/genomelab/tcruzi/5ests.html). A detailed analysis of the putative genes identified is not within the scope of this work and will certainly be done by interested researchers in the field. However, a number of interesting matches with sequences from other organisms were observed. Among them are several proteins identified in other trypanomatids, including several metabolic enzymes (TENS1285, TENS1439, TENS1345, and TENS1204); a homolog to a recently described TRACK (receptor for activated C kinase) in *T. brucei rhodesiense* (TENS 1408); a cyclophilin A (TENS0472); a nucleic acid-binding protein (homolog to the universal minicircle binding protein) (TENS1943); and a homolog to GP63-3 (TENS1942), a metalloprotease originally found in *Leishmania* and recently described for *T. brucei rhodesiense* (17). This protein seems to play an important role in the invasion (30) and survival (12) of the leishmanial parasites within the macrophage and has not been detected previously in *T. cruzi*. This result emphasizes the efficacy of the EST approach, which has allowed us to identify a gene potentially important in the host-parasite interplay.

Other ESTs matched known proteins in other organisms, including TATA-binding protein-interacting protein 49 (TENS 1944), serine/threonine protein kinase (TENS1391), serine/ threonine protein phosphatase 2b catalytic subunit (calcineurin) (TENS1318), phosphorylation-regulatory protein HP-10 (TENS1945), meiotic spindle formation proteins (TENS1395, and TENS1293), mitotic centromere-associated kinesin (TENS 1375), α and p112 proteosome subunits (TENS1289 and TENS 1377), DNAJ protein (TENS1338), ADP-ribosylation factor (TENS1946), a probable cell division control protein (TENS 1370), several RAS-related proteins (TENS1644, -1947, -1948, and -0394), translation initiation factor 5A (TENS1949), a negative regulatory factor of a transcriptional activator (TENS 1941), enolases (TENS1381 and -1274), and a phosphoinositide-specific phospholipase C (TENS1347). Interestingly this last EST showed significant matches to phosphatidylinositolspecific phospholipases C from different organisms and did not show any significant match either to an already-reported T. cruzi glycosylphosphatidylinositol-specific phospholipase C (PID|e329378) or to glycosylphosphatidylinositol-specific phospholipases from other trypanosomatids, suggesting the presence of at least two different enzymes in T. cruzi. Some of the sequences mentioned above have also been identified in a recently published paper (8).

Several ESTs had strong matches with hypothetical, probable, or putative proteins (Table 2), many of them derived from genome sequencing projects for different organisms (mouse, human, *Drosophila*, yeast, and *Arabidopsis*, etc.). Although statistically significant similarities do not necessarily mean that these putative proteins actually exist, some of the highly significant matches might indicate that they are indeed real proteins conserved during evolution. Obviously, further sequence analysis and biochemical work are needed to distinguish among these and other possible alternatives.

Until the budget for the complete sequencing of the *T. cruzi* genome is available, a reasonable accomplishment will be the identification of a large proportion of the gene content in *T. cruzi*. This might be done by EST or genomic sequencing (18) in the near future. The next step in the short run would be the analysis of the data and the development of new approaches both for the identification of targets for chemotherapy and for vaccine development. Given the difficulties in the treatment of parasitic diseases and the frequent appearance of mutants resistant to chemotherapeutic agents among some protozoa such as *Plasmodium* and *Leishmania* (22, 25), gene discovery might be a cost-efficient way to contribute to the eradication of these diseases, which mostly affect developing countries.

ACKNOWLEDGMENTS

We are indebted to Diego Rey Serantes and Judith Eva Princ for their valuable help in DNA purification and sequencing, to Lena Åslund for providing cDNAs ordered on microplates, and to J. J. Cazzulo for reading the manuscript.

This work was supported by grants from the World Bank/UNDP/ WHO Special Program for Research and Training in Tropical Diseases (TDR); the Swedish Agency for Research Cooperation with Developing Countries (SAREC); the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; and the Ministerio de Cultura y Educación, Argentina. The research of A.C.C.F. was supported in part by an International Research Scholars Grant from the Howard Hughes Medical Institute. A.C.C.F. and D.O.S. are members of the Research Career of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. R.E.V. is a fellow from the Universidad Nacional de General San Martín.

REFERENCES

- Adams, M. D., J. M. Kelley, J. D. Gocayne, M. Dubnick, M. H. Polymeropoulos, H. Xiao, C. R. Merril, A. Wu, B. Olde, R. F. Moreno, A. R. Kerlavage, W. R. McCombie, and J. C. Venter. 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656.
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
- Banfi, S., G. Borsani, E. Rossi, L. Bernard, A. Guffanti, F. Rubboli, A. Marchitiello, S. Giglio, E. Coluccia, M. Zollo, O. Zuffardi, and A. Ballabio. 1996. Identification and mapping of human cDNAs homologous to Drosophila mutant genes through EST database searching. Nat. Genet. 13:167–174.
 Bevan, M., I. Bancroft, E. Bent, K. Love, H. Goodman, C. Dean, R.
- 4. Bevan, M., I. Bancroff, E. Bent, K. Love, H. Goodman, C. Dean, R. Bergkamp, W. Dirkse, M. Van Staveren, W. Stiekema, L. Drost, P. Ridley, S. A. Hudson, K. Patel, G. Murphy, P. Piffanelli, H. Wedler, E. Wedler, R. Wambutt, T. Weitzenegger, T. M. Pohl, N. Terryn, J. Gielen, R. Villarroel, and N. Chalwatzis. 1998. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of *Arabidopsis thaliana*. Nature **391**:485–488.
- Boguski, M. S., T. M. Lowe, and C. M. Tolstoshev. 1993. dbEST—database for "expressed sequence tags." Nat. Genet. 4:332–333.
- Boguski, M. S., C. M. Tolstoshev, and D. E. Bassett, Jr. 1994. Gene discovery in dbEST. Science 265:1993–1994.
- Bonaldo, M. F., G. Lennon, and M. B. Soares. 1996. Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res. 6: 791–806.
- Brandão, A., T. Urmenyi, E. Rondinelli, A. Gonzalez, A. B. de Miranda, and W. Degrave. 1997. Identification of transcribed sequences (ESTs) in the *Trypanosoma cruzi* genome project. Mem. Inst. Oswaldo Cruz 92:863–866.
- Campetella, O. E., D. O. Sánchez, J. J. Cazzulo, and A. C. C. Frasch. 1992. A superfamily of *Trypanosoma cruzi* surface antigens. Parasitol. Today 8: 378–381.
- Capone, M. C., D. M. Gorman, E. P. Ching, and A. Zlotnik. 1996. Identification through bioinformatics of cDNAs encoding human thymic shared Ag-1/stem cell Ag-2. A new member of the human Ly-6 family. J. Immunol. 157:969–973.
- Chakrabarti, D., G. R. Reddy, J. B. Dame, E. C. Almira, P. J. Laipis, R. J. Ferl, T. P. Yang, T. C. Rowe, and S. M. Schuster. 1994. Analysis of expressed sequence tags from *Plasmodium falciparum*. Mol. Biochem. Parasitol. 66:97– 104.
- Chaudhuri, G., M. Chaudhuri, A. Pan, and K.-P. Chang. 1989. Surface acid proteinase (gp63) of *Leishmania mexicana*. J. Biol. Chem. 264:7483–7489.
- Cross, G. A., and G. B. Takle. 1993. The surface trans-sialidase family of Trypanosoma cruzi. Annu. Rev. Microbiol. 47:385–411.
- 14. Di Noia, J. M., D. O. Sánchez, and A. C. C. Frasch. 1995. The protozoan *Trypanosoma cruzi* has a family of genes resembling the mucin genes of

Editor: V. A. Fischetti

mammalian cells. J. Biol. Chem. 270:24146-24149.

- Di Noia, J. M., I. D'Orso, L. Åslund, D. O. Sánchez, and A. C. C. Frasch. 1998. The *Trypanosoma cruzi* mucin family is transcribed from hundreds of genes having hypervariable regions. J. Biol. Chem. 273:10843–10850.
- El-Sayed, N. M., C. M. Alarcon, J. C. Beck, V. C. Sheffield, and J. E. Donelson. 1995. cDNA expressed sequence tags of *Trypanosoma brucei rhodesiense* provide new insights into the biology of the parasite. Mol. Biochem. Parasitol. 73:75–90.
- El-Sayed, N. M., and J. E. Donelson. 1997. African trypanosomes have differentially expressed genes encoding homologues of the Leishmania GP63 surface protease. J. Biol. Chem. 272:26742–26748.
- El-Sayed, N. M., and J. E. Donelson. 1997. A survey of the *Trypanosoma brucei rhodesiense* genome using shotgun sequencing. Mol. Biochem. Parasitol. 84:167–178.
- Galanti, N., M. Galindo, V. Sabaj, I. Espinosa, and G. C. Toro. 1998. Histone genes in trypanosomatids. Parasitol. Today 14:64–70.
- Levick, M. P., J. M. Blackwell, V. Connor, R. M. Coulson, A. Miles, H. E. Smith, K. L. Wan, and J. W. Ajioka. 1996. An expressed sequence tag analysis of a full-length, spliced-leader cDNA library from *Leishmania major* promastigotes. Mol. Biochem. Parasitol. 76:345–348.
- Low, H. P., and R. L. Tarleton. 1997. Molecular cloning of the gene encoding the 83 kDa amastigote surface protein and its identification as a member of the *Trypanosoma cruzi* sialidase superfamily. Mol. Biochem. Parasitol. 88: 137–149.
- McKie, J. H., K. T. Douglas, C. Chan, S. A. Roser, R. Yates, M. Read, J. E. Hyde, M. J. Dascombe, Y. Yuthavong, and W. Sirawaraporn. 1998. Rational drug design approach for overcoming drug resistance: application to pyrimethamine resistance in malaria. J. Med. Chem. 41:1367–1370.
- Nilsen, T. W. 1994. Unusual strategies of gene expression and control in parasites. Science 264:1868–1869.
- Olson, M., L. Hood, C. Cantor, and D. Botstein. 1989. A common language for physical mapping of the human genome. Science 245:1434–1435.
- Ouellette, M., and B. Papadopoulou. 1993. Mechanisms of drug resistance in Leishmania. Parasitol. Today 9:150–153.
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- Santos, M. A., N. Garg, and R. L. Tarleton. 1997. The identification and molecular characterization of *Trypanosoma cruzi* amastigote surface protein-1, a member of the trans-sialidase gene super-family. Mol. Biochem. Parasitol. 86:1–11.
- Soares, M. B., M. F. Bonaldo, P. Jelene, L. Su, L. Lawton, and A. Efstratiadis. 1994. Construction and characterization of a normalized cDNA library. Proc. Natl. Acad. Sci. USA 91:9228–9232.
- Teixeira, S. M., D. G. Russell, L. V. Kirchhoff, and J. E. Donelson. 1994. A differentially expressed gene family encoding "amastin," a surface protein of *Trypanosoma cruzi* amastigotes. J. Biol. Chem. 269:20509–20516.
- Wilson, M. E., and K. K. Hardin. 1988. The major concanavalin A-binding surface glycoprotein of *Leishmania donovani chagasi* promastigotes is involved in attachment to human macrophages. J. Immunol. 141:265–272.
- 31. Zingales, B., M. E. Pereira, R. P. Oliveira, K. A. Almeida, E. S. Umezawa, R. P. Souto, N. Vargas, M. I. Cano, J. F. da Silveira, N. S. Nehme, C. M. Morel, Z. Brener, and A. Macedo. 1997. *Trypanosoma cruzi* genome project: biological characteristics and molecular typing of clone CL Brener. Acta Trop. 68:159–173.
- 32. Zingales, B., E. Rondinelli, W. Degrave, J. Franco da Silveira, M. Levin, D. Le Paslier, F. Modabber, B. Dobrokhotov, J. Swindle, J. M. Kelly, L. Åslund, J. D. Hoheisel, A. M. Ruiz, J. J. Cazzulo, U. Pettersson, and A. C. C. Frasch. 1997. *The Trypanosoma cruzi* genome initiative. Parasitol. Today 13:16–22.