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ABSTRACT: Machine learning (ML) is increasingly becoming a common tool in
computational chemistry. At the same time, the rapid development of ML methods requires
a flexible software framework for designing custom workflows. MLatom 3 is a program
package designed to leverage the power of ML to enhance typical computational chemistry
simulations and to create complex workflows. This open-source package provides plenty of
choice to the users who can run simulations with the command-line options, input files, or
with scripts using MLatom as a Python package, both on their computers and on the online
XACS cloud computing service at XACScloud.com. Computational chemists can calculate
energies and thermochemical properties, optimize geometries, run molecular and quantum
dynamics, and simulate (ro)vibrational, one-photon UV/vis absorption, and two-photon absorption spectra with ML, quantum
mechanical, and combined models. The users can choose from an extensive library of methods containing pretrained ML models and
quantum mechanical approximations such as AIQM1 approaching coupled-cluster accuracy. The developers can build their own
models using various ML algorithms. The great flexibility of MLatom is largely due to the extensive use of the interfaces to many
state-of-the-art software packages and libraries.

1. INTRODUCTION
Computational chemistry simulations are common in chemistry
research thanks to abundant general-purpose software, most of
which have started as purely quantum mechanical (QM) and
molecular mechanical (MM) packages. More recently, the rise
of artificial intelligence (AI)/machine learning (ML) applica-
tions for chemical simulations has caused the proliferation of
programs mostly focusing on specific ML tasks such as learning
potential energy surfaces (PESs).1−17 The rift between the
development of the traditional QM and MM packages on the
one hand and ML programs on the other hand is bridged to
some extent by the higher-level library ASE,18 which enables
usual computational tasks via interfacing heterogeneous
software. The further integration of QM, MM, and ML has
been prompted by the maturing of ML techniques and is
evidenced by the growing trend of incorporatingMLmethods in
the QM and MM computational chemistry software.13,19−21

Against this backdrop, theMLatom package started in 2013 as
a pure standalone ML package to provide a general-purpose
experience for computational chemists akin to the black-box
QM packages.22 The early MLatom could be used for training,
testing, and using ML models and their combinations with QM
methods (e.g., Δ-learning23 and learning of Hamiltonian
parameters24), accurate representation of PES,25,26 sampling
of points from data sets,26 ML-accelerated nonadiabatic
dynamics,27 and materials design.28 The fast pace of method

and software development in QM, MM, ML, and other
computational science domains led to MLatom 2, which started
to include interfaces to third-party packages.29 Such an approach
provided a unique opportunity for the package users to choose
one of the many established ML models, similar to the users of
the traditional QM software who can choose one of the many
QM methods. MLatom 2 could perform training of the ML
models, evaluate their accuracy, and then use the models for
geometry optimization and frequency calculations. Special
workflows were also implemented, such as acceleration of the
absorption UV/vis spectra calculations with ML30 and
prediction of two-photon absorption spectra.31 In addition,
MLatom 2 could be used to perform simulations with the
general-purpose AI-enhanced QM method32 AIQM1 and
universal machine learning potentials of the ANI family2,33−35

with the accurate scheme developed for calculating heats of
formation36 with uncertainty quantification with these methods.

With time, the need to develop increasingly complex
workflows that incorporate ML and QM for a broad range of
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applications has necessitated the rethink and redesign of
MLatom to enable the rapid development of highly customized
routines. These additional design requirements for MLatom to

serve not only as a black-box general-purpose package but also as
a flexible platform for developers resulted in a significant
extension, redesign, and rewrite of the program. The subsequent

Figure 1. Overview of MLatom 3 capabilities. The plot in panel “Quantum dissipative dynamics with ML” is adapted with permission from ref 38.
Copyright 2022, the Authors. The plot in panel “UV/vis spectra (ML-NEA)” is adapted from ref 29. Copyright 2021, the Authors.
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upgrade has allowed the use of MLatom through the versatile
Python API (MLatom PyAPI) and also included the
implementation of more simulation tasks, such as molecular
and quantum dynamics, and the support of QM methods and
composite schemes based on the combinations of QM and ML
models. This upgrade was released37 as MLatom 3 in 2023, 10
years after the start of the project. During this decade, MLatom
went through a drastic transformation from a pure Fortran
package to a predominantly Python package, with one-third of
the code written in Fortran for efficient implementations of
critical parts. MLatom 3 comes under the open-source
permissive MIT license (modified to request proper citations),
and the source code is available on open repositories so that, e.g.,
external developers are encouraged to contribute to the main
project and may create their independent, derived, projects.
Here, we give an overview of the capabilities of MLatom 3 and
provide examples of its applications.

2. OVERVIEW
MLatom merges the functionality from typical quantum
chemical and other atomistic simulation packages with the
capabilities of desperate ML packages, with a strong focus on
molecular systems. The user can choose from a selection of
ready-to-use QM and ML models and design and train ML
models to perform the required simulations. The bird’s view of
the MLatom capabilities is best given in Figure 1.
One of the current main goals of MLatom is to enable

simulation tasks of interest for computational chemists with
generic types of models that can be based onML, QM, and their
combinations (see Section 4). These tasks include single-point
calculations, optimization of geometries of minima and
transition states (which can be followed by intrinsic reaction
coordinate (IRC) analysis39), frequency and thermochemical
property calculations, molecular and quantum dynamics,
rovibrational (infrared (IR) and power) spectra, ML-accelerated
UV/vis absorption, and two-photon absorption spectra
simulations. This part of MLatom is more similar to traditional

QM and MM packages but with much more flexibility in model
choice and unique tasks. A dedicated Section 5 will give a more
detailed account of the simulations.

Enabling the users to create their own ML models was
MLatom’s original main focus, and it continues to play a major
role. The MLatom supports a range of carefully selected
representative ML algorithms that can learn the desired
properties as a function of the 3D atomistic structure. Typically,
these algorithms are used, but not limited to, for learning PESs
and hence often can be called, for simplicity, ML (interatomic)
potentials (MLPs).40−44 One particular specialization of
MLatom is the original implementation of kernel ridge
regression (KRR) algorithms for learning any property as a
function of any user-provided input vectors or XYZ molecular
coordinates.22 In addition, the user can create custom
multicomponent models based on concepts of Δ-learning,23

hierarchical ML,25 and self-correction.26 These models may
consist of the ML and QM methods. MLatom provides
standardized means for training, hyperparameter optimization,
and evaluation of the models so that switching from one model
type to another may need just one keyword change.29 This
allows one to easily experiment with different models and
choose the most appropriate one for the task.

The data are as important as choosing and training the ML
algorithms. MLatom 3 provides several data structures
specialized for computational chemistry needs, mainly based
on versatile Python classes for atoms, molecules, molecular
databases, and dynamics trajectories. These classes allow not just
storing the data in a clearly structured format but also handling it
by, e.g., converting to different molecular representations and
data formats and splitting and sampling the data sets into the
training, validation, and test subsets. Because data structure is a
central concept in the age of data-driven models andMLatom as
a package, we describe data structures in Section 3 before
describing models, simulations, and machine learning.

How the user interacts with the program is also important,
and ideally, the features should be easily accessible and their use

Figure 2. Side-by-side comparison of the usage of MLatom in both the command-line mode and via Python API for a common task of geometry
optimization with one of the pretrained ML models ANI-1ccx.
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intuitive. MLatom calculations can be requested by providing
command-line options either directly or through the input file.
Alternatively, MLatom can be used as a Python module, which
can be imported and used for creating calculation workflows of
varying complexity. A side-by-side comparison of these two
approaches is given in Figure 2. More examples highlighting
different use cases of MLatom are interspersed throughout this
article.
MLatom as an open-source package can be conveniently

installed via PyPI, i.e., simply using the command pip
install mlatom or from the source code available on
GitHub at https://github.com/dralgroup/mlatom. To addi-
tionally facilitate access to AI-enhanced computational chem-
istry, MLatom can be conveniently used in the XACS cloud
computing service at https://XACScloud.com whose basic
functionality is free for noncommercial uses such as education
and research. Cloud computing eliminates the need for program
installation and might be particularly useful for users with
limited computational resources.

3. DATA
In MLatom, everything revolves around operations on data:
databases and data points of different types, such as an atom,
molecule, molecular database, and molecular trajectory (Figure
3). They are implemented as Python classes that contain many
useful properties and provide different tools to load and dump
these data-type objects using different formats. For example, the
key type is a molecule that can be loaded from an XYZ file or
SMILES and then automatically parsed into the constituent
atom objects. Atom objects contain information about the
nuclear charge and mass as well as nuclear coordinates. A
molecule object is assigned with charge and multiplicity.
Information about molecular and atomic properties can be

passed to perform simulations, e.g., MD, with models that
update and create new molecule objects with calculated
quantum mechanical properties such as energies and energy
gradients.

See Figure 2 for an example of loading a molecule object
init_mol from the file init.xyz, used as the initial guess
for the geometry optimization, returning an optimized geometry
as a new molecule object final_mol, which is saved into the
opt.xyz file. Data objects can be directly accessed and
manipulated via the MLatom Python API. When using the
MLatom in the command-line mode, many similar operations
are done under the hood so that the user often just needs to
prepare input files in standard formats such as files with XYZ
coordinates.

Molecule objects can be combined into or created by parsing
the molecular database that has functions to split it into the
different subsets needed for training and validation of ML
models. The databases can be loaded and dumped in plain text
(i.e., several files including XYZ coordinates, labels, and XYZ
derivatives), JSON, and npz formats. Another data type is
molecular trajectory, which consists of steps containing
molecules and other information. Molecular trajectory objects
are created during geometry optimization and MD simulations,
and in the latter case, the step is a snapshot of MD trajectory,
containing information about the time, nuclear coordinates and
velocities, atomic numbers andmasses, energy gradients, kinetic,
potential, and total energies, and, if available, dipole moments
and other properties. The trajectories can be loaded and
dumped in JSON, H5MD,45 and plain text formats.

Molecules for which XYZ coordinates are provided can be
transformed in several supported descriptors: inverse inter-
nuclear distances and their version normalized relative to the

Figure 3. Overview of different data types in MLatom.
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equilibrium structure (RE),26 Coulomb matrix,46,47 and their
variants.29

MLatom also has separate statistics routines to calculate
different error measures and perform other data analyses.29

Routines for preparing common types of plots, such as scatter
plots and spectra, are available too.

4. MODELS AND METHODS
Any of the simulations need a model that provides the required
output for a given input. The architecture and algorithms behind
the models can be designed by an expert or chosen from the
available selection. ML models typically require training to find
their parameters before they can be used for simulations. Some
of these models, such as universal MLPs of the ANI
family,2,33−35 are already pretrained for the user who does not
have to train them. This is similar to QM methods, which are
commonly used out-of-the-box without tuning their parameters.

InMLatom, we call a method anymodel that can be used out-of-
the-box for simulations. Both pretrained ML models and QM
methods belong to the methods in MLatom’s terminology,
which is reflected in the keyword names. This model type also
includes hybrid pretrained ML and QM methods. Below, we
overview models available in MLatom when writing this article,
the selection of available methods and models with provided
architectures that need to be trained, and the ways to design
custom models (Figure 4 and Table 1).
4.1. Methods.MLatom provides access to a broad range of

methods through interfaces to many third-party, state-of-the-art
software packages:

• Pretrained ML models:
• Universal potentials ANI-1ccx,34 ANI-1x,33 ANI-

2x,35 ANI-1x-D4, and ANI-2x-D4. ANI-1ccx is the
most accurate and approaches gold-standard
CCSD(T) accuracy. We have seen an example of

Figure 4. Overview of different model types in MLatom.

Table 1. Overview of Models in MLatom 3 and Their Implementations

model type model name implementation

Methods (models that can be used without training)
QM methods ab initio methods, DFT interfaces to PySCF48, Gaussian48

semiempirical OMx49, DFTB, NDDO-type
methods

interfaces to MNDO50, Sparrow51

semiempirical GFNx-TB52 methods interface to xtb53

CCSD(T)*/CBS34 interface to Orca54,55

QM/ML methods AIQM1, AIQM1@DFT, AIQM1@
DFT*32

interfaces to MNDO50 and Sparrow51 for the ODM2*32,49 part, TorchANI2 for the NN part,
dftd456 for D4 corrections57

pretrained ML
models

ANI-1x33, ANI-2x35, ANI-1ccx34 interface to TorchANI2

Models needing training
neural networks MACE58,59 interface to MACE60

ANI-type2 interface to TorchANI2

DPMD61, DeepPot-SE62 interface to DeePMD-kit63

PhysNet64 interface to PhysNet64

kernel methods (p)KREG26,65 native implementation
sGDML66 interface to sGDML3

KRR-CM46,47 native implementation
GAP67-SOAP68 interfaces to GAP suite67 and QUIP69
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its use in geometry optimization in Figure 2. Other
methods approach the density functional theory
(DFT) level. ANI-1ccx and ANI-1x are limited to
CHNO elements, while ANI-2x can be used for
CHNOFClS elements. We allow the user to use D4
dispersion-corrected universal ANI potentials that
might be useful for noncovalent complexes. D4
correction57 is taken for the ωB97X functional70

used to generate data for pretraining ANI-1x and
ANI-2x. ANI models are provided via an interface
to TorchANI2 and D4 corrections via the interface
to dftd4.56 These methods are limited to predicting
energies and forces for neutral closed-shell
compounds in their ground state. MLatom reports
uncertainties for calculations with these methods
based on the standard deviation between neural
network (NN) predictions.36

• The special ML-TPAmodel for predicting the two-
photon absorption (TPA) cross sections.31

• Hybrid QM/ML methods AIQM1, AIQM1@DFT, and
AIQM1@DFT*32 are more transferable and accurate
than pretrained ML models but slower (the speed of
semiempirical QM methods, which are still much faster
than DFT). AIQM1 is approaching gold-standard
CCSD(T) accuracy, while AIQM1@DFT and
AIQM1@DFT* target the DFT accuracy for neutral,
closed-shell molecules in their ground state. All these
methods are limited to the CHNO elements. AIQM1 and
AIQM1@DFT include explicit D4 dispersion corrections
for the ωB97X functional, while AIQM1@DFT* does
not. They also include modified ANI-type networks and
the modified semiempirical QM method ODM249

(ODM2*, provided by either the MNDO50 or Sparrow51

program). These methods can also be used to calculate
charged species, radicals, excited states, and other QM
properties such as dipole moments, charges, oscillator
strengths, and nonadiabatic couplings. MLatom reports
uncertainties for calculations with these methods based
on the standard deviation between NN predictions.36

• A range of established QM methods from ab initio (e.g.,
HF, MP2, coupled cluster, etc.) to DFT (e.g., B3LYP,71,72

ωB97X,70 etc.) via interfaces to PySCF48 and Gaussian.48

• A range of semiempirical QM methods (GFN2-xTB,52

OM2,73 ODM2,49 AM1,74 PM6,75etc.) via interfaces to
the xtb,53 MNDO,50 and Sparrow51 programs.

• A special composite method CCSD(T)*/CBS34 extrap-
olating CCSD(T) to the complete basis set via an
interface to Orca.54,55 This method is relatively fast and
accurate. It allows the user to check the quality of
calculations with other methods and generate robust
reference data for ML. This method was used to generate
the reference data for AIQM1 and ANI-1ccx.

4.2. Available StandardModels Needing Training. The
field of MLPs is very rich in models. Hence, the user can often
choose one of the popular MLP architectures reported in the
literature rather than developing a new one. MLatom provides a
toolset of MLPs from different types (see ref 40 for an overview
and ref 29 for implementation details). These supported types
can be categorized in a simplified scheme as follows:

• Models based on neural networks (NNs) with fixed local
descriptors to which ANI-type MLPs2 and DPMD61

belong and with learned local descriptors represented by
PhysNet64 and DeepPot-SE.62 MLatom also supports a
representative equivariant NN MACE, which shows
superior performance for many tasks.58,59

• Models based on kernel methods (KMs)76 with global
descriptors to which (p)KREG,26,65 sGDML,66 and KRR-
CM46,47 belong as well as with local descriptors
represented by only GAP67-SOAP.68

Any of these models can be trained and used for simulations,
e.g., geometry optimizations or dynamics. MLatom also
supports hyperparameter optimization with many algorithms
including grid search,22 Bayesian optimization via the hyperopt
package,77,78 and standard optimization algorithms available in
SciPy.79 Generalization errors of the resultingmodels can also be
evaluated in standard ways (hold-out and cross-validation).
More on this is available in a dedicated Section 6.
4.3. Custom Models Based on Kernel Methods.

MLatom also provides the flexibility of training custom models
based on kernel ridge regression (KRR) for a given set of input
vectors x or XYZ coordinates and any labels y.80,81 If XYZ
coordinates are provided, they can be transformed in one of the
several supported descriptors (e.g., inverse internuclear
distances and their version normalized relative to the
equilibrium structure (RE) and the Coulomb matrix). The
user can choose from one of the implemented kernel functions,

Table 2. Summary of the Available Kernel Functions for Solving the Kernel Ridge Regression Problem (Eq. 1) as Implemented in
MLatom.

Kernel function Formula Hyperparameters in kernel function

Linear k(x, xj) = xTxj
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including the linear,22,81,82 Gaussian,22,81,82 exponential,22,81,82

Laplacian,22,81,82 and Mateŕn22,81−83 as well as periodic82,84,85

and decaying periodic82,84,86 functions, which are summarized in
Table 2. These kernel functions k(x, xj; h) are key components
required to solve the KRR problem of finding the regression
coefficients α of the approximating function f(̂x; h) of the input
vector x:80,81

=
=

f kx h x x h( ; ) ( , ; )
j

N

j j
1

tr

(1)

The kernel function, in most cases, has hyperparameters h to
tune, and they can be viewed as measuring similarity between
the input vector x and all of the Ntr training points xj (both
vectors should be of the same length Nx). In addition to the
hyperparameters in the kernel function, all KRR models have at
least one more regularization parameter, λ, used during training
to improve the generalizability.
4.4. Composite Models. Often, it is beneficial to combine

several models. One example of such composite models is based
on Δ-learning23 where the low-level QM method is used as a
baseline, which is corrected by an ML model to approach the
accuracy of the target higher-level QM method. Another
example is ensemble learning87 where multiple ML models are
created, and their predictions are averaged during the
simulations to obtain more robust results and use in the
query-by-committee strategy of active learning.88 Both of these
concepts can also be combined in more complex workflows as
exemplified by the AIQM1 method,32 which uses the NN
ensemble as a correcting Δ-learning model and the semi-
empirical QM method as the baseline. To easily implement
these workflows, MLatom allows the construction of the

composite models as model trees; see an example of AIQM1
in Figure 5.

Other examples of possible composite models are hierarchical
ML,25 which combines several (correcting) ML models trained
on (differences between)QM levels, and self-correction,26 when
each next ML model corrects the prediction by the previous
model.

5. SIMULATIONS
MLatom supports a range of simulation tasks such as single-
point simulations, geometry optimizations, frequency and
thermochemistry calculations, molecular and quantum dynam-
ics, one- and two-photon absorption, and (ro)vibrational spectra
simulations (Figure 1). Most of them need any model that can
provide energies and energy derivatives (gradients and
Hessians).
5.1. Single-Point Calculations. Single-point calculations

are calculations of quantum mechanical properties�mainly
energies and energy gradients, but also Hessians, charges, dipole
moments, etc.�for a single geometry. These calculations are
very common in ML research in computational chemistry as
they are used both to generate the reference data with QM
methods for training and validating ML and to make inferences
with ML to validate the trained model and generate required
data for new geometries. MLatom is a convenient tool to
perform single-point calculations not just for a single geometry,
as in many QM packages, but for data sets with many
geometries.
5.2. Geometry Optimizations. Locating stationary points

on the PES, such as energy minima and transition states, is
crucial for understanding the molecular structure and reactivity.
Hence, geometry optimizations are among the most important

Figure 5.Composite models can be constructed as a model tree in MLatom. Here, an example is shown for the AIQM1method where the root parent
node comprises 3 children, the semiempirical QMmethod ODM2*, the NN ensemble, and additional D4 dispersion correction. The NN ensemble in
turn is a parent of 8 ANI-type NN children. Predictions of parents are obtained by applying an operation “average” or “sum” to children's predictions.
The code snippets are shown, too.
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and frequent tasks in computational chemistry. MLatom can
locate energy minima and transition states (TS) with any model
providing energies and gradients. An example of geometry
optimization is given in Figure 2. A practical application of
MLatom for efficient and accurate geometry optimization was
performed previously for rather large cycloparaphenylene
(CPP) nanolassos and their complexes with fullerene molecules
(systems with up to 200 atoms, Figure 6).89 The AIQM1
method can provide an optimized functionalized CPP structure,
which has better agreement with the X-ray structure than that

obtained from the DFT method at a speed 600 times faster than
the DFT method. In our laboratories, we also use the AIQM1
method to optimize systems withmore than a thousand of atoms
on a single CPU, while for more computationally intensive tasks
such as dynamics of large systems, one can use the pretrained
ANI methods. Hessians are also required for the Berny TS
optimization algorithm. Once the TS is located, the user can
follow the intrinsic reaction coordinate (IRC)39 to check its
nature. Geometry optimizations can be performed with many
algorithms provided by the interfaces to SciPy,79 ASE,18 or

Figure 6. X-ray structure of the functionalized cycloparaphenylene (CPP) nanolasso superimposed with the structure optimized in vacuum at (a)
AIQM1 and (b) ωB97X-D/def2-TZVP. Complexes of functionalized CPP and (c) C60 and (d) C70 with binding energies in kcal/mol calculated at
AIQM1 in vacuum. The CPU time for these calculations is also reported.

Figure 7. Calculations of ZPVE-exclusive energy, Gibbs free energy, and enthalpy changes in the Diels−Alder reaction of cyclopentadiene and
maleimide forming the corresponding endo product with AIQM1 and B3LYPG/6-31G* (from the interface to PySCF; “G” in B3LYPGmeans that we
use the B3LYP variant according to the Gaussian program convention). The reference reaction energy is from the GMTKN55 set.93

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c01203
J. Chem. Theory Comput. 2024, 20, 1193−1213

1200

https://pubs.acs.org/doi/10.1021/acs.jctc.3c01203?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01203?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01203?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01203?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01203?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01203?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01203?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01203?fig=fig7&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Gaussian.48 TS search can be performed with the dimer
method90 in ASE and the Berny algorithm91 in Gaussian. IRC
calculations can only be performed with the interface to
Gaussian.
The seamless integration of the variety of QM and ML

methods for performing geometry optimizations is advanta-
geous because it allows the use of methods from interfaced
programs that do not implement some of these simulation tasks
by themselves. For example, MLatom can be used to performTS
search with the GFN2-xTB method via an interface to the xtb
program, while there is no option for TS search with the latter
program. Similarly, Sparrow, which provides access to many
semiempirical methods, can only be used for single-point
calculations. Since analytical gradients and Hessians are not
available for many models and implementations, MLatom also
implements a finite-difference numerical differentiation, further
expanding the applicability of the models for geometry
optimizations.
5.3. Frequency Calculations. Simulation of vibrational

frequencies is another common and important task in
computational chemistry as it is useful to additionally verify
the nature of stationary points, visualize molecular vibrations,
calculate zero-point vibrational energy (ZPE) and thermochem-
ical properties, and obtain spectroscopic information, which can
be compared to experimental vibrational spectra. These
calculations can be performed within the ridge-rotor harmonic
approximation via an adapted TorchANI implementation2 and
Gaussian48 interface. The latter also allows the calculation of
anharmonic frequencies using the second-order perturbative
approach.92

Similarly to geometry optimizations, MLatom can perform
these simulations with any model�ML and QM or their
combination�that provides energies. Calculations also need
Hessian, and wherever available, analytical Hessian is used. If it is
unavailable, semianalytical (with analytical gradients) or fully
numerical Hessian can be calculated.
5.4. Relative Energy Calculations. Relative energy is

crucial for understanding and predicting various aspects of
chemical behavior, from kinetics to thermodynamics, e.g., via
calculating reaction energies, barrier heights, isomerization
energies, and molecular stabilities. MLatom can produce various
types of energies for molecules such as ZPE-exclusive and
inclusive total energies, enthalpies, entropies, Gibbs free
energies, and internal energies. Hence, the package can readily
be used to evaluate different types of relative energies, e.g., the
reaction enthalpies and Gibbs free energies as shown for
investigating which fullerene molecules bind stronger to the
cycloparaphenylene nanolassos (Figure 6) and for the Diels−
Alder reaction of cyclopentadiene and maleimide (Figure 7).

5.4.1. Calculation of Heats of Formation. The special type
of relative energy calculation is evaluation of heats (enthalpies)
of formation. MLatom uses the scheme analogous to those
employed in the ab initio94 and semiempirical QM calculations49

to derive heats of formation:

=H H A H( )T
A

T Tf, f, at,
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where ΔHf,T(A) is the experimental enthalpies of formation of
the free atom A and ΔHat,T is the atomization enthalpy. In
AIQM1 and ANI-1ccx, we use the same ΔHf,T(A) values as
other semiempirical QM methods, i.e., 52.102, 170.89, 113.00,

and 59.559 kcal/mol for elements H, C, N, and O,
respectively.50

The atomization enthalpy ΔHat,T can be obtained from the
difference betweenmolecularHT and atomic absolute enthalpies
HT(A):
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Analogous to ab initiomethods, harmonic-oscillator and rigid-
rotor approximations are explicitly considered in the calculation
of absolute enthalpies:

= + + + + +H E E E E RTZPVET T T Ttot trans, rot, vib,

(4)

= + +H A E A E A RT( ) ( ) ( )T Ttrans, (5)

where Etot and E(A) are the total energy of the molecule and free
atom, respectively, and ZPVE is the zero-point vibrational
energy. Etrans,T, Erot,T, and Evib,T are the translational, rotational,
and vibrational thermal contributions, respectively, and R is the
gas constant.

The scheme requires knowledge of the free atom energies
E(A). Any model able to calculate them can be used for
predicting heats of formation. This is straightforward for QM
methods and also possible for ML models if the energies of
isolated atoms were included in the training data. However, if
theML-basedmodels are trained only onmolecular species, as is
commonly done, they cannot be expected to produce reasonable
heats of formation. In the case of the pretrained models
supported by MLatom, we have previously fitted free atom
energies (see Table 3) for AIQM1 and ANI-1ccx methods to

reproduce experimental heats of formation for a set of common
molecules because the NNs in these methods were not trained
on an isolated atom.32,36 As a result, both methods can provide
heats of formation close to chemical accuracy with speed orders
of magnitude higher than those of alternative, high-accuracyQM
methods. In addition, we provide an uncertainty quantification
scheme based on the deviation of NN predictions in these
methods to tell the users when the predictions are confident.
This was useful to find errors in the experimental data set of
heats of formation.36

An example of using MLatom to calculate the heats of
formation with the AIQM1 and B3LYP/6-31G* methods is
shown in Figure 8. AIQM1 is both faster and more accurate than
B3LYP, as can be seen by comparing the values with the
experiment. This is also consistent with our previous bench-
mark.36

5.5. Molecular Dynamics.Molecular dynamics propagates
nuclear motion based on the equation of motion according to
the classical mechanics.96 This requires knowledge of forces
acting on nuclei, which are typically derived as the negative of
the potential energy gradients (i.e., negative of the derivatives of

Table 3. Atomic Energies (in hartree) of AIQM1 and ANI-
1ccx Used in Heat of Formation Calculations32,36

element AIQM1 ANI-1ccx

H −0.50088038 −0.50088088
C −37.79221710 −37.79199048
N −54.53360298 −54.53379230
O −75.00986203 −75.00968205
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the model for potential energies) for conservative forces. Due to
the high cost of the approach, it is most commonly used with
molecular mechanics force fields,97 but often, calculations based
onQMmethods are possible in variants called ab initio or Born−
Oppenheimer MD (BOMD).96 The proliferation of ML
potentials makes it possible to performBOMD-quality dynamics
at a cost comparable to molecular mechanics force fields or
much faster than commonly used DFT-based BOMD,40−44

which allows routine simulations of large systems such as a
quadruple assembly of octatetrayne-bridged ortho-perylene
diimide dyads with ca. 400 atoms98 at ANI-1ccx (Figure 9).
The accuracy of such simulations can be also high; for example,
the IR spectra obtained from the MD with AIQM1 method are
more accurate than those from a much slower DFTMD (Figure
10).99

MLatom has a native implementation of MD supporting any
kind of model that provides forces, not necessarily conserva-
tive.99 Currently, simulations in NVE and NVT ensembles,101

based on the velocity Verlet algorithm,102 are possible. NVT
simulations can be carried out with the Andersen101,103 and
Nose−́Hoover104,105 thermostats, and the implementation of
other thermostats is expected to be available in the future.
Trajectories can be saved in different formats, including plain
text, JSON, and more compact H5MD29 database formats. The
Nose−́Hoover thermostat is a deterministic thermostat that
couples the system to a thermal bath through extra terms in the
Hamiltonian. Its theory and implementation details are
described elsewhere.99 Here, we briefly mention the relevant
methodology101,103 used in the Andersen thermostat. In this
thermostat, the system is coupled to a heat bath by stochastically
changing the velocity of each atom. The changing frequency (or
collision frequency) is controlled by the tunable parameter v.
The collisions follow the Poisson distribution, so that the
probability of changing the velocity of each atom during a time
step Δt is vΔt. If the atoms collide, new velocities will be
assigned to them, sampled from a Maxwell−Boltzmann
distribution at target temperature T.
Multiple independent MD trajectories can be propagated in

parallel, dramatically speeding up the calculations. In addition,
we made an effort to better integrate the KREG model

implemented in Fortran into the main Python-based MLatom
code, which makes MD with KREG very efficient.

Note thatMD can also be propagated without forces using the
concept of the 4D-spacetime AI atomisticmodels, which directly
predict nuclear configurations as a function of time.85 Our
realization of this concept, called the GICnet model, is currently
available in a publicly available development version of MLatom
version.85

The above implementations can propagate MD on an
adiabatic potential energy surface, i.e., typically for ground-
state dynamics. Nonadiabatic MD based on the trajectory
surface hopping algorithms can also be performed with the help
of MLatom, currently, via Newton-X's106 interface to
MLatom.27,107,108 MLatom also supports quantum dissipative
dynamics, as described in the next section.
5.6. QuantumDissipative Dynamics. It is often necessary

and beneficial to treat the entire system quantum mechanically
and also include the environmental effects.109 This is possible via
many quantum dissipative dynamics (QD) algorithms, and an
increasing number of ML techniques were suggested to
accelerate such simulations.107 MLatom allows performing
several unique ML-accelerated QD simulations using either a
recursive scheme based on KRR110 or a conceptually different
AI-QD approach38 predicting the trajectories as a function of
time or theOSTL technique111 outputting the entire trajectories
in one shot. These approaches are enabled via an interface to a
specialized program MLQD.112

In the recursive KRR scheme, a KRR model is trained,
establishing a map between the future and past dynamics. This
KRR model, when provided with a brief snapshot of the current
dynamics, can be leveraged to forecast future dynamics. In the
AI-QD approach, a convolution neural network (CNN) model
is trained mapping simulation parameters and time to the
corresponding system’s state. Using the trainedCNNmodel, the
state of the system can be predicted at any time without the need
to explicitly simulate the dynamics. Similarly, the ultrafast OSTL
method utilizes a CNN-based architecture and, based on
simulation parameters, predicts future dynamics of the system’s
state up to a predefined time in a single shot. In addition, as
optimization is a key component in training, users can optimize
both KRR and CNN models using MLatom’s grid search

Figure 8. Calculation of heats of formation of 2-methylnonane with AIQM1 and B3LYPG/6-31G* (from the interface to PySCF; “G” in B3LYPG
means that we use the B3LYP variant according to the Gaussian program convention) compared to the experiment.95
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functionality for KRR and Bayesian optimization via the

hyperopt77 library for CNN. Moreover, we also incorporate

the autoplotting functionality, where the predicted dynamics is

plotted against the provided reference trajectory.

Figure 9. Structure of the (POP)4 complex,98 a quadruple assembly of octatetrayne-bridged ortho-perylene diimide dyads. The command-line input
file and the Python script used for NVTMD propagation with the ANI-1ccx method for this molecule are provided. The evolution of the temperature
over time during NVT MD is also shown.
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Figure 10. Propagation ofMDwith AIQM1 and PBE/def2-SVP (from the interface to Gaussian) and the IR spectra of the N2Omolecule derived from
trajectories. MLatom generates spectra for each method; here, the results are collated and shown together with the experimental spectrum100 for
comparison.
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5.7. Rovibrational (Infrared and Power) Spectra.
Rovibrational spectra can be calculated in several ways with
MLatom. The simplest method is by performing frequency
calculations on an optimized molecular geometry. This requires
any model providing Hessians and, preferably, dipole moments.
Another one is performing molecular dynamics simulations with
any model providing energy gradients and, then, postprocessing
the trajectories.
Both frequency calculations and the MD-based approach

require the model to also provide dipole moments to calculate
the absorption intensities. If no dipole moments are provided,
only frequencies are available, or, in the case of MD, only power
spectra rather than IR can be obtained. The IR spectra are
obtained via the fast Fourier transform using the autocorrelation
function of dipole moment113,114 with our own implementa-
tion.99 The power spectra only need the fast Fourier
transform,113 which is also implemented85 in MLatom.
We have previously shown99 that the high quality of the

AIQM1 method results in rather accurate IR spectra obtained
from MD simulations compared to spectra obtained with a

representative DFT (which is also substantially slower; see
example in Figure 10) or a semiempirical QM method.
5.8. One-Photon UV/Vis Absorption Spectra. UV/vis

absorption spectra simulations are computationally intensive
because they require calculation of excited-state properties. In
addition, better-quality spectra can be obtained via the nuclear
ensemble approach (NEA),115 which necessitates the calcu-
lation of excited-state properties for thousands of geometries for
high precision. MLatom implements an interpolation ML-NEA
scheme30 that improves the precision of the spectra with a
fraction of the computational cost of traditional NEA
simulations (Figure 11). Currently, the ML-NEA calculations
are based on interfaces to Newton-X106 and Gaussian48 and
utilize the sampling of geometries from a harmonic Wigner
distribution.116 This scheme also automatically determines the
optimal number of required reference calculations, providing a
user-friendly, black-box implementation of the algorithm.29

5.9. Two-Photon Absorption. Beyond one-photon
absorption, MLatom has an implementation of a unique ML
approach for calculating two-photon absorption (TPA) cross
sections of molecules just based on their SMILES strings,45

Figure 11. Using MLatom to predict the UV/vis absorption spectra of the acridophosphine derivative molecule with the ML-NEA30 method. The
MLatom input file and the list of additional required files are shown on the left. The cross section predicted by ML-NEA shown on the right is
compared to traditional QC-NEA and the single-point convolution approach (QC-SPC). This figure is adapted from ref 29. Copyright 2021, the
Authors.

Figure 12. Using MLatom to predict the two-photon absorption cross section of the Rhodamine 6G molecule with the ML-TPA approach. The
MLatom command-line input file and additional files are shown on the left. The cross section predicted by ML-TPA is shown on the right.
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which are converted into the required descriptors using the
interface to RDKit,117 and solvent information.31 This ML-TPA
approach is very fast with accuracy comparable to that of much
more computationally intensive QM methods. We provide an
MLmodel pretrained on experimental data. ML-TPAwas tested
in real laboratory settings and was shown to provide a good
estimate for new molecules not present in the training
experimental database. An example of using ML-TPA to predict
two-photon absorption is shown in Figure 12.

6. MACHINE LEARNING
In Sections 4 and 5, we discussed the supported types of models
and how they can be applied to simulations. Here, we briefly
overview the general considerations for training and validating
the ML models with MLatom. The models share the standard
MLatom’s conventions for input, output, training, hyper-
parameter optimization, and testing, which allows one to
conveniently switch from one model to another and benchmark
them.
6.1. Training.To create anMLmodel, the user has to choose

and train the ML model and prepare data. MLatom provides
many tools for the different stages of this process. Themodel can
be either chosen from a selection of provided types of ML

models with a predefined architecture or customized based on
available algorithms and preset models. Once a model is chosen,
it must be trained, and, in many cases, it is advisable or even
required (particularly in the case of the kernel methods) to
optimize its hyperparameters, which can be done as explained in
Section 6.2.

For training, the data set should be appropriately prepared.
MLatom has strict naming conventions for data set splits to
avoid any confusion when changing and comparing different
model types. All of the data that are used directly or indirectly for
creating anMLmodel are called the training set. This means that
the validation set, which can be used for hyperparameter
optimization or early stopping during NN training, is a subset of
the training set. Thus, the part of the training set remaining after
excluding the validation set is called the subtraining set and is
actually used for training the model, i.e., optimizing model
parameters (weights in NN terminology and regression
coefficients in kernel method terminology).

MLatom can split the training data set into the subtraining
and validation data subsets or create a collection of these subsets
via cross-validation.24,29 The sampling into the subsets can be
performed randomly or using furthest-point or structure-based
sampling.

Figure 13. Side-by-side comparison of the usage of MLatom in both the command-line mode and via Python API for training and testing the KREG
model on a 1000-point data set on the ureamolecular PES data set randomly sampled from theWS22 database.121 Hyperparameter optimization of the
KREG model required is also shown. Calculations were run on a 36 Intel(R) Xeon(R) Gold 6240 CPU @ 2.60 GHz.
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In the case of kernel methods, the final model in MLatom is
typically trained on the entire training set after hyperparameter
optimization. This is possible because the kernel methods have a
closed analytical solution to finding their regression coefficients,
and after hyperparameters are appropriately chosen, overfitting
can be mitigated to a great extent. In the case of NNs, the final
model is the one trained on the subtraining set because it would
be too dangerous to train on the entire training set without any
validation subset to check for the signs of overfitting.

6.1.1. Training Predefined Types of ML Models. Most
predefined types of ML models, such as ANI-type or KREG
models, expect XYZ molecular coordinates as input. This should
be either provided by the user or can be obtained using
MLatom’s conversion routines, e.g., from the SMILES
strings,118 which rely on OpenBabel's119 Pybel API. These
models have a default set of hyperparameters, but, especially in
the case of kernel methods such as KREG, it is still strongly
advised to optimize them. The models can be, in principle,
trained on any molecular property. Most often, they are used to
learn PESs and hence require energy labels in the training set.
The PES model accuracy can be greatly improved if the energy
gradients are also provided for training. Thus, the increased
training time is usually justified.40,120 An example of training and
testing the KREG model on a data set with energies and energy
gradients for the urea molecule in the WS22 database121 is
shown in Figure 13. The KREG model is both fast to train and
accurate (achieved an RMSE below 1 kcal/mol within a few
seconds), which is a typical situation for small-size molecular
databases, while for larger databases, NN-basedmodels might be
preferable.40 Command-line and Python script inputs for using a
different type of ML model (e.g., ANI-type2) are also shown in
the figure as comments.

6.1.2. Designing and Training Custom ML Models.
MLatom’s user can also create models on any set of input
vectors and labels using a variety of KRR kernel functions. In this
case, hyperparameter optimization is strongly advised too. In all
other aspects, training of such KRR models is similar to training
the predefined models, i.e., the preparation of the data set is also
performed by splitting it into the required subsets for training
and validation.
Importantly, the user can construct models of varying

complexity using a model tree implementation. Special cases
of such composite models are Δ-learning and self-correcting
models, and they can be trained similarly to other MLmodels by
supplying input vectors or XYZ coordinates and labels. In the
case of Δ-learning, the user must supply the baseline values. For
other more complicated models, the user must train and
combine each component separately.
6.2. Hyperparameter Optimization. The performance of

ML models strongly depends on the chosen hyperparameters,
such as the regularization parameters for training kernel
methods and the number of layers in NNs. Hence, it is often
necessary to optimize the hyperparameters to achieve
reasonable results and to improve the accuracy. The hyper-
parameter optimization commonly requires multiple trainings,
making it an expensive endeavor, and caution must be paid in
balancing performance/cost issues.
MLatom can optimize hyperparameters by minimizing the

validation loss using one of the many available algorithms. The
validation loss is usually based on the error in the validation set,
which can be a single hold-out validation set or a combined
cross-validation error.

For a few hyperparameters, the robust grid search on the log
or linear scale can be used to find optimal values. It is a common
choice for kernel methods (see Figure 13 for an example of
optimizing hyperparameters of the KREG model, which is the
kernel method). For a larger number of hyperparameters, other
algorithms are recommended instead. Popular choices are
Bayesian optimization with the tree-structured Parzen estimator
(TPE)78 and many SciPy optimizers.

The choice of the validation loss also matters. In most cases,
MLatomminimizes the root-mean-square error (RMSE) for the
labeled data. However, when multiple labels are provided, i.e.,
energies and energy gradients for learning PES, the choice
should be made on how to combine them in the validation loss.
By default, MLatom calculates the geometric mean of the
RMSEs for energies and gradients.29 The users can also choose a
weighted sum of RMSEs, but in this case, they must choose the
weight. In addition, the user can supply MLatom with any
custom validation loss function, which can be arbitrarily
complicated.
6.3. Evaluating Models. Once the model has been trained,

it is common to evaluate its generalization ability before
deployment in production simulations. MLatom provides
dedicated options for such evaluations. The simplest and one
of the most widespread approaches is calculating the error for
the independent hold-out test set not used in the training. To
emphasize, in MLatom terminology, the test set has no overlap
with the training set, which might consist of the subtraining and
validation subsets.29 Alternatively, cross-validation and its
variant leave-one-out cross-validation are recommended when-
ever computationally affordable, especially for small data sets.
MLatom provides a broad range of error measures for the test
set, including RMSE, mean absolute error (MAE), mean signed
error, the Pearson correlation coefficient, the R2 value, outliers,
etc.29 The testing can be performed with training and
hyperparameter optimization for most models, including Δ-
learning and self-correcting models.

Since the errors depend on the size of the training set, the
learning curves showing this dependence are very useful for
comparing different models.29 MLatom can generate the
learning curves, which have been instrumental in preparing
guidelines for choosing the ML interatomic potential.40

7. SUMMARY
MLatom 3 is a unique software package combining machine
learning and quantum mechanical models for accelerating and
improving the accuracy of computational chemistry simulations.
It can be used as a black-box package accepting input files with a
simple structure or as a transparent Python module enabling
custom workflows. MLatom provides access to pretrained
models such as AIQM1 and ANI-1ccx aiming at high accuracy of
the coupled-cluster level, making them more accurate and much
faster than common DFT approaches for ground-state proper-
ties of closed-shell organicmolecules. Another special pretrained
model can be used to simulate two-photon absorption spectra.

The user of MLatom has an option to create their own
models. Predefined ML architectures of the MACE, ANI-type,
KREG, PhysNet, GAP-SOAP, DPMD, or sGDML make it
easier. Alternatively, the custom models of varying complexity
and based on combinations of bothML andQMmodels, such as
Δ-learning, can be easily built with the package. MLatom
provides a toolset for training, hyperparameter optimization,
and performance analysis of the models.
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This wide variety of models can be used for single-point
calculations on large data sets, geometry optimizations,
calculation of rovibrational (frequencies and IR spectra) and
thermochemical (enthalpies, entropies, and heats of formation)
properties, molecular dynamics, and UV/vis absorption spectra.
The ML models can also be trained and used for quantum
dissipative dynamics simulations.
For developers, MLatom provides a flexible platform for

implementation of the new interfaces as they just need to
provide a new class supporting prediction (and optionally
training) with the new model. For example, the implementation
of MACE was done in one working day, and another working
day was needed for testing. Once implemented, these models
can be readily used for simulations.
The richness of the MLatom functionality is available open-

source and can be exploited on the XACS cloud computing
service. We also welcome new contributions to the package. The
package is accompanied by extensive and detailed manuals and
tutorials that are developed and improved in close connection
with teaching computational chemistry and machine learning in
regular workshops and university courses.

■ ASSOCIATED CONTENT
Data Availability Statement
TheMLatom code is open-source and available both on GitHub
(https://github.com/dralgroup/mlatom, main GitHub reposi-
tory) and PyPI (i.e., it can be installed via the command pip
install mlatom). The contributions to the main GitHub
repository of MLatom are highly welcome and can be done via
pull requests from branches (on request) and forks that the
contributors may also create for their private developments of
methods and features. The pull requests may be incorporated
into official releases after the review and eventual adjustments by
the main developers’ team managing the main GitHub
repository. The simulations can also be run on the MLatom@
XACS cloud computing service on https://XACScloud.com.

■ AUTHOR INFORMATION
Corresponding Author

Pavlo O. Dral − State Key Laboratory of Physical Chemistry of
Solid Surfaces, College of Chemistry and Chemical Engineering,
and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM), Xiamen
University, Xiamen, Fujian 361005, China; Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry,
Xiamen, Fujian 361005, China; orcid.org/0000-0002-
2975-9876; Email: dral@xmu.edu.cn

Authors
Fuchun Ge − State Key Laboratory of Physical Chemistry of

Solid Surfaces, College of Chemistry and Chemical Engineering,
and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM), Xiamen
University, Xiamen, Fujian 361005, China; Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry,
Xiamen, Fujian 361005, China; orcid.org/0000-0002-
0112-5193

Yi-Fan Hou − State Key Laboratory of Physical Chemistry of
Solid Surfaces, College of Chemistry and Chemical Engineering,
and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM), Xiamen
University, Xiamen, Fujian 361005, China; Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry,

Xiamen, Fujian 361005, China; orcid.org/0000-0001-
9188-5323

Peikun Zheng − State Key Laboratory of Physical Chemistry of
Solid Surfaces, College of Chemistry and Chemical Engineering,
and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM), Xiamen
University, Xiamen, Fujian 361005, China; Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry,
Xiamen, Fujian 361005, China; orcid.org/0000-0002-
0248-936X

Yuxinxin Chen − State Key Laboratory of Physical Chemistry of
Solid Surfaces, College of Chemistry and Chemical Engineering,
and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM), Xiamen
University, Xiamen, Fujian 361005, China; Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry,
Xiamen, Fujian 361005, China

Mario Barbatti − Aix Marseille University, CNRS, ICR,
Marseille 13013, France; Institut Universitaire de France,
Paris 75231, France; orcid.org/0000-0001-9336-6607

Olexandr Isayev − Department of Chemistry, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States;
orcid.org/0000-0001-7581-8497

Cheng Wang − State Key Laboratory of Physical Chemistry of
Solid Surfaces, College of Chemistry and Chemical Engineering,
and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM) and iChem,
Xiamen University, Xiamen, Fujian 361005, China;
orcid.org/0000-0002-7906-8061

Bao-Xin Xue − State Key Laboratory of Physical Chemistry of
Solid Surfaces, College of Chemistry and Chemical Engineering,
and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM), Xiamen
University, Xiamen, Fujian 361005, China; Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry,
Xiamen, Fujian 361005, China; Present Address: Present
address: Xiamen Double Ten Middle School, Xiamen,
Fujian 361009, China (B.-X.X.)

Max Pinheiro Jr − Aix Marseille University, CNRS, ICR,
Marseille 13013, France; Present Address: Present address:
Alstom Transport S.A., Saint-ouen-sur-seine, France
(M.P.J.).; orcid.org/0000-0002-5120-4172

Yuming Su − State Key Laboratory of Physical Chemistry of
Solid Surfaces, College of Chemistry and Chemical Engineering,
and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM) and iChem,
Xiamen University, Xiamen, Fujian 361005, China

Yiheng Dai − State Key Laboratory of Physical Chemistry of
Solid Surfaces, College of Chemistry and Chemical Engineering,
and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM) and iChem,
Xiamen University, Xiamen, Fujian 361005, China; Present
Address: Present address: Beijing National Laboratory for
Molecular Sciences, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100190, China
(Y.D.).

Yangtao Chen − State Key Laboratory of Physical Chemistry of
Solid Surfaces, College of Chemistry and Chemical Engineering,
and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM) and iChem,
Xiamen University, Xiamen, Fujian 361005, China

Lina Zhang − State Key Laboratory of Physical Chemistry of
Solid Surfaces, College of Chemistry and Chemical Engineering,

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c01203
J. Chem. Theory Comput. 2024, 20, 1193−1213

1208

https://github.com/dralgroup/mlatom
https://XACScloud.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pavlo+O.+Dral"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2975-9876
https://orcid.org/0000-0002-2975-9876
mailto:dral@xmu.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fuchun+Ge"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0112-5193
https://orcid.org/0000-0002-0112-5193
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yi-Fan+Hou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9188-5323
https://orcid.org/0000-0001-9188-5323
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peikun+Zheng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0248-936X
https://orcid.org/0000-0002-0248-936X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yuxinxin+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mario+Barbatti"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9336-6607
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Olexandr+Isayev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7581-8497
https://orcid.org/0000-0001-7581-8497
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cheng+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7906-8061
https://orcid.org/0000-0002-7906-8061
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bao-Xin+Xue"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Max+Pinheiro+Jr"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-5120-4172
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yuming+Su"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yiheng+Dai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yangtao+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lina+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM), Xiamen
University, Xiamen, Fujian 361005, China; Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry,
Xiamen, Fujian 361005, China; orcid.org/0000-0002-
4202-1067

Shuang Zhang − State Key Laboratory of Physical Chemistry of
Solid Surfaces, College of Chemistry and Chemical Engineering,
and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM), Xiamen
University, Xiamen, Fujian 361005, China; Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry,
Xiamen, Fujian 361005, China; Present Address: Present
address: Neotrident (Suzhou) Co., Ltd., Suzhou, Jiangsu
215028, China (S.Z.).

Arif Ullah − School of Physics and Optoelectronic Engineering,
Anhui University, Hefei 230601, China; orcid.org/0000-
0003-1702-3463

Quanhao Zhang − State Key Laboratory of Physical Chemistry
of Solid Surfaces, College of Chemistry and Chemical
Engineering, and Innovation Laboratory for Sciences and
Technologies of Energy Materials of Fujian Province
(IKKEM), Xiamen University, Xiamen, Fujian 361005,
China; Fujian Provincial Key Laboratory of Theoretical and
Computational Chemistry, Xiamen, Fujian 361005, China;
orcid.org/0009-0007-6416-3561

Yanchi Ou − State Key Laboratory of Physical Chemistry of
Solid Surfaces, College of Chemistry and Chemical Engineering,
and Innovation Laboratory for Sciences and Technologies of
Energy Materials of Fujian Province (IKKEM), Xiamen
University, Xiamen, Fujian 361005, China; Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry,
Xiamen, Fujian 361005, China; Present Address: Present
address: Shanghai Mayoo Technology, Inc., Shanghai
201318, China (Y.O.).

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.3c01203

Author Contributions
P.O.D. is the lead designer, developer, and maintainer of
MLatom. F.G. is comaintaining the MLatom package,
implemented interfaces to third-party machine learning pack-
ages (MACE, PhysNet, DeePMD-kit, TorchANI, GAP-SOAP,
and hyperopt), wrote the code for learning curves, and made
numerous other improvements in MLatom. Y.-F.H. coimple-
mented the KREG model, implemented molecular dynamics
and vibrational spectra simulations, and improved many other
parts of the code such as interfaces. P.Z. implemented AIQM1
and the ANI family of models (ANI-1ccx, ANI-2x, ANI-1x, and
their dispersion-corrected variants) through interfaces to third-
party packages (MNDO, TorchANI, and Sparrow) as well as
geometry optimizations and frequency and thermochemistry
simulations via interfaces to Gaussian, ASE, and TorchANI. Y.C.
implemented interfaces to PySCF and Orca and extended
thermochemical calculations to many methods. M.B. con-
tributed to planning the implementation of MLPs and the
methodology behind the ML-NEA approach. O.I. contributed
to the research involving AIQM1 methods and ANI universal
potentials. C.W. led the development of the ML-TPA
methodology. B.-X.X. implemented the ML-NEA approach
and initial argument parsing routines. M.P.J. helped implement
the interfaces to TorchANI, PhysNet, DeePMD-kit, and

Newton-X. Y.S., Y.D., and Y.T.C. implemented the ML-TPA
approach. L.Z. implemented routines for nonadiabatic dynamics
and extensions of the MNDO interface to excited-state
properties and tests of the MD code. S.Z. contributed to atomic
property collection and implemented some of the NN-based
approaches. A.U. interfaced MLQD to MLatom. Q.Z.
contributed to the program documentation and tests. Y.O.
contributed to plotting routines. P.O.D. wrote the original
manuscript, and all authors revised and commented on the
manuscript. F.G., Y.-F.H., Y.C., L.Z., Q.Z., and P.O.D. prepared
the figures.
Notes
The authors declare no competing financial interest.
No data were generated for this article.

■ ACKNOWLEDGMENTS
P.O.D. acknowledges funding by the National Natural Science
Foundation of China (no. 22003051 and funding via the
Outstanding Youth Scholars (Overseas, 2021) project), the
Fundamental Research Funds for the Central Universities (no.
20720210092), and via the Lab project of the State Key
Laboratory of Physical Chemistry of Solid Surfaces. This project
is supported by the Science and Technology Projects of
Innovation Laboratory for Sciences and Technologies of Energy
Materials of Fujian Province (IKKEM) (no. RD2022070103).
M.B. and M.P.J. are financially supported by the European
Union’s Horizon 2020 research and innovation program under
an ERC advanced grant (grant agreement no. 832237,
SubNano). They also acknowledge the Centre de Calcul
Intensif d’Aix-Marseille. O.I. acknowledges support from the
National Science Foundation (NSF) CHE-2154447. O.I. also
acknowledges the Extreme Science and Engineering Discovery
Environment (XSEDE) Award CHE200122, which is supported
by NSF Grant Number ACI-1053575. C.W. acknowledges
funding support from the National Key R&D Program of China
(2021YFA1502500), the National Natural Science Foundation
of China (22071207, 22121001, 21721001, and 22003051),
NFFTBS (no. J1310024), and the Fundamental Research Funds
for the Central Universities (nos. 20720220128 and
20720220011).

■ REFERENCES
(1) Himanen, L.; Jäger, M. O. J.; Morooka, E. V.; Federici Canova, F.;
Ranawat, Y. S.; Gao, D. Z.; Rinke, P.; Foster, A. S. DScribe: Library of
descriptors for machine learning in materials science. Comput. Phys.
Commun. 2020, 247, No. 106949.
(2) Gao, X.; Ramezanghorbani, F.; Isayev, O.; Smith, J. S.; Roitberg, A.
E. TorchANI: A Free and Open Source PyTorch-Based Deep Learning
Implementation of the ANI Neural Network Potentials. J. Chem. Inf.
Model. 2020, 60, 3408−3415.
(3) Chmiela, S.; Sauceda, H. E.; Poltavsky, I.; Müller, K.-R.;
Tkatchenko, A. sGDML: Constructing accurate and data efficient
molecular force fields using machine learning. Comput. Phys. Commun.
2019, 240, 38−45.
(4) Burn, M. J.; Popelier, P. L. A. FEREBUS: a high-performance
modern Gaussian process regression engine. Digit. Discovery 2023, 2,
152−164.
(5) Browning, N. J.; Faber, F. A.; Anatole von Lilienfeld, O. GPU-
accelerated approximate kernel method for quantum machine learning.
J. Chem. Phys. 2022, 157, 214801.
(6) Abbott, A. S.; Turney, J. M.; Zhang, B.; Smith, D. G. A.; Altarawy,
D.; Schaefer, H. F., 3rd PES-Learn: An Open-Source Software Package
for the Automated Generation of Machine Learning Models of

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c01203
J. Chem. Theory Comput. 2024, 20, 1193−1213

1209

https://orcid.org/0000-0002-4202-1067
https://orcid.org/0000-0002-4202-1067
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shuang+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Arif+Ullah"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1702-3463
https://orcid.org/0000-0003-1702-3463
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Quanhao+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0009-0007-6416-3561
https://orcid.org/0009-0007-6416-3561
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yanchi+Ou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01203?ref=pdf
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1021/acs.jcim.0c00451?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00451?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cpc.2019.02.007
https://doi.org/10.1016/j.cpc.2019.02.007
https://doi.org/10.1039/D2DD00082B
https://doi.org/10.1039/D2DD00082B
https://doi.org/10.1063/5.0108967
https://doi.org/10.1063/5.0108967
https://doi.org/10.1021/acs.jctc.9b00312?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00312?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Molecular Potential Energy Surfaces. J. Chem. Theory Comput. 2019, 15,
4386−4398.
(7) Quintas-Sanchez, E.; Dawes, R. AUTOSURF: A Freely Available
Program To Construct Potential Energy Surfaces. J. Chem. Inf. Model.
2019, 59, 262−271.
(8)Novikov, I. S.; Gubaev, K.; Podryabinkin, E. V.; Shapeev, A. V. The
MLIP package: moment tensor potentials withMPI and active learning.
Mach. Learn.: Sci. Technol. 2021, 2, No. 025002.
(9) Laghuvarapu, S.; Pathak, Y.; Priyakumar, U. D. BAND NN: A
Deep Learning Framework for Energy Prediction and Geometry
Optimization of Organic Small Molecules. J. Comput. Chem. 2020, 41,
790−799.
(10) Zeng, J.; Zhang, D.; Lu, D.; Mo, P.; Li, Z.; Chen, Y.; Rynik, M.;
Huang, L.; Li, Z.; Shi, S.;Wang, Y.; Ye, H.; Tuo, P.; Yang, J.; Ding, Y.; Li,
Y.; Tisi, D.; Zeng, Q.; Bao, H.; Xia, Y.; Huang, J.; Muraoka, K.; Wang,
Y.; Chang, J.; Yuan, F.; Bore, S. L.; Cai, C.; Lin, Y.;Wang, B.; Xu, J.; Zhu,
J. X.; Luo, C.; Zhang, Y.; Goodall, R. E. A.; Liang, W.; Singh, A. K.; Yao,
S.; Zhang, J.; Wentzcovitch, R.; Han, J.; Liu, J.; Jia, W.; York, D. M.; E,
W.; Car, R.; Zhang, L.; Wang, H. DeePMD-kit v2: A software package
for deep potential models. J. Chem. Phys. 2023, 159, No. 054801.
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Schütte, N.-E.; Grimme, S.; Frauenheim, T.; Aradi, B. TBMaLT, a
flexible toolkit for combining tight-binding and machine learning. J.
Chem. Phys. 2023, No. 034801, DOI: 10.1063/5.0132892.

(21) Ple, T.; Mauger, N.; Adjoua, O.; Inizan, T. J.; Lagardere, L.;
Huppert, S.; Piquemal, J. P. Routine Molecular Dynamics Simulations
Including Nuclear Quantum Effects: From Force Fields to Machine
Learning Potentials. J. Chem. Theory Comput. 2023, 19, 1432−1445.
(22) Dral, P. O. MLatom: A Program Package for Quantum Chemical
Research Assisted by Machine Learning. J. Comput. Chem. 2019, 40,
2339−2347.
(23) Ramakrishnan, R.; Dral, P. O.; Rupp,M.; von Lilienfeld, O. A. Big
Data Meets Quantum Chemistry Approximations: The Δ-Machine
Learning Approach. J. Chem. Theory Comput. 2015, 11, 2087−2096.
(24) Dral, P. O.; von Lilienfeld, O. A.; Thiel, W. Machine Learning of
Parameters for Accurate Semiempirical Quantum Chemical Calcu-
lations. J. Chem. Theory Comput. 2015, 11, 2120−2125.
(25) Dral, P. O.; Owens, A.; Dral, A.; Csányi, G. Hierarchical Machine
Learning of Potential Energy Surfaces. J. Chem. Phys. 2020, 152,
204110.
(26) Dral, P. O.; Owens, A.; Yurchenko, S. N.; Thiel, W. Structure-
based sampling and self-correcting machine learning for accurate
calculations of potential energy surfaces and vibrational levels. J. Chem.
Phys. 2017, 146, 244108.
(27) Dral, P. O.; Barbatti, M.; Thiel, W. Nonadiabatic Excited-State
Dynamics with Machine Learning. J. Phys. Chem. Lett. 2018, 9, 5660−
5663.
(28) de Rezende, A.; Malmali, M.; Dral, P. O.; Lischka, H.; Tunega,
D.; Aquino, A. J. A. Machine Learning for Designing Mixed Metal
Halides for Efficient Ammonia Separation and Storage. J. Phys. Chem. C
2022, 126, 12184−12196.
(29) Dral, P. O.; Ge, F.; Xue, B. X.; Hou, Y. F.; Pinheiro, M.; Huang, J.;
Barbatti, M. MLatom 2: An Integrative Platform for Atomistic Machine
Learning. Top. Curr. Chem. 2021, 379, 27.
(30) Xue, B.-X.; Barbatti, M.; Dral, P. O. Machine Learning for
Absorption Cross Sections. J. Phys. Chem. A 2020, 124, 7199−7210.
(31) Su, Y.; Dai, Y.; Zeng, Y.; Wei, C.; Chen, Y.; Ge, F.; Zheng, P.;
Zhou, D.; Dral, P. O.; Wang, C. Interpretable Machine Learning of
Two-Photon Absorption. Adv. Sci. 2023, 2204902 DOI: 10.1002/
advs.202204902.
(32) Zheng, P.; Zubatyuk, R.; Wu, W.; Isayev, O.; Dral, P. O. Artificial
Intelligence-Enhanced Quantum Chemical Method with Broad
Applicability. Nat. Commun. 2021, 12, 7022.
(33) Smith, J. S.; Nebgen, B.; Lubbers, N.; Isayev, O.; Roitberg, A. E.
Less is more: Sampling chemical space with active learning. J. Chem.
Phys. 2018, 148, 241733.
(34) Smith, J. S.; Nebgen, B. T.; Zubatyuk, R.; Lubbers, N.; Devereux,
C.; Barros, K.; Tretiak, S.; Isayev, O.; Roitberg, A. E. Approaching
coupled cluster accuracy with a general-purpose neural network
potential through transfer learning. Nat. Commun. 2019, 10, 2903.
(35) Devereux, C.; Smith, J. S.; Huddleston, K. K.; Barros, K.;
Zubatyuk, R.; Isayev, O.; Roitberg, A. E. Extending the Applicability of
the ANI Deep Learning Molecular Potential to Sulfur and Halogens. J.
Chem. Theory Comput. 2020, 16, 4192−4202.
(36) Zheng, P.; Yang, W.; Wu, W.; Isayev, O.; Dral, P. O. Toward
Chemical Accuracy in Predicting Enthalpies of Formation with
General-Purpose Data-Driven Methods. J. Phys. Chem. Lett. 2022, 13,
3479−3491.
(37) Dral, P. O.; Ge, F.; Hou, Y.-F.; Zheng, P.; Chen, Y.; Xue, B.-X.;
Pinheiro, Jr, M.; Su, Y.; Dai, Y.; Chen, Y.; Zhang, S.; Zhang, L.; Ullah,
A.; Ou, Y.MLatom: A Package for Atomistic Simulations with Machine
Learning; Xiamen University: Xiamen, China, http://MLatom.com
(accessed August 22, 2023), 2013−2023.
(38) Ullah, A.; Dral, P. O. Predicting the future of excitation energy
transfer in light-harvesting complex with artificial intelligence-based
quantum dynamics. Nat. Commun. 2022, 13, 1930.
(39) Gonzalez, C.; Schlegel, H. B. An improved algorithm for reaction
path following. J. Chem. Phys. 1989, 90, 2154−2161.
(40) Pinheiro, M., Jr; Ge, F.; Ferré, N.; Dral, P. O.; Barbatti, M.
Choosing the right molecular machine learning potential. Chem. Sci.
2021, 12, 14396−14413.
(41) Zhang, Y.; Lin, Q.; Jiang, B. Atomistic neural network
representations for chemical dynamics simulations of molecular,

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c01203
J. Chem. Theory Comput. 2024, 20, 1193−1213

1210

https://doi.org/10.1021/acs.jctc.9b00312?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.8b00784?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.8b00784?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/2632-2153/abc9fe
https://doi.org/10.1088/2632-2153/abc9fe
https://doi.org/10.1002/jcc.26128
https://doi.org/10.1002/jcc.26128
https://doi.org/10.1002/jcc.26128
https://doi.org/10.1063/5.0155600
https://doi.org/10.1063/5.0155600
https://doi.org/10.1063/5.0138367
https://doi.org/10.1063/5.0138367
https://doi.org/10.1063/5.0066009
https://doi.org/10.1063/5.0066009
https://doi.org/10.1063/5.0155992
https://doi.org/10.1063/5.0155992
https://doi.org/10.1063/5.0146803
https://doi.org/10.1063/5.0146803
https://doi.org/10.1021/acs.jctc.2c01018?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c01018?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c01018?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0134442
https://doi.org/10.1063/5.0134442
https://doi.org/10.1063/5.0134442
https://doi.org/10.1063/5.0156845
https://doi.org/10.1063/5.0156845
https://doi.org/10.1063/5.0156845
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1002/jcc.1056
https://doi.org/10.1002/jcc.1056
https://doi.org/10.1063/5.0132892
https://doi.org/10.1063/5.0132892
https://doi.org/10.1063/5.0132892?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c01233?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c01233?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c01233?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.26004
https://doi.org/10.1002/jcc.26004
https://doi.org/10.1021/acs.jctc.5b00099?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00099?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00099?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00141?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00141?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00141?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0006498
https://doi.org/10.1063/5.0006498
https://doi.org/10.1063/1.4989536
https://doi.org/10.1063/1.4989536
https://doi.org/10.1063/1.4989536
https://doi.org/10.1021/acs.jpclett.8b02469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.8b02469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.2c02586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.2c02586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s41061-021-00339-5
https://doi.org/10.1007/s41061-021-00339-5
https://doi.org/10.1021/acs.jpca.0c05310?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c05310?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/advs.202204902
https://doi.org/10.1002/advs.202204902
https://doi.org/10.1002/advs.202204902?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/advs.202204902?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-021-27340-2
https://doi.org/10.1038/s41467-021-27340-2
https://doi.org/10.1038/s41467-021-27340-2
https://doi.org/10.1063/1.5023802
https://doi.org/10.1038/s41467-019-10827-4
https://doi.org/10.1038/s41467-019-10827-4
https://doi.org/10.1038/s41467-019-10827-4
https://doi.org/10.1021/acs.jctc.0c00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.2c00734?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.2c00734?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.2c00734?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://MLatom.com
https://doi.org/10.1038/s41467-022-29621-w
https://doi.org/10.1038/s41467-022-29621-w
https://doi.org/10.1038/s41467-022-29621-w
https://doi.org/10.1063/1.456010
https://doi.org/10.1063/1.456010
https://doi.org/10.1039/D1SC03564A
https://doi.org/10.1002/wcms.1645
https://doi.org/10.1002/wcms.1645
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


condensed phase, and interfacial systems: Efficiency, representability,
and generalization. WIREs Comput. Mol. Sci. 2022, No. e1645.
(42) Unke, O. T.; Chmiela, S.; Sauceda, H. E.; Gastegger, M.;
Poltavsky, I.; Schutt, K. T.; Tkatchenko, A.; Muller, K. R. Machine
Learning Force Fields. Chem. Rev. 2021, 121, 10142−10186.
(43) Manzhos, S.; Carrington, T., Jr. Neural Network Potential
Energy Surfaces for Small Molecules and Reactions. Chem. Rev. 2021,
121, 10187−10217.
(44) Behler, J. Four Generations of High-Dimensional Neural
Network Potentials. Chem. Rev. 2021, 121, 10037−10072.
(45) de Buyl, P.; Colberg, P. H.; Höfling, F. H5MD: A structured,
efficient, and portable file format for molecular data. Comput. Phys.
Commun. 2014, 185, 1546−1553.
(46) Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A.
Fast and Accurate Modeling of Molecular Atomization Energies with
Machine Learning. Phys. Rev. Lett. 2012, 108, No. 058301.
(47) Hansen, K.; Montavon, G.; Biegler, F.; Fazli, S.; Rupp, M.;
Scheffler, M.; von Lilienfeld, O. A.; Tkatchenko, A.; Müller, K.-R.
Assessment and Validation of Machine Learning Methods for
Predicting Molecular Atomization Energies. J. Chem. Theory Comput.
2013, 9, 3404−3419.
(48) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G.
A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.;
Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J.
V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.;
Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe,
D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada,
M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell,
K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.;
Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.;
Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J.
C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.;
Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Farkas, O.; Foresman, J. B.; Fox, D. J.Gaussian 16, Rev. A.01; Gaussian
Inc.: Wallingford, CT, 2016.
(49) Dral, P. O.; Wu, X.; Thiel, W. Semiempirical Quantum-Chemical
Methods with Orthogonalization and Dispersion Corrections. J. Chem.
Theory Comput. 2019, 15, 1743−1760.
(50) Thiel, W., with contributions from ; Beck, M.; Billeter, S;
Kevorkiants, R.; Kolb, M; Koslowski, A.; Patchkovskii, S.; Turner, A.;
Wallenborn, E.-U.; Weber, W.; Spörkel, L.; Dral, P. O.MNDO,
development version; Max-Planck-Institut für Kohlenforschung: Mül-
heim an der Ruhr, 2019.
(51) Bosia, F.; Zheng, P.; Vaucher, A.; Weymuth, T.; Dral, P. O.;
Reiher, M. Ultra-Fast Semi-Empirical Quantum Chemistry for High-
Throughput Computational Campaigns with Sparrow. J. Chem. Phys.
2023, 158, No. 054118.
(52) Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB-An Accurate
and Broadly Parametrized Self-Consistent Tight-Binding Quantum
Chemical Method with Multipole Electrostatics and Density-Depend-
ent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15,
1652−1671.
(53) Semiempirical extended tight-binding program package xtb.https://
github.com/grimme-lab/xtb (accessed on Nov. 19, 2022).
(54) Neese, F. Software update: the ORCA program system, version
4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, No. e1327.
(55) Neese, F. The ORCA program system. Wiley Interdiscip. Rev.

Comput. Mol. Sci. 2012, 2, 73−78.
(56) Caldeweyher, E.; Ehlert, S.; Grimme, S.DFT-D4, Version 2.5.0;
Mulliken Center for Theoretical Chemistry, University of Bonn, 2020.
(57) Caldeweyher, E.; Bannwarth, C.; Grimme, S. Extension of the D3
dispersion coefficient model. J. Chem. Phys. 2017, 147, No. 034112.
(58) Batatia, I.; Kovács, D. P.; Simm, G. N. C.; Ortner, C.; Csányi, G.
In MACE: Higher Order Equivariant Message Passing Neural Networks
for Fast and Accurate Force Fields; Advances in Neural Information
Processing Systems, https://openreview.net/forum?id=YPpSngE-ZU,
2022.

(59) Batatia, I.; Batzner, S.; Kovács, D. P.; Musaelian, A.; Simm, G. N.
C.; Ortner, C.; Kozinsky, B.; Csányi, G. The Design Space of E(3)-
Equivariant Atom-Centered Interatomic Potentials. arXiv:2205.06643
2022, DOI: 10.48550/arXiv.2205.06643.
(60) mace on https://github.com/ACEsuit/mace.
(61) Zhang, L.; Han, J.; Wang, H.; Car, R.; E, W. Deep Potential
Molecular Dynamics: A Scalable Model with the Accuracy of Quantum
Mechanics. Phys. Rev. Lett. 2018, 120, 143001.
(62) Zhang, L. F.; Han, J. Q.; Wang, H.; Saidi, W. A.; Car, R.; E, W. N.
End-To-End Symmetry Preserving Inter-Atomic Potential Energy
Model for Finite and Extended Systems. Adv. Neural. Inf. Process. Syst.
2018, 31, 4436−4446.
(63) Wang, H.; Zhang, L.; Han, J.; E, W. DeePMD-kit: A deep
learning package for many-body potential energy representation and
molecular dynamics. Comput. Phys. Commun. 2018, 228, 178−184.
(64) Unke, O. T.; Meuwly, M. PhysNet: A Neural Network for
Predicting Energies, Forces, Dipole Moments, and Partial Charges. J.
Chem. Theory Comput. 2019, 15, 3678−3693.
(65) Hou, Y.-F.; Ge, F.; Dral, P. O. Explicit Learning of Derivatives
with the KREG and pKREG Models on the Example of Accurate
Representation of Molecular Potential Energy Surfaces. J. Chem. Theory
Comput. 2023, 19, 2369−2379.
(66) Chmiela, S.; Sauceda, H. E.; Müller, K. R.; Tkatchenko, A.
Towards exact molecular dynamics simulations with machine-learned
force fields. Nat. Commun. 2018, 9, 3887.
(67) Bartók, A. P.; Payne, M. C.; Kondor, R.; Csányi, G. Gaussian
Approximation Potentials: The Accuracy of Quantum Mechanics,
without the Electrons. Phys. Rev. Lett. 2010, 104, 136403.
(68) Bartók, A. P.; Kondor, R.; Csányi, G. On representing chemical
environments. Phys. Rev. B 2013, 87, 187115.
(69) Csanyi, G.; Winfield, S.; Kermode, J.; Payne, M. C.; Comisso, A.;
De Vita, A.; Bernstein, N.Expressive Programming for Computational
Physics in Fortran 95+,; Newsletter of the Computational Physics
Group, 1−24: 2007.
(70) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid
density functionals with damped atom-atom dispersion corrections.
Phys. Chem. Chem. Phys. 2008, 10, 6615−6620.
(71) Becke, A. D. Density-functional thermochemistry. III. The role of
exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.
(72) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab
Initio Calculation of Vibrational Absorption and Circular Dichroism
Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98,
11623−11627.
(73) Dral, P. O.; Wu, X.; Spörkel, L.; Koslowski, A.; Weber, W.;
Steiger, R.; Scholten, M.; Thiel, W. Semiempirical Quantum-Chemical
Orthogonalization-Corrected Methods: Theory, Implementation, and
Parameters. J. Chem. Theory Comput. 2016, 12, 1082−1096.
(74) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.
Development and use of quantum mechanical molecular models. 76.
AM1: a new general purpose quantum mechanical molecular model. J.
Am. Chem. Soc. 1985, 107, 3902−3909.
(75) Stewart, J. J. P. Optimization of parameters for semiempirical
methods V: Modification of NDDO approximations and application to
70 elements. J. Mol. Model. 2007, 13, 1173−1213.
(76) Hou, Y.-F.; Dral, P. O., Kernel method potentials. In Quantum

Chemistry in the Age of Machine Learning, Dral, P. O., Ed. Elsevier:
Amsterdam, Netherlands, 2023.
(77) Bergstra, J.; Yamins, D.; Cox, D. D. InMaking a Science ofModel
Search: Hyperparameter Optimization in Hundreds of Dimensions for
Vision Architectures, Proceedings of the 30th International Conference on
International Conference on Machine Learning, Atlanta, GA, USA;
JMLR.org: Atlanta, GA, USA, 2013; pp I−115−I−123.
(78) Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B., Algorithms for
Hyper-Parameter Optimization. In Advances in Neural Information
Processing Systems; Shawe-Taylor, J.; Zemel, R.; Bartlett, P.; Pereira, F.;
Weinberger, K. Q., Eds. Curran Associates, Inc.: 2011; Vol. 24.
(79) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.;
Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J.;

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c01203
J. Chem. Theory Comput. 2024, 20, 1193−1213

1211

https://doi.org/10.1002/wcms.1645
https://doi.org/10.1002/wcms.1645
https://doi.org/10.1021/acs.chemrev.0c01111?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c01111?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c00665?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c00665?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c00868?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c00868?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cpc.2014.01.018
https://doi.org/10.1016/j.cpc.2014.01.018
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1021/ct400195d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400195d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01265?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01265?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0136404
https://doi.org/10.1063/5.0136404
https://doi.org/10.1021/acs.jctc.8b01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://github.com/grimme-lab/xtb
https://github.com/grimme-lab/xtb
https://doi.org/10.1002/wcms.1327
https://doi.org/10.1002/wcms.1327
https://doi.org/10.1002/wcms.81
https://doi.org/10.1063/1.4993215
https://doi.org/10.1063/1.4993215
https://openreview.net/forum?id=YPpSngE-ZU
https://doi.org/10.48550/arXiv.2205.06643
https://doi.org/10.48550/arXiv.2205.06643
https://doi.org/10.48550/arXiv.2205.06643?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://github.com/ACEsuit/mace
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1016/j.cpc.2018.03.016
https://doi.org/10.1016/j.cpc.2018.03.016
https://doi.org/10.1016/j.cpc.2018.03.016
https://doi.org/10.1021/acs.jctc.9b00181?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00181?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c01038?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c01038?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c01038?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-018-06169-2
https://doi.org/10.1038/s41467-018-06169-2
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1039/b810189b
https://doi.org/10.1039/b810189b
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.464913
https://doi.org/10.1021/j100096a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100096a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100096a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b01046?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b01046?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b01046?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00299a024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00299a024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s00894-007-0233-4
https://doi.org/10.1007/s00894-007-0233-4
https://doi.org/10.1007/s00894-007-0233-4
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C.
J.; Polat, I.̇; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.;
Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.;
Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P.; SciPy
Contributors. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 2020, 17, 261−272.
(80) Hofmann, T.; Schölkopf, B.; Smola, A. J. Kernel methods in
machine learning. Ann. Statist. 2008, 36, 1171−1220.
(81) Pinheiro, Jr, M.; Dral, P. O., Kernel methods. In Quantum

Chemistry in the Age of Machine Learning; Dral, P. O., Ed. Elsevier:
Amsterdam, Netherlands, 2023.
(82) Rasmussen, C. E.; Williams, C. K. I. Gaussian Processes for

Machine Learning; The MIT Press: Boston, 2006.
(83) Gneiting, T.; Kleiber, W.; Schlather, M. Mateŕn Cross-
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