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Abstract

Purpose of review—Microglia, which arise from primitive myeloid precursors that enter 

the central nervous system (CNS) during early development, are the first responders to any 

perturbance of homeostasis. Although their activation has become synonymous with neurologic 

disease, it remains unclear whether microglial responses are the cause of or response to 

neuropathology. Here, we review new insights in the roles of microglia during CNS health 

and disease, including preclinical studies that transcriptionally profile microglia to define their 

functional states.

Recent findings—Converging evidence suggests that innate immune activation of microglia 

is associated with overlapping alterations in their gene expression profiles regardless of the 

trigger. Thus, recent studies examining neuroprotective microglial responses during infections 

and aging mirror those observed during chronic neurologic diseases, including neurodegeneration 

and stroke. Many of these insights derive from studies of microglial transcriptomes and function 

in preclinical models, some of which have been validated in human samples. During immune 

activation, microglia dismantle their homeostatic functions and transition into subsets capable of 

antigen presentation, phagocytosis of debris, and management of lipid homeostasis. These subsets 

can be identified during both normal and aberrant microglial responses, the latter of which may 

persist long-term. The loss of neuroprotective microglia, which maintain a variety of essential 

CNS functions, may therefore, in part, underlie the development of neurodegenerative diseases.

Summary—Microglia exhibit a high level of plasticity, transforming into numerous subsets as 

they respond to innate immune triggers. Chronic loss of microglial homeostatic functions may 

underlie the development of diseases with pathological forgetting.
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INTRODUCTION

Transcriptomic analyses of microglial subsets have led to a revolution in our understanding 

of the multifaceted functions of these innate cells of the central nervous system (CNS). 

Microglia are born to sculpt neural networks throughout life via synaptic remodeling 

[reviewed in [1]], and to phagocytose toxic debris [2], including other microglia. They 

act as immune sentinels, often being the first responders to information requiring immediate 

neuroprotective actions, including regulation of blood-brain barrier function [reviewed in 

[3]], the recruitment of pathogen-specific lymphocytes [4] and exhibit autophagy-mediated 

destruction of phagocytosed pathogens [5]. Microglia, which comprise approximately 0.5–

16% of cells in the human brain [6] or 5–12% in the mouse brain [7], depending on 

the anatomic region, may also act as antigen presenting cells (APCs) within infected 

brain parenchyma, and induce apoptosis of virally infected neurons [8]. Many of these 

processes have been highlighted in studies of neurodegenerative diseases, in which it is 

unclear whether they contribute to or alleviate neuropathology. This may be partially due 

to the relatively few studies examining neuroprotective and adaptive responses of microglia 

in the adult brain: understanding normal functions is required to define aberrancy. Most 

recently, especially with increasing appreciation of the neurological sequelae of severe acute 

respiratory syndrome coronavirus 2, more research has emerged into the diverse and crucial 

roles microglia play during infections with neurotropic and neurovirulent viruses, and during 

aging, both of which independently impact the state of the neuroimmune system. Here 

we highlight these developments, including studies that demonstrate similar transcriptomic 

changes that occur in microglia, but function to elicit and maintain neuroprotective processes 

throughout the lifespan.

MICROGLIA FUNCTIONS IN THE HEALTHY BRAIN

Microglia maintain the blood-brain barrier

During homeostasis in a healthy brain, anatomical barriers protect the CNS from pathogens, 

peripheral metabolites and pro-inflammatory molecules and restrict the CNS entry of cells 

derived from non-CNS tissues. The blood-brain barrier (BBB) is the most prominent among 

these barriers and is comprised of junctional proteins expressed by brain microvascular 

endothelial cells, with contributions from astrocyte end-feet, pericytes, and neurons. 

Microglia can differently affect BBB function and integrity depending on context, although 

few studies have addressed how resting microglia contribute to the maintenance of the BBB 

in health. The survival, proliferation, and differentiation of microglia in a healthy brain 

requires Colony Stimulation Factor 1 receptor (CSF1R) signaling, which can be inactivated 

both genetically [9] and pharmacologically [10–12]. On the venular side, ablation of 

microglia via pharmacological inhibition of CSF1R promotes BBB instability [13], while 

loss of microglia from arterioles interferes with their modulation of cerebral blood flow in 

response to changes in in neuronal activity [14∎∎]. This latter function involves microglial 

purinergic receptor P2Y12 (P2RY12)-mediated detection of adenosine triphosphate. If 

microglia are depleted, or P2RY12 receptor is genetically deleted, neurovascular coupling 

as measured by an observed change in microvascular blood flow by laser speckle contrast 
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imaging in response to whisker stimulation is markedly decreased in mice [14∎∎]. As 

P2RY12 receptors are down-regulated during microglial activation regardless of the trigger 

[15], loss of homeostatic functions of microglia as a consequence of their innate immune 

responses could underlie BBB instability, which occurs in most neurologic diseases.

Microglia continually sculpt neuronal networks in the adult brain

It is well established that microglia sculpt neural networks during critical developmental 

periods, by strengthening active synapses and pruning inactive ones. However, this process 

continues throughout life, and is important for inactivation of neuronal networks during 

normal forgetting [16]. Neuronal expression of classical complement proteins (C3 and 

C1q) tag synapses for elimination via activation of complement receptor CR3 expressed by 

microglia, leading to their phagocytosis [16]. New data demonstrate that nonclassical major 

histocompatibility complex -I molecules, such as Qa-1 (a murine homolog of human human 

leukocyte antigen -e), which is expressed by excitatory pyramidal neurons in an activity-

dependent manner, can mediate the interaction of neurons with microglia via microglial 

expression of the Qa-1 cognate heterodimeric receptor cluster of differentiation 94/natural 

killer cell lectin (CD94/NKG2). In a mouse model of ocular deprivation, microglia 

contralateral to the closed eye undergo morphological changes such as process ramification, 

which do not occur in mice with genetic deletion of Qa-1 [17∎∎]. A mouse carrying a 

point mutation in the Qa-1 that prevents it from interacting with CD94/NKG2 exhibited 

a similar phenotype, suggesting that the interaction of these two molecules is necessary 

for activity-dependent elimination of synapses by microglia. Microglial depletion was also 

shown to disrupt the astrocyte network in mice, leading to decreased synaptic transmission 

between CA3 and CA1 regions in the hippocampus by a yet unknown mechanism [18]. 

Further studies need to focus on exact mechanisms by which microglia recognize synapses 

as active, and therefore in need of maintenance, or inactive, leading to their elimination as a 

part of normal synaptic plasticity.

Neuroprotective roles of microglia during acute central nervous system infections

Microglia perform established and diverse neuro-protective roles in a variety of 

neuroinfectious diseases, including those caused viruses and parasites [reviewed in 

[19]]. Microglia recognize pathogen-associated molecular patterns using several pattern 

recognition receptors including Toll-like receptors, retinoic acid-inducible gene-like 

receptors (RIG-I), and nucleotide-binding oligomerization domain-like receptors, which all 

induce expression of antiviral cytokines by activated microglial that contribute to BBB 

instability and CNS infiltration of immune cells. Activated microglia exhibit changes 

in cellular morphology, phagocytic capacity, and gene expression, which depend on the 

activating stimulus. Next-generation sequencing has revealed that microglial activation 

occurs on a continuum, with microglia being able to shift from one state to another as 

they respond and control CNS infections [20–22].

Virologic control during encephalitis caused by Rift Valley Fever Virus, an 

emerging, neuroinvasive Phlebovirus, requires robust microglial activation downstream of 

mitochondrial antiviral signaling protein activation, which is triggered by RIG-I [23∎]. 

During encephalitis caused by West Nile virus (WNV), a re-emerging mosquito-borne 
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neurotropic flavivirus, ablation of microglia via pharmacological inhibition of CSF1R also 

leads to loss of virologic control and increased mortality [12]. Indeed, sub-cutaneous 

administration of granulocyte-macrophage colony-stimulating factor, a ligand for CSF2R, 

significantly improves survival in mice peripherally infected with WNV (65% compared 

to 20% in vehicle-treated controls), with associated microglia activation and expression of 

C-C Motif chemokine ligand 2 and interleukin 6 (IL-6) [24∎∎], which have established 

roles in trafficking of leukocytes to sites of infection. Similarly, microglial depletion using 

CSF1R inhibition significantly increases mortality from Herpes Simplex Virus-1 (HSV1) 

encephalitis in mice [25]. As microglial activation significantly reduces viral titers in the 

brain, they are likely to play a role in local, virus-specific T cell activation. Consistent 

with this, CSF1R antagonism is associated with reduced B7 co-stimulatory signals on 

APCs, limiting local reactivation of CNS-infiltrating virus-specific T cells and loss of 

virologic control [12]. Evaluation of microglia transcriptomes in the setting of severe 

HSV1-encephalitis in mice showed they develop a neutrophil-like transcriptional signature, 

upregulating genes such as resistin-like gamma (Retnlg), retroviral-like aspartic protease, 

IL-36g, and C-X-C chemokine receptor 2, while also expressing classical microglial markers 

P2RY12, transmembrane protein 119 (TMEM119), CSF1R, and Fc receptor-like S (Fcrls). 

These microglia arise in highly infected brain regions such as the thalamus and most likely 

represent a direct antiviral response of infected microglial cells [26∎].

Microglia also have established roles during antiparasitic responses to neuroinvasive 

toxoplasmosis, a condition caused by chronic infection with Toxoplasma gondii. Innate 

immune signaling via interferon γ (IFNγ)-STAT1 is vital for controlling this parasite 

within the murine CNS. Microglial-specific deletion of STAT1 leads to a profound increase 

in mortality and a 300-fold increase in parasite levels in the brain [27∎∎]. These STAT1-

deficient microglia displayed a loss of transcriptional signatures characteristic of microglial 

activation, failing to downregulate both homeostatic genes including C-X3-C Chemokine 

receptor 1 (CX3CR1), Fcrls and transforming growth factor beta 1 and upregulation of genes 

characteristic of a disease-associated microglia (DAM) signature, including integrin subunit 

alpha X, Axl, cyto-chrome B-245 beta chain and glycoprotein non-metastatic melanoma 

protein B. This shift in transcriptional profile shows that STAT1 plays a fundamental role 

in microglial ability to transition to a more activated state focused on pathogen killing 

and offers an explanation as to why STAT1-deficient mice were highly vulnerable to T. 

gondii challenge. Overall, microglial responses during CNS infections define an important 

pro-inflammatory role that limits dissemination of pathogens within the brain and promote 

healing of injured tissue.

AGE-RELATED CHANGES IN MICROGLIA

Microglia display substantial changes with aging, including changes in gene expression, 

ultrastructure, and the epigenome which affect their morphology, liposomal dysfunction 

(increased accumulation of lipofuscin and senescence-associated β-galoctosidase 

expression), and promote dysregulation of cell cycle protein machinery, including proteins 

p53, p21, and p14Ink4a [reviewed in [28]]. These cells have been described in the literature 

as dystrophic or senescent and accumulate over time during normal brain aging [29]. 

Profound changes in transcriptional profiles with aging also result in secretion of various 
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pro-inflammatory cytokines, a phenomenon referred to as senescence-associated secretory 

phenotype [28,30], characterized by increased secretion of IL-1, IL-6, and decreased 

secretion of various growth factors necessary for neuronal support. Aged microglia also 

display changes in expression of histone deacetylases (HDACs), which are important 

epigenetic regulators. HDAC levels, especially HDAC1, 3, and 7, are increased in purified 

murine aged microglia or by inducing aging-like phenotypes by via bleomycin treatment, or 

via repeated passage of microglia in culture [31∎].

Higher brain levels of another histone deacetylase, Sirtuin 1 were shown to correlate with 

longevity in rhesus macaques, indicating that different epigenetic modulators can have 

opposing effects during normal aging [32]. Aged microglia also exhibit decreased capacity 

for stimulation of T-cells, resulting in lower production of interferon, which contributes to 

increase viral burden in aged animals subjected to WNV infection compared to younger 

mice. In this model, aged microglia also show increased levels of activation markers such 

as MHC-II and CD68 in concordance with transcriptional studies of aged microglia [33]. 

Transcriptomic and proteomic analyses of microglia isolated from human brain autopsy 

samples uncovered an array of changes that characterize aged microglia. Specifically, 

aged microglia downregulated genes associated with TGFβ signaling, which regulates cell 

proliferation, differentiation, survival and scar formation, while demonstrating enrichment 

of genes responsible for endoplasmic reticulum-phagosomal pathway. Notably, these aged 

microglia also demonstrated enrichment of genes attributed to antigen processing and 

interferon signaling, indicating that age-related changes may resemble changes that occur 

during neuroinflammation of autoimmune or infectious etiology [33,34∎∎]. While there has 

been great progress in understanding the changes that microglia undergo during normal 

aging, many questions remain regarding potential interplay between neuroinflammation, 

aging and neurodegenerative disease.

MICROGLIA IN DISEASE

Neurodegenerative diseases

There are significant similarities in transcriptomes of microglia from healthy aging 

brain when compared to microglia occurring in cases of neurodegenerative disease 

such as Alzheimer’s and Parkinson’s, and in post-viral memory impairments 

[33,34∎∎,35,36∎,37∎,38]. Importantly, aging and neurodegenerative diseases also result in 

microglia that are distinct from homeostatic microglia from younger brains. These DAM, 

downregulate expression of homeostatic microglial genes such as CX3CR1, P2RY12, 

and TMEM119, while showing increased expression of genes involved in innate immune 

signaling, including upregulation of complement and interferon responses. Although these 

responses are likely adaptive, limiting transsynaptic spread of pathogens or Tau [39], they 

may become dysregulated in the setting of Alzheimer’s disease [40∎] and flavivirus-induced 

memory impairments [41–43].

Recovery from infections with WNV and ZIKV are associated with new syndromes 

of memory impairments, especially those in the domains of immediate and visuospatial/

constructional memory [44,45]. During recovery from WNV infection in mice, two distinct 

populations of activated microglia emerge, each with a distinct gene expression profile. 
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Similar to DAM in neurodegenerative diseases, both activated microglia populations exhibit 

reduced expression of homeostatic genes P2RY12, CX3CR1, TMEM119, Fcrls, sialic acid-

binding immunoglobulin-like lectin H, G-protein coupled receptor 34, and hexosaminidase 

subunit beta. One activated microglial cluster exhibited upregulation of genes important 

for MHC and antigen presentation, such as Cd74, H2-Ab1, and H2-Eb1, while another 

expressed a genetic signature more like microglia derived from aged humans or mice, or to 

those obtained from individuals with neurodegenerative disorders [36∎,46,47]. These data 

support the notion that viral infections may be a trigger for progressive neurodegenerative 

diseases.

Microglia in stroke

In murine models of stroke, microglia can be protective or disruptive for BBB function 

depending on their activation state. Pro-inflammatory microglia-derived cytokines such 

as tumor necrosis factor (TNF) and reactive oxygen specifies acting on astrocytes to 

induce expression of matrix metalloproteases (MMPs), with MMP inhibitors currently 

being assessed for their therapeutic potential in stroke recovery [48,49]. Microglia also 

secrete anti-inflammatory cytokines including IL-4, IL-10, arginase 1, and TGFβ, which 

can promote resolution of inflammation and stroke recovery [reviewed in [50]]. Persistent 

neuroinflammation that follows stroke can lead to microglial phagocytosis of astrocytic end 

feet, increasing BBB permeability [reviewed in [51]]. Pharmacological ablation of microglia 

via CSF1R inactivation during stroke increases BBB permeability, while minocycline 

restores BBB integrity down-regulation of microglia expression of proinflammatory and 

phagocytic molecules including CD68, CD86, TNF, IL-1β, and IFNγ expression [52,53]. A 

genetic model of increased microglial activity due to genetic ablation of Na+/H+ exchanger 

displays increased levels of oxidative phosphorylation, significantly reduced mortality, and 

improved cognitive ability during poststroke recovery. This was accompanied by increased 

phagocytic capacity of microglia and improved oligodendrogenesis [54∎∎]. Finally, 

temporary microglial depletion vis CSFR1 antagonism during intracerebral hemorrhage 

resulted in reduced leukocyte infiltration and neuronal death, with improved behavior 

scores and BBB function. After re-establishment of CNS myeloid cell populations, reduced 

expression of inflammatory cytokines IL-1β, TNF, and IL-6 were observed, although the 

exact nature and source of these cells remain under investigation [55].

New putative targets and therapeutics are continually revealed by profiling microglia in 

various preclinical neurologic disease models. However, studies that completely elucidate 

distinct pathways that are neuroprotective versus neurotoxic are needed to define how to 

manipulate microglial activation states depending on specific therapeutic needs.

NOVEL STRATEGIES TARGETING MICROGLIAL DYSFUNCTION

Approaches aimed at addressing microglial dysfunction in aging and neurologic disease are 

being tested in preclinical models. Microglia ablation in aged mice restores CNS levels of 

IL-6 and IL-10 to those observed in younger mice, and decreases expression of p16Ink4a, 

a ubiquitously expressed protein involved in cell cycle regulation and a marker of cellular 

senescence [56]. Another novel approach involves immunization against Mycobacterium 
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vaccae, a common bacterium in the environment. Aged microglia from rats immunized 

against M. vaccae displayed lower levels of activation markers such as MHC-II and CD68, 

most prominently in the amygdala and hippocampus [57].

More recently, based on accumulating evidence linking alterations in gut microbiota to 

neurologic disease, various approaches that target the gut-brain axis have been explored 

[58,59]. Nicotinamide N-oxide (NAMO) is generated in the gut by certain commensal 

bacteria and is capable of crossing the BBB, where it acts on microglia to limit microglial 

activation by inducing mitophagy, a form of programmed cell death that occurs in response 

to mitochondrial damage [60]. Disruption of the microbiota via administration of antibiotics 

ablates these effects. As many viral infections are associated with intestinal dysbiosis, 

leading to lowered numbers of NAMO-producing bacteria [60,61∎], further research should 

address whether post-viral CNS effects may be ameliorated via therapeutic targeting 

of intestinal dysregulation. Indeed, Metformin, a widely used antidiabetic drug, reduces 

cellular senescence, microglial activation and neuroinflammation following intracerebral 

hemorrhage [62], sepsis [63∎] and early stages of aging [64]. Mechanisms of this effect 

are unclear, but evidence from fecal transplants suggests that this effect is also, in part 

microbiota-dependent [62,63∎].

CONCLUDING COMMENTS

Microglia are essential for brain health, in part, by their ability to quickly differentiate into 

activated subsets that direct the functions of both immune and neural cell types. However, 

recent studies indicate the persistence of activated microglia during various neurologic 

diseases. Depending on their location and CNS region involved, these activated microglia 

contribute to BBB instability, chronic elimination of synapses, maintenance of resident 

memory T cells, and elevated baseline expression of cytokines that alter the functions of 

numerous neural and immune cell types. While these activated microglia are believed to 

underlie neuropathologic effects observed in many neurologic diseases, new studies of the 

functions of genes expressed by homeostatic microglia suggest that their downregulation 

during microglial activation may, in fact, be an important cause of altered CNS function. 

Thus, the efficacy of microglial ablation and replacement therapies for neurologic diseases 

may depend on simultaneous targeting of gut microbiota alterations that contribute to their 

activation.
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KEY POINTS

• Microglia are the resident innate immune cells of the brain and play a variety 

of roles in brain homeostasis and disease.

• Recent research indicates that microglia undergo profound transcriptomic 

changes during CNS infection, stroke, traumatic brain injury, and aging.

• Better understanding of molecular mechanisms of microglial functions should 

serve as a basis for the development of new therapeutics.
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