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Abstract

Rationale: Chronic obstructive pulmonary disease (COPD) is
associated with high morbidity, mortality, and healthcare costs.
Cigarette smoke is a causative factor; however, not all heavy
smokers develop COPD. Microbial colonization and infections
are contributing factors to disease progression in advanced stages.

Objectives: We investigated whether lower airway dysbiosis
occurs in mild-to-moderate COPD and analyzed possible
mechanistic contributions to COPD pathogenesis.

Methods: We recruited 57 patients with a .10 pack-year
smoking history: 26 had physiological evidence of COPD, and 31
had normal lung function (smoker control subjects).
Bronchoscopy sampled the upper airways, lower airways, and
environmental background. Samples were analyzed by 16S rRNA
gene sequencing, whole genome, RNA metatranscriptome, and
host RNA transcriptome. A preclinical mouse model was used to
evaluate the contributions of cigarette smoke and dysbiosis on
lower airway inflammatory injury.

Measurements and Main Results: Compared with smoker
control subjects, microbiome analyses showed that the lower
airways of subjects with COPD were enriched with common
oral commensals. The lower airway host transcriptomics
demonstrated differences in markers of inflammation and
tumorigenesis, such as upregulation of IL-17, IL-6, ERK/MAPK,
PI3K, MUC1, and MUC4 in mild-to-moderate COPD. Finally,
in a preclinical murine model exposed to cigarette smoke,
lower airway dysbiosis with common oral commensals
augments the inflammatory injury, revealing transcriptomic
signatures similar to those observed in human subjects
with COPD.

Conclusions: Lower airway dysbiosis in the setting of
smoke exposure contributes to inflammatory injury early
in COPD. Targeting the lower airway microbiome in
combination with smoking cessation may be of potential
therapeutic relevance.

Keywords: microbiome; transcriptomics; metatranscriptomics;
COPD; lung inflammation

Chronic obstructive pulmonary disease
(COPD) is a multifaceted and heterogeneous
disease characterized by lower airway
inflammation, airway narrowing,
parenchymal destruction with alveolar

damage, and irreversible airflow obstruction.
Patients with COPD are at a higher risk of
infections, malignancy, and other comorbid
conditions, such as cardiovascular disease
(1). Many inciting factors are linked to the

pathogenesis of COPD, including cigarette
smoking, air pollution, childhood respiratory
illnesses, and genetic predisposition (2).
However, many smokers do not develop the
airflow obstruction required for a COPD
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diagnosis, and other environmental factors
are likely at play in the pathogenesis of this
disease. In moderate COPD, subjects with
different types of inflammation (endotypes)
defined by sputum neutrophilia,
eosinophilia, or a pauci-immune profile have
a distinct microbial composition of sputum
microbiomes and serum inflammatory
biomarkers (3). In patients with late-stage
COPD, an increased abundance ofMoraxella
andHemophilus is associated with an
increased FEV1 decline and increased
concentrations of inflammatory markers in
sputum (4). However, patients with
moderate to advanced COPDmay have
architectural destruction and chronic
inflammation, leading to frequent

administration of antimicrobial and systemic
steroids during exacerbations, confounding
the assessment of the lung microbiome as a
possible driver in lung injury. Thus, studying
the microbial host interaction in the lower
airways of patients with mild disease
may help elucidate the role of the lung
microbiome in this disease process. Using
culture-independent techniques, we have
previously analyzed BAL samples from
“healthy” smokers and healthy control
subjects, demonstrating a direct correlation
between lower airway enrichment with
common oral commensals, such as
Prevotella,Veillonella, Streptococcus, and
Rothia, with biomarkers of lower airway
inflammation (5). Recent cross-sectional
investigations have identified similar
microbial signals associated with mild-stage
COPD (6, 7). As part of the SubPopulations
and InteRmediate OutcomeMeasures in
COPD Study (SPIROMICS) cohort, Opron
and colleagues sampled the lower airways of
181 subjects and studied their lung
microbiome (7). There, in comparing
smokers without COPD to smokers with
mild or moderate COPD, Streptococcus,
Prevotella, Staphylococcus, and Pseudomonas
were all associated with impaired lung
function. Importantly, Streptococcus,
Lactobacillales, and Veillonellawere all
differentially enriched in subjects with mild
or moderate COPD. In a follow-up study of
137 subjects with COPDGlobal Initiative for
Chronic Obstructive Lung Disease (GOLD)

stage 1–2, enrichment with Streptococcus,
Neisseria, andVeillonellawas also associated
with impaired lung function, COPD
diagnosis, and increased symptom burden (6).
Adding to these observations, dissecting the
interaction between themicrobiome and lung
immunity may require a preclinical model.
We previously showed inmice that lower
airway aspiration with amixture of oral
commensal bacteria led to lower airway
inflammation and altered susceptibility to
Streptococcus pneumoniae (8). In this study,
we tested whether lower airway dysbiosis
identified among patients with mild-to-
moderate COPD can cause lower airway
inflammatory injury contributing to the
pathogenesis of COPD. To do this, we
examined a human smoking cohort, including
patients withmild-to-moderate COPD and
smoker control (SC) subjects, and conducted
parallel investigations in a preclinical mouse
model of smoke-induced lung injury.

Methods

Cohort
Smoking volunteers (.10 pack-year
smoking history, based on self-report) were
recruited to evaluate their lung function and
undergo research bronchoscopy. Subjects
underwent an initial screening visit that
included blood sample collection, 12-lead
ECG, chest X-ray, and pulmonary function
testing. Subjects met the inclusion criteria
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for mild-to-moderate COPD if there was
evidence of airflow obstruction (FEV1/
FVC, 70) but with an FEV1. 50%
predicted. The SC cohort included subjects
with no evidence of obstruction on
spirometry (FEV1/FVC. 70% and/or
FEV1. 70%). The study protocol was
approved by the Institutional Review Board
of New York University (IRB#S14-01546),
and all patients gave written consent.

Lower Airway Bronchoscopic
Sampling Procedure
Background and supraglottic samples were
obtained before the procedure, as previously
described (5). Background samples were
obtained by passing sterile saline through the
suctioning channel of the bronchoscope
before the procedure. BAL samples were
obtained from the right middle lobe and
lingula. Samples were transported on ice to
the laboratory, where aliquots of whole BAL
and BAL cell pellets were generated
(for microbiome and host transcriptome,
respectively) and stored at280�C until
further processing.

DNA/RNA Isolation, Library
Preparation, and Sequencing
DNA and RNAwere isolated from
BAL samples, upper airway (UA), and
environmental background controls (BKG) in
parallel using zymoBIOMICSDNA/RNA
Miniprep Kit (Cat: R2002) as per the
manufacturer’s instructions. To ensure
sufficient taxonomic data were generated
from background samples, we included a
higher amount of template from these
samples compared with the amount from
upper and lower airway samples. This allowed
us to have sufficient depth of sequencing from
background samples and to explore for
potential background contaminants. DNA
obtained fromwhole BAL was targeted
sequenced (16S rRNA gene encoding the V4
region) (9) on aMiSeq platform (Illumina)
and untargeted sequenced (whole-genome
sequencing [WGS]) on a NovaSeq platform
(Illumina). RNA obtained fromwhole BAL
underwent RNA Sequencing for
metatranscriptome, and RNA obtained from
BAL cell pellets underwent RNA Sequencing
for host transcriptome, both on a NovaSeq
platform (Illumina). The obtained 16S rRNA
gene sequences were analyzed using the
Quantitative Insights intoMicrobial
Ecology 2 package (10). Metagenomic and
metatranscriptomic data were analyzed using
Trimmomatic v0.36 (11), Bowtie2 v2.3.4.1

(12), Kraken v2.0.7 (13), Bracken v2.5 (14),
and FMAP v0.15 (15), as previously described
(16). Host transcriptomic reads were analyzed
using Rsubread v2.10.5 (17). Figure E1 in the
online supplement shows a summary of the
depth achieved with the parallel 16S rRNA
gene sequencing, metagenome, and
metatranscriptome approaches across sample
types and the number of reads assigned to
different microbial subfractions (bacteria,
fungi, DNA viruses, RNA viruses, and
phages). Further analyses were performed to
identify possible contaminants in the datasets;
a description of this is in the online
supplement, and possible contaminants are
listed in Table E1. Taxa identified as possible
contaminants were tagged as such but not
removed from any subsequent analyses.

Mouse Dysbiosis and Cigarette
Smoke Exposure
Female 12-week-old C57/BL6J mice obtained
from Jackson Laboratories were used for the
experiments described below, including
tobacco smoke exposure and aspiration with
a representative mixture of oral commensals
(MOC). All animal studies were performed
with the approval from the Institutional
Animal Care and Use Committee of the
Columbia University School of Medicine and
New York University Grossman School of
Medicine. Further detailed description of the
mouse model methods can be found in the
online supplement and have been previously
published (18). Lungs from killed mice
were harvested for histological assessment,
including measurement of mean linear
intercept (MLI), cytokine measurement,
flow cytometry, fluorescence-activated
cell sorting (FACS), multispectral
immunohistochemistry (IHC), and host
transcriptome.

Data Availability
Sequencing data are available in National
Center for Biotechnology Information
(NCBI) Sequence Read Archive under project
number PRJNA870929 for human
microbiome data, PRJNA936182 for murine
microbiome data, and PRJNA870929 for host
transcriptomic data. Codes used for the
analyses presented in the current manuscript
are available at https://github.com/
segalmicrobiomelab/Mild_Moderate_COPD_
microbiome. See the online supplement
for more details on the methods used.

Results

We recruited 57 subjects with.10 pack-years
of smoking for a research bronchoscopy.
Among them, 26 met spirometry criteria for
mild-to-moderate COPD (8 [30%] GOLD I
and 18 [70%] GOLD II), and 31 did not (SC).
Comparing the two groups, although overall
age was similar, there were more subjects
between the ages of 61 and 70 in the COPD
cohort. Table 1 further lists demographics and
clinical characteristics of these two groups. All
subjects underwent research bronchoscopy.
Samples collected included BAL, UA, and
BKG.

Topographical Analysis of the
Microbiome
16S rRNA gene sequencing (16S) was
performed on all collected samples (sequence
depth shown in Figure E1). UA samples had
significantly lower a-diversity, as measured
by Shannon diversity index, compared with
BAL or BKG samples (Figure E2A; Kruskal-
Wallis test P, 0.01). Similarly, b-diversity
analysis based on Bray-Curtis dissimilarity
showed significant compositional differences
between BKG, UA, and BAL samples
(Figure E2B; permutational multivariate
ANOVA [PERMANOVA] P, 0.01).We
next evaluated differences between lower
airway samples (BAL) from different sites
(right middle lobe and lingula). Overall
microbial composition (b-diversity) of the
two lower airway samples from the same
subject at different locations was more similar
than two lower airway samples from different
subjects in the same location (Figure E2C;
Kruskal-Wallis test P, 0.01). These data
support that respiratory microbial
communities are less heterogeneous
topographically within the same subject
than between different subjects. We next
compared the relative abundance of taxa in
negative controls (BKG) to UA and/or BAL
samples to identify potential contaminants.
The top identified potential contaminants
(byWilcoxon rank-sum test) included
Flavobacterium succinicans, Candidatus
Aquiluna rubra, andMethylotenera mobilis
(Figure E2D). Importantly, given the
compositional nature of the data, potential
contaminants were not removed from further
analyses but kept labeled for identification.

Given the topographical similarity
noted within each subject in the 16S data, we
then selected one BAL sample for every
subject plus 10 UA samples for metagenome
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andmetatranscriptome sequencing with 7
and 10 BKG samples to evaluate the
metagenome and metatranscriptome by
WGS and RNA sequencing, respectively
(sequence depth shown in Figure E1).
Although the top taxa identified in the lower
airways differed among the three datasets,
similar to the 16S data, the lower airway
metagenome and metatranscriptome showed
significant differences in both a- and
b-diversity by sample type (Figures E3A and
E3B and E4A and E4B, respectively).
Furthermore, the top potential
environmental contaminants identified in
the metagenome dataset were different from
those identified in the 16S data and included

Burkholderia dolosa, Xanthomonas citri, and
Pseudoalteromonas sp. (Figure E3C and
Table E1). The top potential contaminants
identified in the metatranscriptome data
were also different and includedMalassezia
restricta, Cutibacterium acnes, and
Talaromyces rugulosus (Figure E4C and
Table E1). Similar to the 16S data, we did not
remove potential contaminants from
subsequent analyses.

Microbial Differences between
Subjects with COPD and SC Subjects
We tested for the identification of microbial
signatures in the lower airways of subjects
with physiological evidence of COPD.

Bacterial burdenmeasured by digital droplet
PCR (ddPCR) was similar in the lower
airways of subjects with COPD and SC
subjects (Figure E5A; Kruskal-Wallis test
P=0.27). Microbiota analyses of the 16S data
showed that within-sample diversity
(Shannon diversity index) was significantly
lower for COPDwhen compared with SC
(Figure E5B; Kruskal-Wallis test P=0.003).
Lower airway microbial composition
evaluated by b-diversity metrics (Bray-
Curtis) showed nonsignificant differences
between subjects with COPD and SC subjects
(PERMANOVA P=0.06). Differential
enrichment analysis comparing the lower
airway microbiota in subjects with COPD

Table 1. Basic Demographics of Patient Cohort

Subjects with COPD Smoker Control Subjects P Value

N 26 (45.6) 31 (54.4) —
Age, yr 57.5 (51.5–61) 54 (49.5–58) 0.089
Age category, yr
,51 6 (23.1) 9 (29) 0.257
51–60 12 (46.2) 18 (58.1)
61–70 8 (30.8) 4 (12.9)

Sex (male) 20 (76.9) 22 (71) 0.622
BMI 24.6 (21.9–29.8) 28.4 (25.6–32.1) 0.025
BMI category
,30 19 (73.1) 18 (58.1) 0.237
>30 7 (26.9) 13 (41.9)

Race
Asian 1 (3.8) 1 (3.2) 0.690
Black or African American 18 (69.2) 17 (54.8)
Caucasian 5 (19.2) 10 (32.3)
Hispanic 2 (7.7) 3 (9.7)

Smoking status
Former 3 (11.5) 2 (6.5) 0.499
Current 23 (88.5) 29 (93.5)

Pack-years (average) 21 (16–35) 22 (12–34) 0.798
Inhaled corticosteroid 5 (19.2) 2 (6.5) 0.143
Inhaled b-agonist 8 (30.8) 3 (9.7) 0.045
FEV1
Pre, L 2.345 (2.025–2.76) 2.99 (2.615–3.305) <0.001
Pre, % 70.5 (63.3–75.8) 89.5 (75.5–99) <0.001
Post, L 2.44 (2.19–2.75) 3.13 (2.66–3.45) <0.001
Post, % 72 (68–84) 93 (80–102.5) <0.001

FVC
Pre, L 3.61 (3.19–4.27) 3.72 (3.31–4.36) 0.724
Pre, % 93 (85.3–94.8) 93.5 (82.3–107.3) 0.576
Post, L 3.63 (3.26–4.35) 3.78 (3.26–4.35) 0.656
Post, % 92 (85–101) 95 (85–103.5) 0.609

FEV1:FVC
Pre, % 65 (56–68) 79 (72.5–82) <0.001
Post, % 67 (61–69) 81 (74.5–83.5) <0.001

R5
Pre 5.365 (4.37–6.66) 4.77 (3.92–5.66) 0.180
Post 4.61 (3.43–5.92) 3.73 (3.48–4.54) 0.106

SGRQ
Median 9.33 (3.28–25.93) 16.56 (5.5–33.37) 0.392
High (.25) 7 (28) 12 (42.9) 0.260

Definition of abbreviations: BMI=body mass index; COPD=chronic obstructive pulmonary disease; R5= resistance 5; SGRQ=St. George’s
Respiratory Questionnaire.
Values are presented as median (interquartile range) or n (proportion). Bold value indicates a P value , 0.05.
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Figure 1. Lower airway dysbiotic signatures in mild-to-moderate chronic obstructive pulmonary disease as compared with smoker control
subjects. Differential enrichment analysis based on edgeR (with multiple comparison adjustment based on false discovery rate [FDR]) on
(A) 16S rRNA gene sequencing, displaying genera amplicon sequence variant; (B) whole-genome sequencing; and (C) RNA metatranscriptome
sequencing. Only the top differentially enriched (based on fold change) and significant data with multiple comparisons based on FDR are
displayed. Bubble size is based on relative abundance for each dataset separately. WGS=whole-genome sequencing.
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versus SC subjects identified several taxa as
enriched in COPD, including many common
oral commensals, such as those belonging to
the genera Prevotella,Veillonella, and
Streptococcus (Figure 1A). Taxa significantly
enriched in SC included some from the
genus Corynebacterium and Pseudomonas
(Table E2).

Within the metagenome dataset, there
were no significant differences in a- or
b-diversity of lower airway samples between
the COPD and SC groups (Figures E6A and
E6B). Compared with SC, the lower airways
of COPDwere enriched with taxa belonging
to the genera Enterococcus and Streptococcus
as well as with several Streptococcus phages
(Figure 1B and Table E2). Similar to the
metagenome data, in the metatranscriptome
dataset there were no significant differences
in a- or b-diversity in lower airway samples
between the COPD and SC groups (Figures
E6C and E6D), but taxa annotated to the
genera Streptococcus and a Streptococcus
phage were among those taxa enriched in
the lower airways of subjects with COPD
(Figure 1C and Table E2). Thus, with the
data presented in Figure 1, we identified that
although some taxonomic differences were
noted across datasets, a common pattern was
the enrichment with common oral
commensals in the lower airways in COPD.
We then evaluated the cooccurrence of these
taxa identified as oral commensals belonging
to the genera Streptococcus, Prevotella, and
Veillonella. Correlation analysis of these
taxa showed that in all three datasets (16S
rRNA gene sequencing, metagenome, and
metatranscriptome) their relative abundance
in the lower airways have, for the most part,
a positive correlation, indicating that they
tend to cooccur (Figures E7–E9 and
Table E3). Thus, despite differences in which
taxa were identified as differentially enriched
across the three datasets, we conclude that
enrichment with a mixture of oral
commensals (MOC) frequently cooccurs in
the lower airways of COPD.

Host Transcriptomic Differences
between Subjects with COPD and
SC Subjects
We next evaluated for differences in host
transcriptomic signatures in lower airway
samples. Principal component analysis of the
lower airway host transcriptome showed
significant compositional differences between
subjects with COPD and SC subjects (Figure
2A; PERMANOVA P=0.02). Differential

analysis revealed several genes as significantly
enriched in COPD versus SC (Figure 2B;
edgeR false discovery rate, 0.2). Top genes,
based on P value and fold change, identified
as enriched in COPD include KRT6A
(keratin), FFAR3 (short-chain fatty acid
receptor), and ARNT2 (Aryl Hydrocarbon
Receptor Nuclear Translocator 2). A list of all
differentially enriched genes is in Table E4.
The lower airway transcriptomic signatures
from this cohort were similar to prior reports
(19) comparing subjects with COPDwith SC
subjects (Figure E10; Gene Set Enrichment
Analysis P, 0.001). Ingenuity pathway
analysis (IPA) of consistent transcriptomic
signatures associated with COPD
identified activation of STAT3, IL-1B,
VEGFA, IFN-g, and IL-6 as potential
upstream transcriptional regulators in
COPD, which are associated with tumor cell
adhesions and epithelial tissue branching
(20, 21) (Figures 2C and E11). Importantly,
many of these transcriptional pathways are
key to mucosal immune responses to
microbes. Thus, these data, presented in
Figure 2, demonstrate significant differences
in the host transcriptional profile of mild-to-
moderate COPD, concurrent with the
changes in the lower airway microbial
environment.

Effect of Dysbiosis on Cigarette
Smoke–related Lung Injury in a
Preclinical Model
To better understand the interactions
between lower airway dysbiosis due to
common oral commensals and smoke-
related lung inflammatory injury, we next
used an established smoke mouse model
(18), in which we induced dysbiosis as
previously described (8), with a set of oral
taxa identified as differentially enriched and
cooccurring in the lower airways of the
human cohort (22). C57/B6J mice were
exposed to phosphate-buffered saline (PBS)
(control), whole-body cigarette smoke
(smoke group), intratracheal weekly
aspiration with a representative MOC
(including Streptococcus mitis,Veillonella
parvula, and Prevotella melaninogenica), and
MOC1 smoke for 12weeks (Figure 3A).
In a subset of mice recently exposed toMOC
or PBS, we documented the presence of the
aspirated microbes in the lower airways
using RNAscope with strain-specific probes
(Figure E12). Evaluation of the microbial
burden by ddPCR andmicrobial
composition by 16S rRNA gene sequencing
of lower airway samples obtained 5days after

the last experimental exposure showed no
significant differences between the PBS,
smoke, MOC, andMOC1 smoke groups
(Figures E13A and E13B). Indeed, the
relative abundance of the taxa introduced
withMOC exposure were only identified in
a very small subset of lower airway samples
fromMOC-related groups (Figure E13C).
These data support the transient nature of
the exposure to this MOC that are likely
being cleared from the lower airways
within a few days, consistent with our prior
publications (8). We then assessed the MLI
in all groups as a surrogate for parenchymal
lung destruction as described in preclinical
models of emphysema (23–25). Figures 3B
and 3C show that although there is some
degree of overlap between theMLIs
calculated for each histological field, smoke
alone led to statistically higher MLIs than
PBS, whereas MOC alone did not increase
theMLIs. Similarly, the combination of
MOC1 smoke exposure led to statistically
higher MLIs when compared with PBS.

Next, we measured inflammatory
cytokines, chemokines, and growth factors
in lung homogenates with a multiplexed
fluorescent bead assay. Clustering analyses
showed that cytokine concentrations in
MOC- andMOC1 smoke–exposed samples
clustered together and separately from PBS
and smoke alone (Figure 3D). The MOC-
exposed groups (MOC andMOC1 smoke)
had higher concentrations of inflammatory
markers, whereas VEGF, IFNg, and IL-2
were significantly higher in the smoke-alone
group than the MOC challenge. To evaluate
overall changes and evaluation of cytokine
differences, see Table E5. WhenMOC alone
was compared with PBS control–exposed
mice, IL-17, LIF, IL-7, KC, andMIG were
increased among theMOC-exposed
mice compared with PBS control mice
(Figure 3D). The inflammatory profile
between smoke-alone compared with
MOC1 smoke demonstrated that the only
cytokine we measured elevated in smoke
exposure was VEGF (Figure 3D); all other
cytokines found to be different between
MOC1 smoke versus smoke alone were
elevated in theMOC1 smoke group.
TheMOC challenge drove many of the
inflammatory patterns seen in our murine
model. Important differences between the
groups demonstrate that MOC1 smoke
exposure increased IFN-g versus MOC
alone and also increased IL-17 versus PBS or
smoke alone. Some of the inflammatory
cytokines within the murine experiments
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experienced high heterogeneity (Figure 3D).
Thus, it would be helpful for a greater
sample size to ensure trends and results are
consistent. FACS analyses showed that
MOC exposure increased the CD4/CD8 ratio
and activation of CD4 and CD8 T cells

(Figures 4A and E14). MOC exposure greatly
increased lower airway IL-17–producing
T cells, consistent with prior observations
(8). The expression of exhaustion markers
(PD-1) among CD4 and CD8 T cells was
increased in the MOC group regardless of

smoke exposure (Figure 4A). We next used
IHC andmultispectral labeling to detect
and quantify key immune cell types in the
airways and lung (Figures 4B and E15).
In airway sections, a lower frequency of
CD31 and CD41 T cells were found in the

Figure 2. Changes in lower airway host transcriptome in chronic obstructive pulmonary disease (COPD). (A) PC analysis comparing subjects
with COPD and smoker control (SC) subjects with permutational multivariate ANOVA P value. (B) Volcano plot showing differentially enriched
genes based on fold change versus log10 adjusted P value (false discovery rate [FDR]) using edgeR comparing COPD and SC subjects.
Genes with a log fold change .0 are enriched in COPD and ,0 are enriched in SC. With an FDR cutoff of 0.2, only genes with an FDR, 0.2
are colored (green or red). (C) Ingenuity pathway analysis identifying cascade of upstream transcriptional regulators and associated disease or
function relating to overlapping gene sets found using Gene Set Enrichment Analysis of our cohort and the publicly available GSE37147
dataset. PC=principal component.
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Figure 3. Effects of lower airway dysbiosis in a preclinical model of smoke-induced lower airway injury. (A) Murine model and exposures.
(B) MLI calculated in (C) 20 different lung sections per mouse (P value, Mann-Whitney *P,0.05, **P,0.01, ***P, 0.001, and ****P, 0.0001).
(D) Heat map of log-transformed cytokines or chemokines (pg/ml) normalized by grams of lung weight (n=5 per group). Mann-Whitney
comparisons demonstrate statistically significant comparisons (1phosphate-buffered saline [PBS] vs. smoke, P, 0.05; $smoke vs. mixture of
oral commensals [MOC], P, 0.05; #MOC vs. MOC1 smoke, P, 0.05; *PBS vs. MOC, P, 0.05; %smoke vs. MOC1 smoke, P, 0.05; and
@PBS vs. MOC1 smoke, P, 0.05; n=5 mice per group). MLI=mean linear intercept.
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smoke-exposed mice than in the PBS group.
The lungs of MOC1 smoke–exposed mice
had increased CD31 and CD41 frequency
compared with smoke alone, supporting that
the combined exposure augments lower
airway inflammation. Airway macrophages
and neutrophils were also increased in
MOC1 smoke versus PBS or smoke
alone (Figure 4B). Parenchymal changes
showed that CD3, CD4, and CD8
frequency increased with MOC exposure

(Figure 4B). However, in contrast to the
airway, MOC1 smoke tended to have a
lower number of CD41 and CD81 cells
thanMOC alone (representative images
shown in Figure 4C). Therefore, with the
data presented in Figures 3 and 4, in a
preclinical model, we identified both an
inflammatory and histological change
associated with smoke exposure as well as
with induced lower airways dysbiosis, as
seen in COPD.

We then compared transcriptomic
differences in the murine lungs. Principal
component analysis of host transcriptomic
data showed significant differences between
the four exposures (Figure 5A). Differential
analysis of each paired group was used to
uncover transcriptional differences; the
highest number of differentially enriched
genes was seen with anyMOC-containing
group, whereas the lowest number of
significant genes was seen when smoke alone
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Figure 4. Effects of lower airway dysbiosis in a preclinical model of smoke-induced lower airway inflammation. (A) Flow cytometry of single-cell
suspensions of lung homogenates with differences between PBS, smoke, mixture of oral commensals (MOC), and MOC1 smoke groups. (B)
Differences in cell composition in the airways and parenchyma identified using immunohistochemistry (IHC) performed on the lung sections of
five mice per group and obtained from 20 different sections per mouse (P value Mann-Whitney, *P,0.05, **P, 0.01, ***P, 0.001, and
****P,0.0001). (C) Representative IHC images (DAPI=nuclei; orange=Mac; green=CD31; yellow=CD41; red=CD81; and pink=Neu]).
Mac=macrophage; Neut =neutrophils; PBS=phosphate-buffered saline.
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Figure 5. Effects of lower airway dysbiosis on the lung transcriptome. (A) PC analysis based on Bray-Curtis dissimilarity index on host lung
transcriptome comparing all four exposures, permutational multivariate ANOVA P, 0.01. (B) Volcano plots showing differentially enriched genes
[DEGs] identified by fold change versus log10 adjusted (false discovery rate) P value based on edgeR analyses between different exposures.
(C) Gene Set Enrichment Analysis using DEGs identified significant and concordant pathways for experimental conditions in the preclinical
mouse model with those identified in the human cohort (subjects with chronic obstructive pulmonary disease [COPD] vs. smoker control [SC]
subjects). First comparing the mouse smoke versus phosphate-buffered saline (PBS) analysis to the human COPD versus SC analysis, then the
mouse mixture of oral commensals (MOC) versus PBS analysis to the human COPD versus SC analysis, followed by the mouse MOC1 smoke
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was compared with PBS (Figure 5B and
Table E6). The degree of overlap between
transcriptomic changes seen in human and
mouse under different experimental
conditions was assessed using Gene Set
Enrichment Analysis. Figure 5C shows that
there is a greater overlap between the human
signatures (COPD vs. SC) and the mouse
lower airway dysbiotic signatures (MOC
alone orMOC1 smoke), whereas the lowest
overlap was with the smoke-alone signature.
We then used IPA to summarize lower
airway host transcriptomic signatures
between different experimental conditions in
mice with host transcriptomic differences
found in COPD versus SC (Figure 5D and
Table E7). Transcriptomic data in mice
demonstrated that dysbiosis (MOC alone
orMOC1 smoke) leads to significant
upregulation of various inflammatory
mediators, tryptophanmetabolism,
ferroptosis, matrix metalloproteinases,
and notch signaling, although there is
downregulation of oxidative phosphorylation,
PPARs (peroxisome proliferator–activated
receptors), and fatty acid b-oxidation
pathways (Figure 5D). Parallel analyses of
lower airway transcriptome data from
subjects with COPD compared with SC
showed consistent signatures compared with
those found amongmice exposed toMOC,
even within the subgroup subjected to
bothMOC1 smoke. All together, these
data shown in Figure 5 support that in a
preclinical model, lower airway dysbiosis in
combination with cigarette smoke exposure
contributes to airway injury with molecular
signatures similar to those seen in mild-to-
moderate COPD.

Discussion

Here, we used complementary techniques to
evaluate the lower airway microbiome in
subjects with mild-to-moderate COPD
compared with SC subjects without
physiological evidence of COPD. In this
investigation, we used multiple sequencing
datasets that provide different orthogonal
views of the microbiome: 1) 16S rRNA gene
sequencing with bacterial taxonomic
characterization; 2) WGS that provides better

species resolution plus data on fungi, viruses,
and phages; and 3) RNAmetatranscriptome
that expands with profiling functionally
active taxa. Although several differences can
be noted among these different datasets, a
common finding of taxonomic differences
associated with COPDwas the enrichment of
the lower airway microbiome with some
common oral commensals. Although we
found taxa from the genera Streptococcus
consistently associated with COPD, we noted
that this taxon commonly cooccurs with
other oral commensals, such as taxa from
the genus Prevotella andVeillonella. This
difference in the lower airway microbiome
was associated with differences in the host
immune response in patients with COPD
with increased expression of IL-17 and IL-6.
To assess for potential causal relationships
underlying these associations, we used a
cigarette smoke–exposed mouse model to
show that lower airway dysbiosis produced
by aspiration of a representative mixture of
common oral commensals, more than smoke
exposure alone, leads to an increase in
inflammatory signatures, as shown in our
cohort data of subjects with COPD and
previously published data (26). Thus, these
data support the hypothesis that lower
airway dysbiosis contributes to the
inflammatory injury seen in mild-to-
moderate COPD.

Cigarette smoke exposure and ambient
air pollution exposure, such as particulate
matter<2.5 μm in aerodynamic diameter,
are well-accepted causes of lung injury
resulting in the development and progression
of COPD (27, 28). However, not all patients
with significant smoking history (29) or
significant exposure to air pollution develop
physiological evidence of COPD. Other
inciting factor(s), in combination with smoke
and/or air pollution, likely contribute to lung
injury and airway remodeling that lead to
COPD. Here, we explored the role of the
lower airway microbial microenvironment in
lung inflammation and remodeling in the
setting of exposure to tobacco smoke.

Most research investigating the lung
microbiome and COPD has focused on
advanced-stage COPD. Indeed, a recent
investigation involving a large number of
subjects from three different cohorts (two in

the United Kingdom and one from China)
with a large percentage of patients with
advanced-stage COPD identified several taxa
differentially enriched in sputum samples of
patients with progressive disease (based
on lung function decline and exacerbations)
(30). Among those taxa identified, the
authors conducted experiments in an
LPS/elastase preclinical model of COPD,
in which induction of dysbiosis with
Staphylococcus aureus contributed to an
increase in homocysteine in the lower
airways and inflammatory injury leading to
a COPD-like phenotype. Although these
microbial signatures were identified in
sputum rather than in BAL or lung tissue
samples, the experiments shown in that
publication provide a proof-of-concept for
the potential contribution of microbes to the
lower airway damage in COPD. The above-
mentioned investigation takes a reductionist
approach, singling out one taxon and one
molecule to study its contribution to the
inflammatory injury. However, multiple taxa
andmolecules are part of the dysbiotic
signatures commonly identified in different
studies as associated with COPD (7, 31, 32).
Furthermore, a disadvantage of research on
patients with moderate-to-severe COPD is
that the lungs of these patients have suffered
extensive physiological changes (structural
and immunological). These changes in the
lower airway microenvironment could lead
to changes in the microbiome, thus limiting
interpretation of cross-sectional studies.
Furthermore, in advanced COPD there
may be other confounders, such as antibiotic
and systemic corticosteroid use, which
further limit the interpretation of these
studies (3, 32, 33). Another knowledge gap
is that few publications reported results of
assays that define bacterial gene expression in
COPD. One group used metagenomic and
metatranscriptomic sequencing to evaluate
acute exacerbations of COPD (34); however,
exacerbations are a late-stage phenomenon
that may be distinct from the original
pathogenic mechanism that produced
COPD. Thus, there is increasing interest in
exploring the microbial signatures of mild
COPD. Similar to prior observations from
the SPIROMICS investigators (7), we used
bronchoscopy samples to evaluate the lower

Figure 5. (Continued ). versus PBS analysis to the human COPD versus SC analysis, and finally the mouse MOC1 smoke versus smoke analysis
to the human COPD versus SC analysis. (D) Ingenuity pathway analysis comparing regulation of canonical pathways between different
conditions in the preclinical mouse model and those identified in the human COPD versus SC cohort. The values for the heatmap represent a
z-score. PC=principal component.
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airway microbiome in patients with a
significant smoking history (.10 pack-
years). 16S rRNA target gene sequencing
demonstrated enrichment of common oral
commensals in subjects with mild-to-
moderate COPDwhen compared with SC
subjects, such as taxa from the genera
Prevotella,Veillonella, and Streptococcus, as
previously described (22, 26). However, 16S
rRNA target gene sequencing data can only
define taxonomic community structure with
poor strain resolution. The metagenome and
metatranscriptome data generated here also
identified significant differences in microbial
composition, particularly involving similar
oral commensals such as Streptococcus and
Prevotella between subjects with mild-to-
moderate COPD versus SC subjects. Here,
inconsistencies in taxonomic signatures
identified between different approaches
might be explained on the basis of technical
differences (e.g., sample processing,
amplification approaches, sequencing
techniques) or biological differences (e.g.,
DNA vs. RNA focused). For example, we
have shown, using paired DNA and RNA
genomic methods, that identification of
signals from aspirated microbes to the lower
airways of mice vary for different aspirated
oral commensal, but, overall, microbial DNA
persists longer thanmicrobial RNA in the
lower airways (22). Thus, it is not surprising
that in cross-sectional samples, some degree
of discrepancy related to the presence and
absence of specific taxa among DNA and
RNAmethods is observed. However,
the similarity in the identification of
oral commensals, which can come from
aspiration and/or decreased clearance, as
enriched in the lower airways of patients
with COPD across different orthogonal
sequencing approaches, increases the
confidence of its relevance as a microbial
signature present in milder stages of this
disease. Furthermore, a consistent signature
with Streptococcus species and associated
phages seen in the metatranscriptome further
supports at least some transient viability of
these common oral commensals in the lower
airways in mild-to-moderate COPD.

Changes in the lower airway
microbiome have been associated with host
immunity. A recent analysis used sputum
from subjects with COPD (mostly from
advanced stages) and healthy control subjects
in a multiomic analysis of the metagenome,
metabolome, and host transcriptome (35).
This identified significant associations
between the host transcriptome and some

microorganisms in COPD, particularly
Prevotella and Streptococcus. In our analyses,
we also explored the host transcriptome
and identified several genes differentially
enriched between the two groups, with
changes consistent with transcriptomic
differences found in other patient cohorts
(36–44) as well as in COPD cohorts (30,
45–47). Furthermore, IPA identified several
pathways that were upregulated in COPD,
such asMUC1 andMUC4, pathways
important to the production of mucin, as well
as inflammatory pathways associated with
Th-17. Interestingly, we have previously shown
that lower airway enrichment with common
oral commensals leads to increased lower
airway inflammatory tone, characterized by a
Th-17–like inflammatory phenotype (5).

To establish the possible causal nature
of these associations, we explored the effects
of lower airway dysbiosis in a preclinical
mouse model. In an established tobacco
smoke exposure model, we superimposed
lower airway dysbiosis by intratracheal
aspiration with a representative mixture
of common cooccurring human oral
commensals identified as dysbiotic signatures
in multiple independent cohorts (including
ours): taxa from the genus Streptococcus,
Prevotella, and Veillonella (5, 48–52).
Aspiration of this combination of human
oral commensals affects the lower airway
inflammatory tone (8), including in
preclinical models of lung cancer (53)
and acute bacterial pneumonia (8). The
combination of lower airway exposure to
common oral commensals and cigarette
smoke produced greater transcriptomic
changes than those produced by smoking
alone. However, histological worsening
of MLI was not evident when theMOC1
smoke group was compared with smoke
alone. Whether these results support a causal
role for dysbiosis in lung injury that may
contribute to airflow obstruction may need
to be further tested in more chronic
smoke exposures. Molecular profiling
of immune signals using FACS, IHC,
and transcriptomics determined that
experimental lower airway dysbiosis causes
increased inflammatory injury, driven by
neutrophilic and lymphocytic inflammation,
with IL-17 playing a central role. This is not
a total surprise, as LPS has been used before
in combination with elastase to induce
emphysema and inflammation in mice (54).
Although traditionally LPS from well-
recognized pathogens is used for those
experiments, here we identify the

“pathobiont” potential of oral commensals
in the lower airways contributing to the
development of COPD. Interestingly, a
single episode of exposure to oral
commensals reduces susceptibility to a
respiratory pathogen (S. pneumoniae) in a
preclinical mouse model. This may be
counterintuitive, because patients with
COPD have increased susceptibility to
respiratory pathogens. It is possible that the
effects of aspiration of oral commensals (or
the repetitive and increased frequency of
microaspiration events) are different in the
setting of smoke-induced lung injury and
may warrant further investigation.
Conversely, the key molecular features
present in the setting of exposure to these
oral commensals might be multifaceted and
require further investigation to decipher
effects over time and to different exposures.

There are some limitations to this study.
We focused exclusively onmild-to-moderate
COPD, defined by spirometry. However,
some studies show the importance of
respiratory symptoms irrespective of
significant airflow obstruction (29). Although
we were able to identify several significant
differences between our two cohorts, our
sample size was small, and a larger study
would be helpful in validating these findings.
Furthermore, the results presented here
comemostly from active smokers, and
our small sample size prevents us from
conducting further subgroup analyses within
former and current smokers. Also, the cross-
sectional design compares current smokers
with and without airway obstruction, and,
therefore, future longitudinal studies would
be needed to further elucidate the pathogenic
importance of these microbial signatures
and their association with symptom
burden, progressive disease, and frequent
exacerbations. Importantly, smoking
quantification and alcohol use were based
on self-report, which, paired with the
relatively small cohort size, prevents us from
performing further subgroup analyses.
Here, we conducted the preclinical mouse
experiments with a defined set of microbes to
induce lower airway dysbiosis; however, we
recognize that there are multiple different
forms of dysbiosis, including many different
oral commensals. In addition, one possible
confounder was that murine exposure to
tobacco smoke occurred within a cage.
However, we attempted to control for the
cage effect by cohousingMOC exposure
and PBS control mice within the same cage.
Furthermore, the dynamic change in the
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lung microbiome seen in our preclinical
data, exemplified by the early detection of
microbial DNA using RNAscope, but loss of
most of this microbial DNA signal 5 days
after exposure, exposes a challenge ensuring
that a mouse model fully replicates
conditions that occur in the lower airways
of humans, which we can only study under
cross-sectional design. The investigation
presented here was done as a proof-of-
concept to test the potential role of lower
airway dysbiosis in the pathogenesis of
COPD-related lung inflammation, and it is
possible that other forms of dysbiosis could
contribute to this process as well. Finally,
experimental interventions in clinical trials
are required to evaluate targeted
interventions that may target specific

molecular derangements triggered by lower
airway dysbiosis in COPD.

In summary, data from this cohort
support the conclusion that patients with
mild-to-moderate COPD have a distinct
lower airway microenvironment and that the
combination of cigarette smoke exposure
with lower airway dysbiosis might result in
continued inflammatory injury and
eventually lead to altered lung structure and
physiological impairments. Importantly,
these findings highlight potential novel
targets in conjunction with smoking
cessation that could aid in preventing COPD
or progression of disease.�
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