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Metatranscriptomes of two biological soil crust types from the 
Mojave desert in response to wetting
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ABSTRACT We present eight metatranscriptomic datasets of light algal and cyanolichen 
biological soil crusts from the Mojave Desert in response to wetting. These data will help 
us understand gene expression patterns in desert biocrust microbial communities after 
they have been reactivated by the addition of water.
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B iological soil crusts comprise diverse microbial communities that carry out vital 
ecological functions in dryland ecosystems (1). Under dry conditions, biocrust 

microbes primarily persist in dormancy (2–4). When water becomes available, they 
quickly respond by exploiting moisture to repair cell damage and synthesize new 
biomass (5, 6). Nevertheless, the specific gene expression and metabolic processes 
underlying these responses remain poorly understood.

We sought to compare two kinds of biocrust commonly found in the Sheephole 
Valley Wilderness (Mojave Desert): light algal crust (LAC) and cyanolichen crust (CLC). 
In all, 10 biocrust samples, each measuring 5 cm2, were collected at GPS location 
34.1736 N, 115.3888 W. Each sample was placed in a 10 cm petri dish with 2 mL of 
sterile ultrapure water added on top, covered with a petri dish cover, and incubated 
at ambient laboratory conditions. After 0.5, 6, 18, 30, and 50 h time points, an entire 
biocrust sample was transferred and stored at −80°C for subsequent total RNA extraction 
using a NucleoBond RNA Soil Midi kit (740140.20, Macherey-Nagel, Nordrhein-Westfalen, 
Germany). We pursued rRNA depletion of 100 ng of total RNA using a QIAseq FastSelect 
5S/16S/23S kit for bacteria and FastSelect rRNA yeast and plant depletion for eukaryotes 
(335921, 334219, and 334319, QIAGEN, Germantown, MD) following the manufacturer’s 
instructions. The resulting RNA was reverse transcribed to create first-strand cDNA using 
a TruSeq Stranded mRNA Library prep kit (20020594, Illumina Inc., San Diego, CA). To 
synthesize second-strand cDNA, deoxyuridine triphosphate was incorporated in place 
of deoxythymidine triphosphate to quench the second strand during amplification and 
achieve strand specificity. Double-stranded cDNA fragments were A-tailed and ligated 
to JGI dual-indexed Y-adapters, followed by 10 cycles of PCR. The prepared libraries 
were quantified using KAPA Biosystems’ next-generation sequencing library qPCR kit 
and run on a LightCycler 480 real-time PCR instrument (Roche Diagnostics Corporation, 
Indianapolis, IN). NovaSeq sequencing (Illumina Inc., San Diego, CA) was performed 
using NovaSeq XP V1 reagent kits and an S4 flowcell following a 2 × 151 bp indexed 
run recipe. BBDuk version 38.87 (https://jgi.doe.gov/data-and-tools/bbtools/) was used 
to remove contaminants, trim adapters from Illumina raw sequencing reads, remove 
any reads that contained “N” bases, and were shorter than 51 bp. Filtered reads were 
assembled with MEGAHIT version v1.2.9 (7) and mapped back to the final transcriptome 
assembly and coverage determined using BBMap version 38.86 (8).
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Nearly 95% of reads aligned to ribosomal reference sequences in the SILVA database 
(9) using BBDuk (version 38.87, default settings), suggesting that experimental rRNA 
depletion was not effective. Nevertheless, these rRNA reads could be assembled and 
used to comprehensively survey the taxonomic diversity contained within these 
biocrusts (10). We obtained at least 25 million mRNA reads per sample, of which 80% 
could be assembled into contigs; this represents an average transcriptome coverage of 
~69× and should be sufficient depth for functional analyses of wetting the reanimation 
process.
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