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Complete genome sequences of Methylococcus capsulatus 
(Norfolk) and Methylocaldum szegediense (Norfolk) isolated from 
a landfill methane biofilter
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ABSTRACT Here we report the complete genome sequence of two moderately 
thermophilic methanotrophs isolated from a landfill methane biofilter, Methylococcus 
capsulatus (Norfolk) and Methylocaldum szegediense (Norfolk).
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T he Strumpshaw closed landfill features a biofilter for the mitigation of the climate 
active gas methane, generated by the anaerobic breakdown of organic waste. 

This biofilter harnesses methanotrophic bacteria in a soil matrix for methane bio-oxi
dation. Two methanotrophs, Methylococcus capsulatus (Norfolk) and Methylocaldum 
szegediense (Norfolk), were isolated from this system. Biofilter soil was used to inocu
late vials containing nitrate mineral salt (NMS) medium (1) and supplied with 20% (vol/
vol) methane. Isolates were obtained from enrichment cultures by serial dilution and 
plating onto NMS agar plates, incubated in gas-tight containers supplied with 50% (vol/
vol) methane. Optimal growth temperatures of the Methylococcus and Methylocaldum 
isolates were 45°C and 50°C, respectively. M. capsulatus (Norfolk) also grew on methanol 
(1%–5% vol/vol) as did Methylococcus strain MIR (2).

DNA extraction, sequencing, and genome assembly were done using a combined 
long- and short-read sequencing service at MicrobesNG (Birmingham, UK) as described 
in Fig. 1. This pipeline was used to construct genomes for M. capsulatus (Norfolk) and M. 
szegediense (Norfolk), producing a closed genome in both cases.

MicroScope v.3.16.0 (3) was used for automated annotation and taxonomic assign
ment of assembled genomes before further manual curation. Genome assembly and 
sequencing read summaries are shown in Table 1.

The Norfolk isolates were assigned to the Methylococcus capsulatus and Methylocal
dum szegediense spp. first described by Foster and Davis (4) and Bodrossy et al. (5). 
Based on average nucleotide identity (ANI) scores generated using CJ Bioscience’s online 
ANI calculator (6), the sequenced genomes with the highest similarity to Methylococ
cus capsulatus (Norfolk) and Methylocaldum szegediense (Norfolk) are Methylococcus 
capsulatus (Texas) (99.56%) and Methylocaldum szegediense (O-12) (99.64%), respectively 
(GenBank accession numbers GCA_000297615.1 and GCA_000427385.1).

Both genomes contain genes encoding a full methane oxidation pathway. Two 
pmoCAB clusters encoding particulate methane monooxygenase were found in each 
genome (7), and the Methylococcus capsulatus (Norfolk) genome also possesses a single 
soluble methane monooxygenase mmoXYBZDCGQSR cluster (8) and a putative copper 
chaperone (mopE) gene (9). Calcium-dependent (mxaFJGIRSACKLD) and lanthanide-
dependent (xoxFJ) methanol dehydrogenase gene clusters (10, 11) were found in 
these genomes, with a clade 5 xoxF gene present in each and an additional clade 
3 xoxF in Methylocaldum szegediense (Norfolk) (12). Both genomes feature complete 
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FIG 1 Sequencing and assembly pipeline.

Announcement Microbiology Resource Announcements

February 2024  Volume 13  Issue 2 10.1128/mra.00675-23 2

https://doi.org/10.1128/mra.00675-23


gene inventories for tetrahydromethanopterin and tetrahydrofolate-linked formaldehyde 
oxidation, in addition to formate dehydrogenase genes (13). Carbon is presumed to 
be assimilated primarily via the ribulose monophosphate pathway as in Methylococcus 
capsulatus (Bath), although genes for a partial serine cycle and complete Calvin-Benson-
Bassham pathway were detected (14). Alanine dehydrogenase and GS/GOGAT cycle 
genes for ammonia assimilation were present (15).

In addition to the 4.87 Mbp chromosome, Methylocaldum szegediense (Norfolk) also 
contained a ~25-kbp plasmid, encoding a plasmid replication initiator protein (TrfA), 
replication protein (RepA) and a toxin anti-toxin plasmid retention mechanism. A gene 
encoding a putative siphovirus Gp157 protein was also found, which may confer 
increased bacteriophage resistance (16, 17).
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TABLE 1 Methylocaldum szegediense (Norfolk) and Methylococcus capsulatus (Norfolk) genome summaries

DNA sequencing reads

Isolate Illumina total 
reads

Illumina read length 
(bp)

Nanopore total reads Nanopore N50 (bp) Illumina reads ENA 
accession no.

Nanopore reads ENA 
accession no.

Methylocaldum 936,436 250 184,537 4,370 ERR11151912 ERR11151913
Methylococcus 891,006 250 15,738 13,497 ERR11151914 ERR11151915

Methylocaldum szegediense (Norfolk) assembly

Replicon Sequence length 
(bp)

Assembly 
coverage

% GC No. of 
CDS

Ribosomal RNA genes MicroScope assigned 
taxonomy

GenBank accession 
no.16S rRNA 23S rRNA 5S rRNA

Chromosome 4,869,648 173× 57 5,038 2 2 2 Methylocaldum 
szegediense GCA_949769195.1Plasmid 25,724 481× 58 38 0 0 0

Methylococcus capsulatus (Norfolk) assembly

Replicon Sequence length 
(bp)

Assembly 
coverage

% GC No. of 
CDS

Ribosomal RNA genes MicroScope assigned 
taxonomy

GenBank accession 
no.16S rRNA 23S rRNA 5S rRNA

Chromosome 3,398,174 85× 63.5 3318 2 2 2
Methylococcus 

capsulatus GCA_949769275.1
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