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Abstract
Motivation: Copy-number variations (CNVs) are common genetic alterations in cancer and their detection may impact tumor classification and
therapeutic decisions. However, detection of clinically relevant large and focal CNVs remains challenging when sample material or resources are
limited. This has motivated us to create a software tool to infer CNVs from DNA methylation arrays which are often generated as part of clinical
routines and in research settings.

Results: We present our R package, conumee 2.0, that combines tangent normalization, an adjustable genomic binning heuristic, and weighted cir-
cular binary segmentation to utilize DNA methylation arrays for CNV analysis and mitigate technical biases and batch effects. Segmentation results
were validated in a lung squamous cell carcinoma dataset from TCGA (n¼367 samples) by comparison to segmentations derived from genotyping
arrays (Pearson’s correlation coefficient of 0.91). We further introduce a segmented block bootstrapping approach to detect focal alternations that
achieved 60.9% sensitivity and 98.6% specificity for deletions affecting CDKN2A/B (60.0% and 96.9% for RB1, respectively) in a low-grade glioma
cohort from TCGA (n¼239 samples). Finally, our tool provides functionality to detect and summarize CNVs across large sample cohorts.

Availability and implementation: Conumee 2.0 is available under open-source license at: https://github.com/hovestadtlab/conumee2.

1 Introduction

Copy-number variations (CNVs) are genomic segments that
exhibit differences in chromosomal copy-number states based
on the comparison of two or more genomes (Hastings et al.
2009, MacDonald et al. 2014). The lengths of these segments
vary over orders of magnitude, resulting in a stratification of
large (chromosome arm-level gains and losses) and focal
(amplifications and deletions) variations. The majority of germ-
line CNVs contribute to the genetic variability among individu-
als and typically do not imply pathogenic potential. When
affecting genes or regulatory elements, germline CNVs may re-
sult in gene malfunction or changes in expression levels, mani-
festing in diseases like autism spectrum disorder and
Alzheimer’s disease (Levy et al. 2011, Cuccaro et al. 2017).
Somatically acquired CNVs are of particular relevance for

oncogenesis. Cancer forms through the consecutive acquisition
of genomic alterations such as point mutations (single nucleo-
tide variants), short insertions and deletions, focal and large-
scale CNVs, and epigenetic alterations, including changes in
DNA methylation and histone modification patterns (Jones
and Baylin 2007, Beroukhim et al. 2010). During tumor for-
mation and progression, these alterations confer a selective ad-
vantage and are selected in an evolutionary process. Prominent
oncogenes and tumor suppressor genes that are affected by
CNVs include epidermal growth factor receptor (EGFR), reti-
noblastoma protein (RB1), and the cellular tumor antigen p53
(TP53), which have pivotal roles in tumorigenesis and are tar-
gets in cancer therapy (Ciardiello and Tortora 2008, Lee and
Muller 2010). Many other CNVs have been implicated as
driver events in various types of cancer. Hence, the ability to

Received: 30 June 2023; Revised: 14 December 2023; Editorial Decision: 8 January 2024; Accepted: 16 January 2024
VC The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(2), btae029
https://doi.org/10.1093/bioinformatics/btae029

Advance Access Publication Date: 19 January 2024

Original Paper

https://orcid.org/0000-0002-0237-8694
https://orcid.org/0000-0003-4439-3136
https://orcid.org/0000-0001-7616-7665
https://orcid.org/0000-0003-1945-497X
https://orcid.org/0000-0001-8287-5967
https://orcid.org/0000-0002-3480-6649
https://github.com/hovestadtlab/conumee2


accurately identify CNVs is important to unravel pathome-
chanisms and potential therapeutic vulnerabilities.

Whole-genome next generation sequencing and genotyping
microarrays are considered gold standards for CNV analysis,
as they provide the most extensive genome coverage (Mariani
et al. 2022). Another genome-wide assay that is widely applied
in biological research and clinical settings are DNA methyla-
tion microarrays (i.e. Illumina Infinium BeadChip arrays).
Profiling of DNA methylation, a central epigenetic mark, has
enabled the discovery and delineation of molecular classes of
brain tumors, sarcomas, leukemias, and many other types of
cancer (Sturm et al. 2016, Capper et al. 2018, Giacopelli et al.
2021, Kölsche et al. 2021). A recent machine learning-based
patient classification system for brain tumors (often referred to
as the “Heidelberg classifier”) showcases the high clinical util-
ity of this data type and is integrated in routine workflows
worldwide, having classified over 100 000 cases as of
December 2022 (Capper et al. 2018, Sturm et al. 2023). We
show that, in addition to epigenetic information (DNA methyl-
ation profiles), it is possible to extract genetic information
(CNV profiles) from DNA methylation microarrays, without
the need to run a separate genomic assay. This is especially
beneficial when sample material or resources are limited.

We first presented our approach in studies of pediatric
high-grade glioma and medulloblastoma (Sturm et al. 2012,
Hovestadt et al. 2013) and made it available to the research
community as the conumee Bioconductor package in 2015
(Hovestadt and Zapatka 2015). With nearly 20 000 down-
loads, conumee is one of the most widely used tools for infer-
ring CNVs from DNA methylation arrays and has been
applied in numerous large-scale cancer research projects
(Sturm et al. 2016, Northcott et al. 2017). Conumee-derived
CNV profiles are frequently displayed in the most recent
WHO classification of Tumors of the Central Nervous
System and are integrated in automated molecular reports of
the Heidelberg classifier, where inferred CNVs may have an
impact on tumor classification and clinical decisions (Capper
et al. 2018, WHO Classification of Tumours Editorial Board
2021). Other tools for analyzing CNVs from methylation
arrays include ChAMP (Feber et al. 2014), Epicopy (Cho
et al. 2019), and cnAnalysis450k (Knoll et al. 2017).

Here, we present a substantially enhanced version of our
package (conumee 2.0) that enables the identification and an-
notation of focal alterations that affect individual genes using a
new statistical approach. We further implement a revised tan-
gent normalization step that increases the signal-to-noise ratio,
and extend compatibility to new array types (human EPIC
v2.0 array, mouse 285k array). The update also provides func-
tionality for the simultaneous analysis of multiple query sam-
ples, adds new plotting functions to visualize recurrent CNVs
as well as user-friendly interactive plots that facilitate the iden-
tification of relevant genes, and provides text-based output files
that are suitable for downstream visualization or processing in
other tools (e.g. GISTIC or the IGV browser). The revised algo-
rithm for noise reduction and the performance of the segmenta-
tion algorithm were assessed on a lung squamous carcinoma
(LUSC) dataset from The Cancer Genome Atlas (TCGA) that
comprise both DNA methylation array data and CNV segmen-
tations derived from SNP arrays for paired samples. The detec-
tion of focal high-level alterations was assessed on a low-grade
glioma (LGG) cohort from TCGA.

2 Materials and methods

2.1 Data import and probe annotation

Our tool uses DNA methylation data generated using
Illumina’s Infinium HumanMethylation450 BeadChip array
that covers >480 000 positions across intra- and intergenic
regions of the human genome (Bibikova et al. 2011). Its suc-
cessors, the Infinium MethylationEPIC array (EPIC,
>850 000 probes) and MethylationEPIC v2.0 array (EPICv2,
>930 000 probes), are also supported. To import datasets
from raw IDAT files, conumee offers seamless integration
with the popular minfi package (Aryee et al. 2014). More re-
cent EPICv2 data are imported using functions from the illu-
minaio package (Smith et al. 2013), as the minfi package
currently lacks functionality for these arrays. Mouse arrays
are imported using the RnBeads package (Müller et al. 2019).
Probe annotations are loaded from the
IlluminaHumanMethylation450kanno.ilmn12.hg19 and
IlluminaHumanMethylationEPICanno.ilm10b4.hg19 pack-
ages. For the EPICv2 and mouse arrays, probe annotations
were downloaded from the manufacturer’s website and a ge-
nomic liftover was performed if necessary. In addition, infor-
mation such as chromosome sizes, centromere position and
gaps in the genome assembly are collected from the UCSC
Genome Browser.

2.2 Tangent normalization

As the first step of the analysis, conumee sums up the unme-
thylated (U) and methylated (M) signal intensities for each
probe i to obtain the combined signal intensity I. This is based
on the assumption that the combined signal intensity values
from the unmethylated and methylated probes are a proxy of
the copy-number status of that locus:

Ii ¼Mi þ Ui

The summed signal intensities are used to perform tangent
normalization (Gao et al. 2022). To minimize the effect of
technical biases and batch effects that arise due to differences
in experimental conditions in a given query sample q, we nor-
malize the intensity I of each probe i with a reference intensity
profile consisting of the linear combination of a set of control
samples c. In the initial version of conumee, we fit a linear
model using the raw summed intensity values to identify the
relative contribution of each control. In the revised version of
conumee, we fit the model to log2-transformed signal intensi-
ties. The log2-ratio R of probe intensities of a query sample q
versus the linear combination of control samples c (normal-
ized intensities) is calculated and used for further analysis:

conumee:

Ri ¼ log2ðIqiÞ � log2

Xn

c ¼ 1

ac Ici

 !

conumee 2.0:

Ri ¼ log2ðIqiÞ �
Xn

c¼1

ac log2 Icið Þ
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2.3 Genomic binning

After the Tangent Normalization is performed, we use an iter-
ative algorithm to merge individual probes into genomic bins.
Binning is performed by splitting the genome into segments of
a defined size (50 kb by default). The algorithm then selects
bins containing less than a defined number of probes (15
probes by default). Every identified bin is merged with the
neighboring bin that has fewer probes until a minimum num-
ber of probes and minimum genomic size is achieved, result-
ing in �15 000 genomic bins using default parameters for
450k arrays. The normalized signal intensity for each bin is
defined as the median log2-ratio of all contained probes. The
genomic binning heuristic is independent of copy-number
states and hence bins are identical between samples. To per-
form baseline correction (i.e. determine the copy-number neu-
tral state), original bin-level log2-ratios are shifted by a
centering factor that results in the smallest median absolute
deviation to the baseline.

2.4 Circular binary segmentation

Finally, segmentation of bins into regions of the same copy-
number is performed by using the circular binary segmenta-
tion algorithm (Olshen et al. 2004). This algorithm treats the
genome like a circle and creates partitions trying to maximize
the difference in partial means of the intervals. Once this dif-
ference is significant, the interval is marked as a segment and
the algorithm is applied recursively to the remaining intervals.
Conumee 2.0 implements several functions from the
DNAcopy package with optimized, but adjustable parameters
(Seshan 2022). Results can be visualized by using different
plotting functions including illustrations of the whole genome,
specified chromosomes or predefined regions of special inter-
est. Recurrent CNVs within a set of query samples can be vi-
sualized in summary genome plots. Segments from all
analyzed query samples are converted into non-overlapping,
referential segments and the type of alteration (gain, loss or
balanced) are summarized and visualized as percentages. The
thresholds that are used for this summarization step are in
line with default parameters used in GISTIC but can be ad-
justed by the user (Mermel et al. 2011). We use the plotly
package to generate interactive plots (Sievert 2020).

2.5 Segmented block bootstrapping

To calculate empirical P-values for focal alterations, we gen-
erate random bootstraps of the original dataset by sampling
large blocks of bins (block length of 500 kb, 100 bootstrap
iterations). Only blocks of bins that are assigned to the same
copy-number state (deletions, balanced segments, gains) are
concatenated in each bootstrap iteration by using the
bootRanges function from the nullranges package (Mu et al.
2023). To assign a state to each bin, we perform a k-means
clustering (centers¼ 3). The bootstrapped dataset is used to
define two-sided confidence intervals and sample-specific
log2-ratio thresholds for deletions and amplifications.
Subsequently, we determine the log2-ratio value of every gene
by calculating the median normalized intensity of overlapping
probes. Significant genes are identified by applying the dy-
namic thresholds derived from segmented block bootstrap-
ping. Genes are then overlapped with predefined genes-of-
interest and a list of over 700 common onco- and tumor sup-
pressor genes from the Cancer Gene Census (Tate et al.
2018).

2.6 Validation and benchmarking

Lung squamous carcinoma (LUSC) samples from the Cancer
Genome Atlas (TCGA) were chosen to measure the effect of
noise reduction as they exhibit abundant CNVs (Cancer
Genome Atlas Research Network 2012, Steele et al. 2022).
The cohort (n¼ 367) comprises matching Illumina 450k and
Affymetrix SNP6 array data which was used to validate the
performance of our CNV calling algorithm in humans. The
raw IDAT files (TCGA level 1 data) were downloaded from
the TCGA public repository including methylation profiles of
42 healthy control samples. The segmentation files from the
Affymetrix SNP6 arrays (TCGA level 3 data, downloaded in
September 2022) were downloaded from Broad Institute’s
Firehose Genome Data Analysis Center (data analysis version:
2016_01_28). The GISTIC results for single genes inferred
from Affymetrix SNP6 arrays were obtained using the
TCGAbiolinks package (Colaprico et al. 2015).

To validate our segmented bootstrapping approach for
detecting focal high-level alterations, we analyzed the TCGA
low grade glioma (LGG) cohort comprising 239 samples with
paired SNP array (Affymetrix SNP 6.0) and methylation array
(Illumina 450k) data (Brat et al. 2015). The raw IDAT files
were downloaded from the TCGA public repository (TCGA,
level 1 data, January 2023). The 53 reference samples that
were used for the LGG cohort were downloaded from GEO
(GSE109381, Supplementary Table S1). The copy-number
states for CDKN2A/B and RB1 inferred from the Affymetrix
SNP6 arrays were downloaded using the TCGAbiolinks pack-
age (January 2023) (Colaprico et al. 2015).

To quantify the effect of noise reduction in our revised tan-
gent normalization, we define the noise parameter as the aver-
age difference in normalized signal intensities of neighboring
probes:

noise ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1
i¼1 Riþ1 � Rið Þ2

n� 1

s

i ¼ 1; 2;3 . . . nf g

We validated our segmentation results on the gene-level.
The SNP array data served as a reference. Presumably, the
borders of the segments are not restricted to gene locations
which causes some genes to span multiple segments, especially
in the segmentation results from the SNP arrays. To address
this, we calculated the gene-wise weighted mean of overlap-
ping segments’ log2-ratios that takes the length of the intersec-
tion into account. Subsequently, we performed pairwise
correlation analysis between the DNA methylation array
dataset and SNP arrays dataset and calculated the mean
Pearson’s correlation coefficient for every pairwise compari-
son. To evaluate segmentation calls (i.e. gains and losses) that
are above/below a threshold value, we created confusion ma-
trices to evaluate the sensitivity and specificity over all genes
across samples.

The GISTIC 2.0 analysis for the segmentation results from
both array types was performed using the online platform
GenePattern (Reich et al. 2006) with the following parame-
ters: amplification threshold¼ 0.1, deletion threshold¼ 0.1,
cap values¼ 1.5, broad length cutoff¼ 0.7, remove X-
chromosome¼ 0, confidence level¼ 0.99, join segment
size¼ 4, arm level peel off¼ 1, maximum sample
segments¼ 2000, gene GISTIC¼ 1. The CNV analysis using
ChAMP and cnAnalysis450k was performed with default
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parameters following the package’s vignette. For comparison
of focal CNV detection, we obtained dynamic thresholds
from conumee KCN by following the author’s instructions on
their github repository.

3 Results

3.1 Workflow overview

Extracting information about CNVs from DNA methylation
arrays is based on the assumption that the sum of the intensity
values of the unmethylated and methylated signal are repre-
sentative of the copy-number state of a given locus (Fig. 1,
top). Our approach follows a three-step workflow comprising
data preparation, data analysis, and output generation. We
first perform tangent normalization of intensity values from a
query sample to determine a unique linear combination of

copy-number neutral control samples in order to reduce tech-
nical noise (Fig. 1, middle) (Gao et al. 2022). As has been
shown for CNV analysis from genotyping arrays, the linear
combination of control samples approximates the noise pro-
file of a given query sample better than any individual control
sample. After calculating the log2-ratio of observed (query
sample) and fitted (combined control samples) values for each
probe, we employ an adaptable heuristic to merge neighbor-
ing probes into genomic bins to further reduce technical vari-
ability. For each bin, the median of the normalized summed
intensity values is calculated and subjected to baseline
correction. Large-scale CNVs are detected from genomic bins
(log2-ratio values) using the circular binary segmentation al-
gorithm (Olshen et al. 2004). Focal CNVs, such as high-level
amplifications and homozygous deletions, are detected using
a novel block bootstrapping approach (Mu et al. 2023).

Figure 1. Illustration of the conumee 2.0 workflow. Data objects and commands are indicated. Gray boxes illustrate key steps of the workflow. During

data preparation, summed signal intensities for query and control samples are calculated separately. The CNV analysis itself comprises tangent

normalization, a genomic binning step, circular binary segmentation, and segmented block bootstrapping.
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Finally, our method provides functionality to produce
publication-grade visualizations of CNVs across the genome,
selected chromosomes, and individual genes, as well as text-
based outputs for downstream processing (Fig. 1, bottom).

3.2 Revised CNV calling algorithm

A key step of our approach is the tangent normalization of
summed intensity values using a reference of copy-number
neutral control samples. Tangent normalization assumes that
technical noise present in a given query sample can be approx-
imated by fitting a unique linear combination of copy-number
neutral control samples in which technical noise is also pre-
sent. The fitted noise profile is then subtracted from the query
sample (log2-ratios). In the previous version of conumee, tan-
gent normalization was performed on untransformed (raw)
intensity values. Across 367 tumor samples from the TCGA
LUSC project, using 42 controls from the same project as a
reference, intensity values from query samples (observed)
were much better approximated (fitted) using this approach,
compared to using the average intensity of control samples
(P< .001, Wilcoxon signed-rank test; Fig. 2a, right). Notably,
this step reduces the probe-level technical noise for each sam-
ple, but is not expected to reduce changes in signal intensities
resulting from CNVs.

When investigating the contribution of individual control
samples to the tangent normalization, we observed that a
unique combination of nearly all samples was used for the fit
(Supplementary Fig. S1). Frequently, select control samples
contributed more prominently than others, and some were as-
sociated with negative coefficients. We also observed that a
fraction of fitted control intensities were negative, which was
especially pronounced for low-quality query samples that
contain many low intensity probes (Fig. 2a). During the calcu-
lation of bin-level log2-ratios, these negative control intensities
were set to 1. We found that the problematic fitting of low
signal query intensities resulted in a higher variance within
bins that were associated with overall low or high log2-ratios
(Fig. 2b).

In the enhanced version of conumee, tangent normalization
is performed on log2-transformed summed intensity values
(Fig. 2c). The revised tangent normalization again achieved a
higher concordance compared to taking the average intensity
of control samples. Probes with low signal intensities are now
fitted more truthfully (Supplementary Fig. S2). For a direct
comparison of the original and revised tangent normalization
approach, we quantified the average difference in normalized
intensities between all neighboring probes in a given profile,
reasoning that probes in close proximity are likely to be asso-
ciated with the same underlying copy-number state and differ-
ences are representing technical noise. Conumee 2.0 achieved
a significantly lower noise parameter in every sample of the
cohort (P< .001, Wilcoxon signed-rank test; Fig. 2d).

Motivated by the higher probe variance in bins that were
associated with more extreme log2-ratios, we further opti-
mized the revised version of conumee by implementing a
weighted circular binary segmentation approach.
Segmentation is performed on genomic bins, which contain at
least 15 individual probes (default settings). We assign a
weight to each bin that is inverse to the variance of normal-
ized probe intensities, thereby reducing the influence of bins
that are associated with a higher probe variance. This leads to

differences in the segmentation output, especially in lower
quality samples (Fig. 2e).

3.3 Validation of CNV results

To assess the accuracy of resulting segmentations, we com-
pared DNA methylation array-derived CNVs (Illumina 450k)
to SNP array-derived CNVs (Affymetrix SNP 6.0) from the
TCGA LUSC patient cohort (Fig. 3a). Highest correlation be-
tween segmentation results from both data types was ob-
served for matching samples, achieving an average Pearson’s
correlation coefficient of 0.91 (standard deviation: 0.14).
Non-matching samples, which may harbor different CNVs,
were associated with an average correlation coefficient of 0.3
(standard deviation: 0.14). In comparison, performing CNV
segmentation on the same dataset using the ChAMP or
cnAnalysis450k packages resulted in lower average correla-
tion coefficients for matching samples (Supplementary Fig.
S3). At the level of individual samples, we could confirm a lin-
ear correlation between the SNP and methylation array data
(Fig. 3b). Notably, the absolute values from the methylation
data were often smaller than from the SNP array data. Using
fixed thresholds to obtain binary CNV calls (i.e. genomic seg-
ments that gained or lost), we achieved a median sensitivity of
88.5% and 91.1% and a median specificity of 98.3% and
97.7% for gains and losses, respectively (Supplementary Figs
S4 and S5).

The updated conumee package also provides text-based
outputs of resulting segmentations. These files enable compat-
ibility with GISTIC 2.0, a popular tool that uses an advanced
probabilistic method to identify recurrent CNVs with poten-
tial biological relevance in a set of query samples (Mermel
et al. 2011). We performed GISTIC analysis on DNA
methylation-derived and SNP array-derived segmentations
from the TCGA LUSC cohort (Fig. 3c). This comparison dem-
onstrates that most known hallmark amplifications in lung
squamous carcinoma, including FGFR1 (8p11.23), SOX1
(13q34) and MDM2 (12q15), are detected by conumee 2.0.
Some focal deletions, such as those on the short arms of chro-
mosome 8 and 9, are missed.

3.4 Gene-level analysis and detection of focal

alterations

There is a strong need to accurately report clinically relevant
focal CNVs, including high-level amplifications and homozy-
gous deletions of genes that are part of diagnostic criteria for
certain cancer entities (WHO Classification of Tumours
Editorial Board 2021). Clinicians and researchers often rely
on fixed thresholds to detect these alterations. This approach
does not take into account that optimal thresholds may vary
for different genes and/or pathologies (e.g. distinct cancer en-
tities), and are dependent on tumor purity and data quality.
Recent work by Blecua et al. addresses this challenge by
adapting conumee to include dynamic sample-dependent
thresholds that take tumor purity into account (Blecua et al.
2022).

In the revised version of our tool, we implement segmented
block bootstrapping [from the nullranges package (Mu et al.
2023)] to detect focal alterations. This method generates ran-
dom bootstraps of the original dataset by sampling large
blocks of bins to calculate empirical P-values (Fig. 4). After a
sample-specific two-sided confidence interval is defined, we
identify significant focal CNVs that affect user-defined genes-
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Figure 2. Enhanced conumee algorithm. (a) Scatter plot shows a linear combination of a set of control samples that is fitted against a single query sample

in the original tangent normalization approach. Violin plot shows the root mean square error (RMSE) for a set of 367 samples from the TCGA LUSC cohort,

using the mean intensity across control samples or the tangent normalization approach. (b) Barplot shows the average probe variance within genomic

bins. Higher probe variance is observed in low-intensity bins. (c) Scatter plot shows the updated tangent normalization approach implemented in conumee

2.0 that uses signal intensities that have been log2-transformed. Violin plot shows RMSE values using the mean intensity across control samples or the

updated tangent normalization approach. (d) Scatter plots shows the noise level for the original (x-axis) and the updated (y-axis) tangent normalization

approach for the TCGA LUSC cohort. The updated approach substantially reduces the noise in many samples. (e) Genome plots show results from the

original (left) and updated (right) version of conumee for a low quality (top) and a high quality (bottom) sample. Weighted circular binary segmentation

enables a more harmonic segmentation in low quality samples (major segmentation differences are highlighted in red). Weights are visualized as varying

dot sizes representing individual bins.
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of-interest and a list of over 700 common onco- and tumor
suppressor genes from the Cancer Gene Census (Tate et al.
2018). These genes are annotated in genome plots and sum-
marized in text-based output files.

For validating the approach, we analyzed the TCGA low
grade glioma (LGG) cohort comprising 239 samples with paired
SNP array (Affymetrix SNP 6.0) and methylation array
(Illumina 450k) data. We selected a cohort of 53 copy-number
neutral reference samples from the cerebral hemispheres, the cer-
ebellum, white matter and the tumor microenvironment
(Supplementary Table S1). Using SNP array data as a reference,
we were able to achieve a sensitivity of 60.9% (14/23) and a spe-
cificity of 98.6% (213/216) for the detection of homozygous
deletions affecting CDKN2A/B. We observed a similar perfor-
mance for the detection of homozygous deletions in RB1 (sensi-
tivity: 6/10¼ 60%; specificity: 222/229¼ 96.9%),

outperforming the recently described conumee KCN approach
(Supplementary Fig. S6).

3.5 Extended plotting functionality

To enable its usage in clinical and research settings, conumee 2.0
supports a number of customizable parameters and user-friendly
plotting functions to produce publication-grade illustrations of
CNV results. The basic genome plot function produces CNV
profiles of the whole genome, individual chromosomes, or other
user-specified genomic regions (Fig. 5a). These plots show both
segmentation results from the circular binary segmentation and
indicate copy-number status of individual genes of interest. By
default, these genes include 20 of the most common onco- and
tumor suppressor genes. Genes can also be specified via a cus-
tomizable annotation object. Similarly, an annotation object of
polymorphic regions such as the human HLA gene locus, which

Figure 3. Performance of the revised approach. (a) Heatmap shows the pairwise correlation between SNP array-derived (x-axis) and DNA methylation

array-derived (y-axis) CNVs across all 367 TCGA LUSC tumors. Highest correlation coefficients are observed for data generated from the same tumor on

the diagonal. (b) Density heatmap (kernel density estimation) shows the correlation between both array types for a single query. (c) qplots generated

using GISTIC 2.0 from conumee 2.0 output illustrate recurrent amplifications (left) and deletions (right), as analyzed from DNA methylation and SNP

arrays. Known hallmark alterations of LUSC are indicated in red.

Conumee 2.0 7

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae029#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae029#supplementary-data


should be excluded from the analysis, can also be defined. Both
annotation objects provide versatility for different experimental
contexts. To accelerate analytical workflows, we also imple-
mented wrapper functions for the simultaneous analysis of mul-
tiple query samples.

In addition, conumee 2.0 supports new interactive plotting
functions to facilitate the identification of genes within geno-
mic regions of interest (Fig. 5b). The revised version also pro-
vides plotting functions to summarize CNV results across
multiple query samples as a heatmap (Fig. 5c), or in a sum-
mary genome plot (Fig. 5d): The y-axis indicates the percent-
age of samples exhibiting a certain CNV at the genomic
location on the x-axis, separated into gains and losses.
Conumee 2.0 also provides plotting functionality for the
analysis of mouse arrays (Fig. 5e).

4 Discussion

In this work, we present our R package “conumee 2.0,” a
substantially improved version of “conumee.” We show that
it is possible to infer accurate CNV profiles from DNA meth-
ylation microarrays, which is especially beneficial when sam-
ple material or resources are scarce, and a dedicated assay for
CNV analysis (e.g. whole-genome sequencing or genotyping
arrays) cannot be performed. We repurpose DNA

methylation arrays for CNV analysis by using the sum of the
unmethylated and methylated signal, followed by a series of
normalization and processing steps. CNV analysis is of high
relevance not only for cancer research, but also in clinical set-
tings. Examples include the combined loss of chromosome
1p/19q as an essential diagnostic criterion for IDH-mutant
oligodendroglioma, or homozygous deletions of CDKN2A/B
as a grading criterion for IDH-mutant astrocytoma (WHO
Classification of Tumours Editorial Board 2021). Accurate
detection of CNVs is key for these applications.

Previous efforts to classify CNVs into gains and losses using
fixed or dynamic log2-ratio thresholds provided low sensitiv-
ity, impeding their use in clinical settings (Kilaru et al. 2020).
The block bootstrapping approach implemented in the revised
version of conumee substantially improves the performance
for detecting focal CNVs, thereby addressing a critical de-
mand in clinical diagnostics and in research. Conumee 2.0
also provides functionality to annotate newly identified focal
CNVs by overlapping results with extensive sets of described
onco- and tumor suppressor genes, by providing interactive
plotting functions, and by generating text-based output files
for seamless integration with downstream tools such as
GISTIC 2.0.

According to a recent publication by Gao et al. (2022), CNV
inference from microarray data is subject to at least three

Figure 4. Detection of high-level alterations. Genome plot shows CNVs across a single query sample from the TCGA LUSC cohort. Indicated regions

harbor a high-level amplification of EGFR and a homozygous deletion of the CDKN2A/B locus. Density plots illustrate the segmented block bootstrapping

approach which allows for the calculation of empirical P-values to assess the statistical significance of identified focal CNVs.
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sources of noise: Stochastic variability, the misinterpretation of
germline CNVs as somatic ones, and systematic noise due to
experimental conditions. A major source of technical noise in
DNA methylation arrays results from the whole genome ampli-
fication step that is performed after bisulfite conversion during
experimental processing (Bundo et al. 2012). Due to differences
in experimental conditions (e.g. technical equipment), input
material (e.g. amount and integrity of genomic DNA),
sequence-specific effects (e.g. GC-bias), and stochastic effects
(e.g. random primer binding during whole genome amplifica-
tion), genomic DNA is not uniformly amplified, thereby imped-
ing CNV analysis. Another challenge for CNV analysis from
DNA methylation arrays lies in the probe design: Probe density
varies across the genome, with most probes being located
within CpG islands near gene promoters. We recommend
choosing other sequencing-based methods to assess focal inter-
genic alterations like short insertions and deletions that may
not be sufficiently covered by the array. Also, Illumina DNA
methylation arrays comprise two different probe types (type I
and type II) that show considerable differences in measured in-
tensities, further complicating CNV analysis (Bibikova et al.
2011). To address these challenges, conumee 2.0 implements
an optimized tangent normalization method, applies an adapt-
able genomic binning heuristic, and performs weighted CNV
segmentation that takes into account the variability of probe
intensities in control samples. We recommend excluding sam-
ples with a noise parameter >0.6 from analysis, although
broad CNVs may be detected. We validate the performance of

conumee 2.0 by comparing to CNV segmentation results gen-
erated from genotyping arrays, showing overall high agreement
between both methods and highlighting the suitability of DNA
methylation arrays for CNV analysis.

For tangent normalization, we recommend using a set of at
least 16 copy-number neutral control samples, ideally gener-
ated using the same experimental pipelines, and from a related
biological tissue (e.g. normal human brain tissues as a control
for brain tumors samples). However, we have achieved good
results even with control samples that were unrelated to the
query cohort. It is important that the quality of control sam-
ples spans the range of qualities that can be observed in query
samples (i.e. control samples that contain a certain technical
artifact might be important for normalizing query samples
that contain the same artifact). Also, it is advisable to include
control samples generated from fresh-frozen and formalin-
fixed, paraffin-embedded (FFPE) material if the query cohort
contains samples from the same material.

For merging of individual probes into genomic bins, a mini-
mum number of probes per bin and a minimum size per bin
are required. Default parameters represent a compromise be-
tween reducing technical noise and higher genomic resolution
that has resulted in good results in most cases. These parame-
ters can be adapted to match the needs of the analysis.
Depending on the number of genomic probes included in the
array type (Illumina 450k, EPIC, EPICv2, or mouse array), a
different number of genomic bins are formed using default
parameters.

Figure 5. Overview of plotting functionality in conumee 2.0. (a) Genome plots show CNVs for a single query sample across the whole genome (top),

chromosome 10 (middle), and two detail regions (bottom). (b) Interactive genome plot generated using the CNV.plotly function which can be used to

identify genes within bins of interest. (c) Summary genome plot generated using the CNV.summaryplot function illustrates the percentage of samples

exhibiting CNVs across the genome for the TCGA LUSC cohort. (d) Summary genome heatmap generated using the CNV.heatmap function shows bin-

level intensities across the genome for the TCGA LUSC cohort (367 samples). (e) Genome plot showing a CNV profile of a mouse sample.
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Our package conumee 2.0 enables enhanced CNV analysis
from Illumina DNA methylation array data of human (includ-
ing the new EPICv2 array) and mouse samples. We make use
of the high genomic coverage of DNA methylation arrays to
generate detailed CNV profiles using a set of specialized algo-
rithms. Customizable annotation objects facilitate the analysis
of individual genes-of-interest, and high-level alterations are
detected de-novo using a novel segmented block bootstrap-
ping approach. We assess the performance of our approach
using publicly available datasets that comprise both DNA
methylation and SNP array data from matching samples.
Conumee 2.0 also introduces new summary functions to ana-
lyze sets of query samples and generates text-based output
files for downstream-processing using popular public tools
(e.g. GISTIC 2.0). DNA methylation array profiling is fre-
quently performed in cancer research and clinical settings,
and detailed CNV profiling from DNA methylation arrays
adds an important layer of information.
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