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Abstract
Motivation: The human microbiome may impact the effectiveness of drugs by modulating their activities and toxicities. Predicting candidate
microbes for drugs can facilitate the exploration of the therapeutic effects of drugs. Most recent methods concentrate on constructing of the pre-
diction models based on graph reasoning. They fail to sufficiently exploit the topology and position information, the heterogeneity of multiple
types of nodes and connections, and the long-distance correlations among nodes in microbe–drug heterogeneous graph.

Results: We propose a new microbe–drug association prediction model, NGMDA, to encode the position and topological features of microbe (drug)
nodes, and fuse the different types of features from neighbors and the whole heterogeneous graph. First, we formulate the position and topology fea-
tures of microbe (drug) nodes by t-step randomwalks, and the features reveal the topological neighborhoods at multiple scales and the position of each
node. Second, as the features of nodes are high-dimensional and sparse, we designed an embedding enhancement strategy based on supervised fully
connected autoencoders to form the embeddings with representative features and the more discriminative node distributions. Third, we propose an
adaptive neighbor feature fusion module, which fuses features of neighbors by the constructed position- and topology-sensitive heterogeneous graph
neural networks. A novel self-attention mechanism is developed to estimate the importance of the position and topology of each neighbor to a target
node. Finally, a heterogeneous graph feature fusion module is constructed to learn the long-distance correlations among the nodes in the whole hetero-
geneous graph by a relationship-aware graph transformer. Relationship-aware graph transformer contains the strategy for encoding the connection rela-
tionship types among the nodes, which is helpful for integrating the diverse semantics of these connections. The extensive comparison experimental
results demonstrate NGMDA’s superior performance over five state-of-the-art prediction methods. The ablation experiment shows the contributions of
the multi-scale topology and position feature learning, the embedding enhancement strategy, the neighbor feature fusion, and the heterogeneous graph
feature fusion. Case studies over three drugs further indicate that NGMDA has ability in discovering the potential drug-related microbes.

Availability and implementation: Source codes and Supplementary Material are available at https://github.com/pingxuan-hlju/NGMDA.

1 Introduction

The human microbiome is a collection of all microbiota that
reside in or on human organs, including bacteria, viruses, pro-
tists, fungi, and archaea. Previous human microbiome studies
demonstrated that interactions between the human microbes
and corresponding hosts regulate human health, such as con-
trolling immune function, providing resistance to pathogens,
and even influencing brain physiology and behavior (Duvallet
et al. 2017, Zhu et al. 2020). An imbalance of human micro-
biota and some diseases are closely related, including chronic
inflammation, neurological disorders, and breast cancer
(Wang et al. 2019, Rackaityte and Lynch 2020).

Microbes can change the toxicity and inhibitory activity of
drugs (Nejman et al. 2020, Algavi and Borenstein 2023) and

impact the effectiveness of disease treatments by biologically
altering a drug’s chemical structure (Yin et al. 2022).
Hacioglu et al. (2019) suggested that cooperation between
Staphylococcus aureus and Candida albicans leads to drug re-
sistance by strengthening biofilm formation. Also, the gut
microbiome produces large quantities of bacterial enzymes
that affect therapeutic efficacy (Zimmermann et al. 2019).
Therefore, discovering new microbe–drug associations is es-
sential in drug functional studies and precision medicine.

Recently, the computational methods were proposed for
predicting the drug–target interactions (Li et al. 2022),
incRNA–miRNA interactions (Wang et al. 2022), miRNA–
disease associations (Peng et al. 2022a), metabolite–disease
associations (Gao et al. 2023), and incRNA–disease
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associations (Wang et al. 2023a). Computational methods
have also shown the ability to determine potential microbe–
drug associations and identify reliable drug-related candidates
for wet experiments. Microbe–drug association probabilities
can be inferred by prediction models using Conditional
Random Field (CRF) and Graph Convolutional Network
(GCN) (Long et al. 2020a). Long et al. (2020b) proposed
EGTMDA to learn node features for microbes and drugs us-
ing meta-paths and hierarchical attention mechanism.
SCSMDA enhanced representations of drugs and microbes
using graph contrastive learning and elaborate meta-paths
(Tian et al. 2023). However, shortcomings exist in these
methods. GCNMDA used vanilla homogeneous models to
learn representations of drugs and microbes without consider-
ing abundantly available heterogeneous information. In addi-
tion, these methods based on meta-paths focus on neighbors
originating from meta-paths while ignoring other non-
neighboring nodes across the entire heterogeneous graph.

We proposed NGMDA to predict candidate microbes for
drugs by learning the features of drugs and microbes from
neighbors and the whole heterogeneous graph. Our contribu-
tions are summarized as follows:

• The multi-scale topology information of nodes reflects
neighbor regions of different ranges, which is important
for microbe–drug association prediction. Therefore, topol-
ogy features of microbe (drug) nodes are designed based
on t-step random walks to obtain multi-scale topological
neighborhoods of nodes. We also extracted node position
features to form the position of each node in the entire het-
erogeneous graph.

• An embedding enhancement strategy (ES) based on fully
connected autoencoders with node class labels is proposed
to extract important low-dimensional features of the mi-
crobe or drug nodes. This strategy also enhances the dif-
ferences of feature distributions among different types of
nodes by determining the node class.

• In the microbe–drug heterogeneous graph, different neigh-
bor nodes often have special topological neighborhoods
and positional features that affect the importance of neigh-
bors with a target node. A new position-sensitive and
topology-sensitive self-attention mechanism (PTA) adap-
tively distinguishes the contributions of different neighbor
nodes. Also, neighbor feature fusion (NFF) models hetero-
geneity of the graph and aggregates the representations of
nodes based on heterogeneous graph neural networks
(HGNN) with PTA.

• A microbe or drug node may be closely related to distant
nodes due to the heterogeneity of the microbe–drug graph.
We have designed GFF based on a relationship-aware
graph transformer (RAGT) to reveal the diverse connec-
tions between the target node and all other nodes in the
heterogeneous graph. Comprehensive experiments suggest
the superiority of NGMDA by comparing it with ad-
vanced methods.

2 Materials and methods

We propose a microbe–drug association prediction model
called NGMDA (Fig. 1) that consists of an embedding ES,
NFF module, and heterogeneous graph feature fusion (GFF)
module. A heterogeneous graph is constructed to describe
the diverse connectivity relationships between drugs and

microbes (Fig. 1a). The node features of these drugs and
microbes are projected into a low-dimensional feature space,
and their differences are enhanced to obtain a fine node em-
bedding (Fig. 1a). NFF learns similarity, position, and topol-
ogy representations between nodes based on position- and
topology-sensitive HGNN (Fig. 1b). We use GFF to learn
multi-modal representations of various nodes across the het-
erogeneous graph by a RAGT (Fig. 1c). These four represen-
tations are combined into fully connected layers to predict
microbe–drug association probabilities.

2.1 Dataset

Associations between drugs and microbes, similarities be-
tween drugs, and the attribute features of the microbes Xmicr

are collected from previously published microbe–drug associ-
ation prediction work (Long et al. 2020b). We extracted 2470
microbe–drug association data from the Microbe–Drug
Associations Database (MDAD) (Sun et al. 2018), which con-
tains 173 microbes and 1373 drugs. Drugbank (Knox et al.
2024) provides the interactions among the drugs. On the basis
of the biological hypothesis that the drugs with similar treat-
ment functions are more likely interact with the similar
microbes, EGTMDA calculated the Gaussian kernel similari-
ties of drugs based on their interactions. The structural simi-
larity of two drugs was measured based on the common
subgraphs within their chemical structures (Hattori et al.
2010). The final drug similarities were obtained by the
weighted sum of the drug Gaussian kernel similarities and the
drug structure similarities. The sequences of microbes were
extracted from NCBI database, and then principal component
analysis was utilized to obtain their important features.

2.2 Calculation of microbe similarity

As two microbes with similar gene sequences are typically
similar, we calculate the cosine similarity on the attribute
characteristics for each microbe. The similarity between mi-
crobe mi and mj is Kmicr

ij 2 ½0; 1�,

Kmicr
ij ¼ 1

2

Xmicr
i ðXmicr

j ÞT

kXmicr
i kkXmicr

j k
þ 1

 !
; (1)

where Xmicr
i is the i-th row of Xmicr, which contains the main

gene sequence characteristics of mi, and ðXÞT is a transposi-
tion of X. The microbe similarities were listed in the
Supplementary File SF1.

2.3 Microbe–drug heterogeneous graph

We constructed a microbe–drug heterogeneous graph G ¼
ðV;EÞ as shown in Fig. 1a. The node set V consists the drug
node subset Vdrug and microbe node subset Vmicr and < i; j >
2 E represents an edge from node vj to vi. The drug similarity
matrix and drug–microbe association matrix are expressed as
Kdrug and Bbipa 2 RNd�Nm , respectively, where Nd (or Nm)
denotes the number of drugs (or microbes). If there is a
known association exists between drugs di and mj,
then Bbipa

i;j ¼ 1. Further, Bbipa
i;j ¼ 0 indicates that no connection

has yet been found. There are many low similarity data in the
similarity matrix, which might be noise in microbe–
drug association prediction. When constructing microbe–
microbe (or drug–drug) adjacent matrix, connecting
edges are added between the microbe (or drug) nodes with
a similarity not less than a threshold b. The adjacency
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matrix of the heterogeneous graph G is represented as
Bhete 2 RðNdþNmÞ�ðNdþNmÞ, such that

Bhete ¼ ~K
drug

Bbipa

ðBbipaÞT ~K
micr

" #
; (2)

where ~K
drug

(or ~K
micr

) is the drug (or microbe) similarity ma-
trix after thresholding.

2.4 Heterogeneous graph node feature construction

and enhancement
2.4.1 Heterogeneous graph node feature construction
The heterogeneous graph node features are constructed by a
drug–drug similarity matrix, microbe–microbe similarity ma-
trix, and drug–microbe association matrix. The similarity fea-
ture matrix is formed by combining the drug and microbe
similarities defined above as

Hsimi ¼ Kdrug

Kmicr

� �
; (3)

where Kdrug
i (or Kmicr

j ) contains the similarities between di (or
mj) and other drugs (or microbes). The multi-modal feature
matrix Hmoda 2 RðNdþNmÞ�ðNdþNmÞ can be represented as

Hmoda ¼ Kdrug Bbipa

ðBbipaÞT Kmicr

� �
; (4)

where the i-th row in Hmoda records the similarities between di

and all other drugs and the associations between di and all
other microbes. The association with drugs and similarities
between microbes are contained in the (Nd þ j)-th row.
Because similarity and multi-modal features are common
node attributes for microbe–drug association prediction (Peng
et al. 2017, 2021, Meng et al. 2023, Wang et al. 2023), we
designate these as the original features of the nodes. Existing
GNN models fail to fully consider the position and topology
information of nodes, so we construct position and topology
features of the microbe and drug nodes. The position of vi

within the heterogeneous graph is determined by the connec-
tion between vi and other nodes. The position feature matrix
is defined as Hposi ¼ Bhete, where the position feature of vi is
Hposi;i. A random walk of t-steps contains a t-hop topological
neighborhood of nodes within a heterogeneous graph
(Dwivedi et al. 2022) and is defined as

RWt ¼ ðBheteðDheteÞ�1Þt; (5)

where t is the number of walking steps and Dhete is degree ma-
trix of Bhete. RWt

i;j represents the probability of visiting vi to
vj in the t-th step random walk and contains the topological

Figure 1. Framework of the proposed NGMDA model. (a) Construct microbe–drug heterogeneous graph and enhance similarity and multi-modal

embeddings. (b) Fuse features of neighbor nodes by position- and topology-sensitive HGNN. (c) Learn long-distance connection from the entire

heterogeneous graph based on RAGT.
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neighborhood information of the t-th step of vi. The topology
feature Htopo;i 2 Rt of vi is defined as

Htopo;i ¼ ½RWi;i;RW2
i;i; . . . ;RWt

i;i�; (6)

which contains the multi-scale topological neighborhood in-
formation of vi.

2.4.2 Enhancing node embedding
The original features specified above are high-dimensional
sparse and contain some noise. A projection operation
maps drug and microbe node features into the same embed-
ding space, which drops information about the differences
in the embedding distributions of different types of nodes.
Figure 2 outlines our node embedding ES to learn represen-
tative embeddings and enhance the embedding distribution
differences of the microbe and drug nodes. As autoencoders
could effectively reduce the noise component in these
embeddings, we learn important low-dimensional node
embeddings based on fully connected autoencoders. The
projection and reconstruction process of multi-modal and
similarity features are similar, and we use similarity features
as an example to describe the process here. The similarity
feature of vi, Hsimi;i, is projected into Np dimensional space
to form

Henco;1
simi;i ¼ rðLinear encoð1Þsimi;/ðviÞðHsimi;iÞÞ; (7)

where Linear enco is a linear layer, r represents the non-
linear activation function ReLU, and /ðviÞ indicates the type
of vi. The similarity embedding of vi is learned from the l-th
fully connected encoding layer as

Henco;l
simi;i ¼ rðLinear encoðlÞsimi;/ðviÞðH

enco;l�1
simi;i ÞÞ;

l ¼ 1;2; . . . ;Lenco;
(8)

where Lenco is the total number of encoding layers. Henco;Lenco
simi;i

is used as the input of the decoder, and the output of the l-th
fully connected decoding layer is

Hdeco;l
simi;i ¼ rðLinear decoðlÞsimi;/ðviÞðH

deco;l�1
simi;i ÞÞ;

l ¼ 1;2; . . . ;Ldeco;
(9)

where Ldeco is total number of decoding layers, Linear deco

denotes the linear layer and Hdeco;0
simi;i ¼ Henco;Lenco

simi;i . After projec-

tion, the multi-modal embedding Henco;Lenco

moda 2 RðNdþNmÞ�ðNpÞ

can be learned. The mean square error estimates the recon-
struction loss of the node similarity features as

creco;simi ¼
1
jTj
X
i2T

kHsimi;i �HLdeco
simi;ik

2; (10)

where T is the batch of nodes in the training set. Similarly, the
reconstruction loss of the multi-modal feature is creco;moda.

We classify the projected node embedding to enhance the
differences between the drug and microbe embedding distri-
butions. Considering a multi-modal embedding, as an exam-
ple, is the input of the classify and labeli is the corresponding
classification labels. The classification loss of the multi-modal
embedding in the training samples is estimated by the cross-
entropy loss function

cclas;moda ¼
1
jTj
X
i2T

X2

k¼1

�labeli;k

� logðLinear clasmodaðHenco;Lenco

moda;i ÞkÞ; (11)

where Linear clasmoda 2 RNp�2. The classification loss of
the similarity embedding is represented as cinty;simi. The total
loss of the embedding classification of the drug and microbe
nodes is

cproc ¼ creco;simi þ creco;moda þ cinty;simi þ cinty;moda: (12)

2.5 Neighbor feature fusion

The topological neighborhood and position information of
the neighboring nodes impact their importance with a target
node. We propose a NFF module based on HGNN with a
PTA to learn representative similarity and the position and
topology representations of each microbe and drug nodes.

Figure 2. Enhancing node embeddings of microbes and drugs by supervised autoencoders.
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The relationship types between the nodes are critical auxiliary
features, so we also calculate the importance of the integrated
features, as shown in Fig. 3.

The type of relationship between nodes contains the simi-
larity relationship between drugs (or microbes) and the associ-
ation relationship between drugs (or microbes) and microbes
(or drugs). The relationship type of vj to vi is represented as

wð< i; j >Þ ¼

0; if vi; vj 2 Vdrug

1; if vi 2 Vmicr; vj 2 Vdrug

2; if vi 2 Vdrug; vj 2 Vmicr

3; if vi; vj 2 Vmicr

:

8>>>>><
>>>>>:

(13)

Then, the importance of the relationship type of vj to vi is
rl
wð< i;j>Þ, which is learned during the training process at the

l-th layer, and r0
wð< i;j>Þ ¼ 1.

Multi-head attention can reasonably stabilize the learning
process of self-attention by allocating the attention value of
each head (Veli�ckovi�c et al. 2018). After obtaining the similar-
ity representations Hl�1

simi;j and Hl�1
simi;i of vi and vj, respectively,

at l � 1-th layer, we compute the importance of the similarity
representation of vj to vi in the next layer by

sl
i;j;k ¼ ðsoftmaxðWl

pðkÞW
l
/ðviÞ;kHl�1

simi;iÞÞ
TnormðWl

/ðvjÞ;kHl�1
simi;jÞ;

l ¼ 1;2; . . . ;Lnff and k ¼ 1;2; . . . ;Knff ;

(14)

where Lnff is the total layer number, Knff is the head number,

H0
simi;i ¼ Henco;Lenco

simi;i , Wl
/ðviÞ;k and Wl

pðkÞ 2 RNp�Np are weight

matrices, and norm represents L2 normalization. The Hl�1
simi;i

and Hl�1
simi;j terms are transformed into latent representations

Wl
/ðviÞ;kHl�1

simi;i and Wl
/ðvjÞ;kHl�1

simi;j. Then, Wl
pðkÞW

l
/ðviÞ;kHl�1

simi;i is

the distribution of the similarity representation importance,
which is converted to a probability distribution using the soft-
max function. As the magnitude of the latent representation

affects the importance score of vj to vi, we standardize
Wl

/ðvjÞ;kHl�1
simi;j with L2 normalization. The importance score of

vj to vi is calculated by the inner product of the importance
distribution of vi and the representation of vj. The multiple
neighbors of node vi have their various topological neighbor-
hoods and positions, so these neighbors have different impor-
tance for vi’s feature learning. Therefore, the importance of
each neighbor node for vi was calculated before the vi’s fea-
tures were updated. We calculate the importance cl

i;j 2 ½0; 1�
of the position and topology of vj to vi by

cl
i;j ¼ ½s � cosineðHl�1

posi;i;H
l�1
posi;jÞ þ ð1� sÞ

� cosineðHl�1
topo;i;H

l�1
topo;jÞ þ 1�=2; (15)

where Hl�1
posi;i and Hl�1

topo;i are the position and topology repre-
sentations of vi, respectively, H0

posi;i ¼ Hposi;i and
H0

topo;i ¼ Htopo;i. The parameter s 2 ½0;1� balances the contri-
butions between the position and topology representations.
The importance score of vj to vi is then

al
i;j;k ¼ softmaxj2NðiÞðrl

wð< i;j>Þ � sl
i;j;k � cl

i;jÞ: (16)

Here, al
i;j;k is position and topology sensitive by integrating

the importance of the neighbor position and topology.
As residuals can alleviate over-smoothing and vanishing

gradients (Lv et al. 2021), we add a node residual for every at-
tention head. The similarity representation of vi is then
updated as

Hl
simi;i;k ¼ r

X
j2NðiÞ

al
i;j;k �Wl

/ðviÞ;k �H
l�1
simi;j þWl

resðkÞ �Hl�1
simi;i

� �
;

(17)

where Wl
resðkÞ 2 RNp�Np is the weight matrix. The similarity

representations of the different heads are aggregated at the
l-th layer to obtain

Hl
simi;i ¼

1
Knff

XKnff

k¼1

Hl
simi;i;k; (18)

where Knff is the head number of the NFF. As the similarity,
position, and topology representations have the same update
procedure, the position and topology representations are
updated as Hl

posi;i and Hl
topo;i in the l-th layer, respectively.

2.6 Heterogeneous GFF
2.6.1 Relationship type encoding
Relationship types of similarity and association can reflect di-
verse semantic connections between drug and microbe nodes.
The relationship type wð< i; j >Þ of vj to vi is represented as a
one-hot vector that is linearly transformed to obtain the em-
bedding of the relationship type ewð< i;j>Þ 2 RNp .

2.6.2 Relationship-aware graph transformer
To capture the connection between the target node and dis-
tant nodes, we designed a heterogeneous GFF module pre-
sented in Fig. 1c. A RAGT is proposed within the GFF and
inspired by these methods (Diao and Loynd 2022, Peng et al.
2022b, c). To embed the relationship type wð< i; j >Þ of vj to

Figure 3. Calculation of position-sensitive and topology-sensitive self-

attention of vj to vi .
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vi into the query, key, and value vectors, we concatenate a
multi-modal feature of vi (or vj) and the relationship type em-
bedding ewð< i;j>Þ. We obtain the query, key, and value vectors
of the h-th head in the l-th layer by linear transformations
such that

ql
i;j;h ¼ ½H

enco;l�1
moda;i ; ewð< i;j>Þ�Wl

/ðviÞ;Q;h;

kl
i;j;h ¼ ½H

enco;l�1
moda;j ; ewð< i;j>Þ�Wl

/ðvjÞ;K;h;

vl
i;j;h ¼ ½H

enco;l�1
moda;j ; ewð< i;j>Þ�Wl

/ðvjÞ;V;h;

l ¼ 1; 2; . . . ;Lgff and h ¼ 1;2; . . . ;Kgff ;

(19)

where Wl
/ðviÞ;Q;h;W

l
/ðviÞ;K;h;W

l
/ðviÞ;V;h 2 R

2�Np;
Np

Kgff are weight

matrices, HG;0
enc;i ¼ HG

enc;i, Lgff is the total layer number, and
Kgff indicates the head number of GFF. The importance of vj

to vi is

f l
i;j;h ¼ softmaxj2V

ðql
i;j;hÞ

Tkl
i;j;hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Np=Kgff

p
 !

: (20)

After aggregating the neighbor representations of vi in the h-
th head, we concatenate the representations from each head
to form

ml
i ¼ k

Kgff

h¼1

XjVj
j¼1

f l
i;j;h � vl

i;j;h

0
@

1
A; (21)

where k is the concatenation operation. The application of
layer normalization (LayerNorm) is crucial for this training
process and for expressing the capacity of attention (Brody
et al. 2023). The multi-modal representation Hl

moda;i of vi is
updated based on LayerNorm, such that

nl
i ¼ LayerNormðWl

1ml
i þHl�1

moda;iÞ;
Hl

moda;i ¼ LayerNormðrðWl
2nl

iÞWl
3 þ nl

iÞ;
(22)

where Wl
1;W

l
2;W

l
3 2 RNp�Np represent weight matrices.

2.7 Representation integration and optimization

The original features and representations learned from shal-
lower layers retain the detailed information of the nodes,
along with more abstract information are learned from deeper
layers. By concatenating the original features and representa-
tions from each layer of NFF and GFF, the final representa-
tion of the drug di is formed as

~Hi ¼ Hsimi;i; k
Lnff

l¼0
½Hl

posi;i;H
l
topo;i;H

l
simi;i�;Hmoda;i; k

Lgff

l¼0
Hl

moda;i

" #
:

(23)

Likewise, we obtain the final representation ~HjþNd
of mi-

crobe mj. Following the stack of linear layers and the non-
linear activation function, ~Hi and ~HjþNd

are combined to
compute the association prediction score predi;j 2 R2, such
that

ui;j ¼ rðWattr½ ~Hi; ~HjþNd
� þ battrÞ;

predi;j ¼ softmaxðWpredui;j þ bpredÞ;
(24)

where Wattr (or Wpred) is the weight matrix and battr (or bpred)
is a bias vector. Then, predi;j ¼ ½ðpredi;jÞ0; ðpredi;jÞ1�, where
ðpredi;jÞ0 represents the unrelated probability between di and
mj, and the associated probability is ðpredi;jÞ1. The loss of the
association prediction is represented by

cpred ¼
1
jBj

X
ði;jÞ2B

X2

k¼1

�ðlabelði; jÞk � logððpredi;jÞkÞ; (25)

where B is the training example set and labelði; jÞ is the associ-
ation label of di and mj. The final loss of NGMDA c is the
weighted sum of the ES loss cproc and the association predic-
tion loss cpred, such that

c ¼ e � cproc þ ð1� eÞ � cpred; (26)

where the balance factor e 2 ½0;1� is a hyper-parameter.

3 Experimental evaluation and discussion

3.1 Evaluation metrics

The performance of NGMDA and other comparison methods
is evaluated with 5-fold cross-validation. All known associa-
tions between drugs and microbes are classified as positive
samples, with associations equally divided into five parts. All
unobserved microbe–drug associations are taken as negative
samples to form a set of negative samples. Four positive
examples and an equal number of negative examples are ran-
domly selected from the negative sample to be utilized for
training, and the remainder are test examples.

The area under the receiver operating characteristic curve
(AUC) (Huang and Ling 2005), the area under the precision–
recall curve (AUPR) (Saito and Rehmsmeier 2015), and the
recall rate of the top-k candidate microbes associated with
drugs are selected as our evaluation indicators. If the associa-
tion score between di and mj is less than a threshold h, then it
is considered a negative sample. Otherwise, it is identified as a
positive sample. The TPRs, FPRs, precisions, and recalls of
each drug were calculated at different threshold h, we calcu-
lated the average AUCs and average AUPRs of 1373 drugs
for each fold. The 5-fold AUCs (or AUPRs) were averaged as
the final AUC (or AUPR). Considering that high-ranking can-
didates may be chosen by biologists for humidity experiments,
more positive samples are expected to appear as top-rank can-
didates. Hence, we compute a recall rate of the top-k candi-
date microbes of drug di.

3.2 Parameter settings

NGMDA runs on a 2080ti server based on the PyTorch
framework and is optimized with the Adam algorithm. The
proposed model has some hyper-parameters including the
steps of random walking, the layer numbers of NFF and that
of GFF, and the balance factor of loss �. We firstly establish
the variation range for each hyper-parameter, and then select
the value which obtains the best performance for the model as
the final value of the hyper-parameter. To assess the effect of
random walk step size on the prediction performance, the
step size was selected from f1, 2, 4, 8, 16, 32g. The model
achieves the highest AUC (AUC¼ 0.944) and AUPR
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(AUPR¼ 0.728) when step size is 2 (Supplementary
Table ST1). The random walk steps are set to two for the to-
pological embedding formation. For NFF and GFF, we fine-
tuned the layer number within a range, f1, 2, 3g, and per-
formed all the combinations of the layer number of NFF and
GFF. As shown in the Supplementary Table ST2, the model
gets the best performance when their layer numbers are two.
The balance factor e regulates the importance of the loss of
embedding ES and that of the association prediction loss, and
it was chosen from the range of f0, 0.1, � � �, 0.5g.
Supplementary Table ST3 demonstrates the corresponding
results and e was set to 0.2 finally. The drug (microbe) simi-
larity threshold, b, was selected from f0.5, 0.6, � � �, 0.9g, and
it was set to 0.9 in our experiment (Supplementary Table
ST4). Parameter s is utilized to balance the importance of the
topology and position features, and s varies from 0 to 1 with
a step size of 0.2. Supplementary Table ST5 indicates s value
of 0.4 is more favorable for the prediction performance of the
model.

3.3 Ablation experiments

We perform ablation experiments to evaluate the contribu-
tions of position and topology feature learning (PTL), ES,
NFF, and GFF as listed in Table 1. For NGMDA without
GFF, the AUC and AUPR metrics drop by 1.1% and 6.0%,
respectively. The AUC and AUPR of NGMDA without NFF
decrease by 1.0% and 5.3%, respectively, compared to the
whole model. The AUC and AUPR decrease by 0.6% and
4.6%, respectively, if NGMDA has no ES. The AUC and
AUPR of our model achieve 0.9% and 1.5%, respectively,
higher than NGMDA without PTL. We built the prediction
model without multi-scale topological feature learning and
the one without position feature learning, respectively. Their
AUCs decreased by 0.8% and 0.4%, and their AUPR de-
creased by 1% and 0.5%, respectively. After the relationship
type integration was eliminated from the prediction model, its
AUC and AUPR decreased by 0.6% and 2.7%.

The ablation experiments indicate that merging node fea-
tures of the heterogeneous graph contributes the most to
model performance (Table 1). A possible reason is that some
non-neighboring nodes exist across the entire heterogeneous
graph that are also closely related to the target node. NFF
achieves the second most significant contribution, suggesting
that the neighboring node information of the target node is
also important. The embedding ES boosts the prediction per-
formance, which suggests its value in reducing noise in the
node embeddings and enhancing differences in the node distri-
butions. Multi-scale topology and position features indicated
the neighbors with multiple ranges and the location informa-
tion of each node were important for the improved prediction
performance. The experimental results (Table 1) also

demonstrated the relationship type integration is helpful for
improving the prediction performance.

3.4 Comparison with other methods

NGMDA is compared with five state-of-the-art microbe–drug
association prediction methods, including GCNMDA (Long
et al. 2020a), EGATMDA (Long et al. 2020b), GSAMDA
(Tan et al. 2022), GACNNMDA (Ma et al. 2023), and
SCSMDA (Tian et al. 2023). NGMDA and five compared
methods were trained and tested by using the same data sepa-
ration during 5-fold cross-validation. The hyper-parameters
of these methods are set according to their corresponding lit-
erature. We briefly describe these comparison methods in the
following.

• GCNMDA (Long et al. 2020a): It established a microbe–
drug heterogeneous network and integrated multiple kinds
of similarities. These similarities were measured based on
the chemical structures of drugs, the Gaussian interaction
profiles of drugs (microbes), and the microbe sequences.
The prediction model was constructed based on GCN and
CRF.

• EGATMDA (Long et al. 2020b): It constructed a mi-
crobe–disease–drug network and then inferred the mi-
crobe–drug associations by a hierarchical attention
mechanism.

• GSAMDA (Tan et al. 2022): The model calculated the
drug (microbe) similarities based on the Gaussian interac-
tion profiles and Hamming interaction profiles of drugs
(or microbes), and learned the node features by the graph
attention networks and sparse auto-encoder.

• GACNNMDA (Ma et al. 2023): The multiple microbe–
drug heterogeneous networks were constructed based on
the Gaussian interaction and Hamming interaction pro-
files of drugs (microbes). The potential microbe–drug
associations were identified by the convolutional neural
networks.

• SCSMDA (Tian et al. 2023): The model constructed the
microbe–drug networks based on the microbe gene se-
quence information, the Gaussian kernel interaction pro-
files of drugs (or microbes), and the chemical structures of
drugs. It learned the features of the microbe and drug
nodes by graph contrastive learning.

We first compute the AUC and AUPR and then calculate
the average AUC and AUPR over 1373 drugs. As shown in
Table 2, NGMDA achieves the best average AUC of 0.944,
which is 0.4% higher than the second-best EGATMDA
model, 4.1% better than GCNMDA, 10.1% over
GACNNMDA, 4.2% superior to GSAMDA, and 2.8%
greater than SCSMDA. NGMDA also produces the best aver-
age AUPR of 72.8%, which is 38.8%, 41.3%, 42.1%,

Table 1. Results of the ablation studies.

Networks Average AUC Average AUPR

NGMDA 0.944 0.728
NGMDA w/o PTL 0.935 0.713
NGMDA w/o ES 0.938 0.682
NGMDA w/o NFF 0.934 0.675
NGMDA w/o GFF 0.933 0.668
NGMDA w/o Topo 0.936 0.718
NGMDA w/o Posi 0.94 0.723
NGMDA w/o Rel 0.938 0.701

Table 2. AUCs and AUPRs of different methods in comparison all the

1373 drugs.

Networks AUC (%) AUPR (%)

NGMDA 94.4 72.8
SCSMDA 91.6 34.0
GSAMDA 90.2 24.7
GACNNMDA 84.3 19.6
EGATMDA 94.0 30.7
GCNMDA 90.3 31.5
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53.2%, and 48.1% better than SCSMDA, GCNMDA,
EGATMDA, GACNNMDA, and GASMDA, respectively.
We compute the average AUCs (AUPRs) of 1373 drugs per
fold for NGMDA and each of the compared methods. To ob-
serve whether NGMDA’s prediction performance is signifi-
cantly higher than each compared method, the statistical test
was conducted. NGMDA has 1373 AUCs (AUPRs) for the
1373 drugs, and the compared methods also have 1373
AUCs (AUPRs) for these drugs. The paired Wilcoxon test was
executed on NGMDA’s AUCs (AUPRs) and the AUCs
(AUPRs) of the compared methods (Table 3). The results indi-
cated NGMDA obtained the significantly higher prediction
performance than all the compared methods.

The performances of GCNMDA, GACNNMDA, and
GSAMDA are not as good as NGMDA, EGATMDA, and
SCSMDA. This outcome is likely because these learn node
representations using simple models (e.g. GCN and GAT)
without considering node or edge types in the microbe–drug
heterogeneous graph. EGATMDA and SCSMDA learn the
features of drugs and microbes from semantic information
based on meta-paths. These models only focus on learning
features of the neighbor nodes derived from meta-paths and
do not consider the remaining nodes across the entire hetero-
geneous graph.

The average recalls under different top-k candidate
microbes for all drugs are presented in Fig. 4. NGMDA out-
performs all other methods at different top cutoffs due to its
enhanced embedding of the nodes and fusing the features of
neighbor nodes and the whole heterogeneous graph. When
k¼ 3, our model achieves the highest recall rate of 76.6%,
where the second-best 48.7% is attained by EGATMDA.
SCSMDA achieves the fourth-best result with a recall rate of

44.7%, which is 0.5% below GCNMDA. When k is 6, 9, and
12, NGMDA maintains the best recall values of 81.3%,
83.4%, and 85.7%, respectively. The second performer is
EGATMDA with recall rates of 67.8%, 74.9%, and 80.1%,
respectively. SCSMDA surpasses GCNMDA with recall rates
of 63.6%, 67.6%, and 71.4%, respectively, while the recall
rates of GCNMDA are lower at 61.5%, 66.8%, and 70.8%,
respectively. GSAMDA does not perform well with recall
rates of 55.7%, 63.7%, and 68.4%, respectively, while still
being consistently higher than GACNNMDA, which obtained
the lowest recall rates of 42.5%, 49.9%, and 56.2%,
respectively.

3.5 Case studies on three drugs

To confirm NGMDA’s discovery potential of drug-related
microbial candidates, case studies with Ciprofloxacin,
Moxifloxacin, and Vancomycin are performed. Ciprofloxacin
treats skin infections, typhoid fever, pneumonia, endocarditis,
and other bacterial infections. Moxifloxacin treats pneumo-
nia, tuberculosis, sinusitis, and chronic bronchitis.
Vancomycin is an antibiotic that treats bloodstream infec-
tions, endocarditis, and orthopedic infections. All the known
microbe–drug associations and the randomly selected equal
number of unobserved microbe–drug associations were uti-
lized to train the model for case studies. Candidate microbes
are obtained for each of these drugs, and we collected the top
20 candidates, as listed in Tables 4–6.

The MDAD (Sun et al. 2018) provides microbe–drug asso-
ciations that were verified by experimental or clinical studies.
The aBiofilm database (Rajput et al. 2018) organizes data on
anti-biofilm agents disrupting biofilms, covering 1720 drugs
and 140 microbes. We use MDAD, aBiofilm database, and

Table 3. The paired Wilcoxon test result on AUCs and AUPRs of 1373 drugs comparing NGMDA with other compared methods.

GCNMDA EGATMDA GACNNMDA GSAMDA SCSMDA

P-value of AUCs 4.21e-155 1.70e-59 7.26e-159 4.38e-150 1.40e-151
P-value of AUPRs 1.47e-186 2.26e-156 6.63e-196 1.30e-186 1.82e-215

Figure 4. The average recalls of drugs at different top k settings.
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literature to verify the microbe–drug association prediction
results of NGMDA. Among the top 20 candidate microbes re-
lated to Ciprofloxacin, six are recorded by MDAD, and four

are contained in the aBiofilm database, which suggests that
these microbes are indeed associated with the drug
Ciprofloxacin, and these 13 candidates are further confirmed

Table 4. The top-20 candidate microbes of Ciprofloxacin.

Rank Microbe name Evidence Rank Microbe name Evidence

1 Candida albicans PMID: 31471074 11 Bacillus subtilis MDAD
2 Pseudomonas

aeruginosa
aBiofilm, MDAD 12 Actinomyces oris Unconfirmed

3 Staphylococcus aureus aBiofilm, MDAD 13 Human immunodefi-
ciency virus 1

PMID: 9566552

4 Escherichia coli aBiofilm, MDAD 14 Streptococcus sanguis PMID: 11347679
5 Streptococcus mutans PMID: 30468214 15 Stenotrophomonas

maltophilia
aBiofilm, MDAD

6 Staphylococcus
epidermis

PMID: 10632381 16 Haemophilus
influenzae

MDAD

7 Staphylococcus
epidermidis

PMID: 28481197 17 Listeria
monocytogenes

PMID: 28355096

8 Salmonella enterica PMID: 26933017 18 Burkholderia
cenocepacia

PMID: 27799222

9 Vibrio harveyi PMID: 27247095 19 Streptococcus
pneumoniae

PMID: 26100702

10 Enterococcus faecalis PMID: 27790716 20 Serratia marcescens PMID: 23751969

Table 5. The top-20 candidate microbes of Moxifloxacin.

Rank Microbe name Evidence Rank Microbe name Evidence

1 Pseudomonas
aeruginosa

PMID: 31691651 11 Staphylococcus
epidermidis

PMID: 11249827

2 Staphylococcus aureus PMID: 31689174 12 Candida albicans aBiofilm, MDAD
3 Escherichia coli PMID: 31542319 13 Streptococcus

pneumoniae
PMID: 22407042

4 Vibrio harveyi Unconfirmed 14 Serratia marcescens Unconfirmed
5 Bacillus subtilis PMID: 30036828 15 Acinetobacter

baumannii
PMID: 12951327

6 Listeria
monocytogenes

PMID: 28739228 16 Actinomyces oris PMID: 26538502

7 Salmonella enterica PMID: 22151215 17 Clostridium
perfringens

PMID: 29486533

8 Stenotrophomonas
maltophilia

aBiofilm, MDAD 18 Klebsiella pneumoniae PMID: 27257956

9 Burkholderia
cenocepacia

PMID: 28355096 19 Burkholderia
pseudomallei

PMID: 15731198

10 Burkholderia
multivorans

Unconfirmed 20 Haemophilus
influenzae

MDAD

Table 6. The top-20 candidate microbes of Vancomycin.

Rank Microbe name Evidence Rank Microbe name Evidence

1 Staphylococcus aureus MDAD; aBiofilm 11 Streptococcus mutans PMID: 464571
2 Pseudomonas

aeruginosa
PMID: 26980934 12 Stenotrophomonas

maltophilia
Unconfirmed

3 Escherichia coli PMID: 33468474 13 Streptococcus
pneumoniae

PMID: 10376600

4 Staphylococcus
epidermidis

PMID: 20685088 14 Acinetobacter
baumannii

PMID: 23422916

5 Bacillus subtilis PMID: 14165485 15 Actinomyces oris PMID: 26538502
6 Enterococcus faecalis PMID: 15528891 16 Salmonella enterica Unconfirmed
7 Vibrio harveyi PMID: 25066453 17 Klebsiella pneumoniae Unconfirmed
8 Listeria

monocytogenes
PMID: 10588323 18 Clostridium

perfringens
PMID: 16870765

9 Burkholderia
cenocepacia

Unconfirmed 19 Serratia marcescens Literature (Ali 2018)

10 Burkholderia
multivorans

Unconfirmed 20 Streptococcus sanguis PMID: 7287904
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by the literature. For example, several microbes, including
Candida albicans, Human immunodeficiency virus 1,
Streptococcus mutans, and Streptococcus pneumoniae, are
inhibited (or killed) by Ciprofloxacin (Gollapudi et al. 1998,
Dridi et al. 2015, Hacioglu et al. 2019, Zhang et al. 2019).
The two microbes, Staphylococcus epidermidis and
Salmonella enterica, were validated to be highly susceptible to
Ciprofloxacin (Eibach et al. 2016, Szczuka et al. 2017). In ad-
dition, Vibrio harveyi, Enterococcus faecalis, and Listeria
monocytogenes are identified as Ciprofloxacin-resistant
microbes (Stalin and Srinivasan 2016, Escolar et al. 2017,
Kim and Woo 2017). For the microbe candidates related to
Moxifloxacin in Table 5, three candidates are included in
MDAD, two in the aBiofilm database and 14 candidates are
supported by the literature. Considering the candidate
microbes of Vancomycin in Table 6, Staphylococcus is con-
firmed by the MDAD and aBiofilm databases, and 14 candi-
dates are supported by literature. Among all 60 microbe
candidates, nine are unconfirmed, which indicates that no rel-
evant evidence is found to support their association. The
above analysis demonstrates that NGMDA can discover po-
tential candidate microbes for target drugs under study.

3.6 Prediction of novel microbe–drug associations

NGMDA is implemented to predict the potential candidate
microbes for all drugs. The top-ranked 20 microbe candidates
are listed in the Supplementary File SF2, which can be lever-
aged by biologists to screen reliable candidate microbes.

4 Conclusion

We proposed a novel microbe–drug association prediction
model to encode node neighborhood topologies across multi-
ple scales and perform graph inference by propagating differ-
ent types of connections and information about the nodes.
The multi-scale topology feature is formed by estimating the
probability that a random walker accesses itself in different
steps. The established node embedding strategy enhances the
representations of microbe and drug nodes that form the spe-
cific distribution of the corresponding node. The NFF com-
bines the features of different types of neighbors and target
nodes by adaptively evaluating the weights of the position fea-
tures, topology features, and original features of the neighbor
nodes. The long-distance connections and encoding of the re-
lationship types between the nodes through GFF enable the
knowledge propagation of the entire graph and the capture of
diverse relationships. Cross-validation experimental results
on public datasets suggest the superiority and effectiveness of
NGMDA. The average recall rate of drugs and case analyses
of experimental results further demonstrate that NGMDA
provides reliable microbe candidates for related drugs under
investigation.

Supplementary data

Supplementary data are available at Bioinformatics online.
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