
Design of intrinsically disordered proteins that undergo phase 
transitions with lower critical solution temperatures

Xiangze Zeng1, Chengwen Liu2, Martin J. Fossat1, Pengyu Ren2, Ashutosh Chilkoti3, Rohit 
V. Pappu1,*

1Department of Biomedical Engineering and Center for Science & Engineering of Living Systems 
(CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA

2Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, 
USA

3Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA

Abstract

Many naturally occurring elastomers are intrinsically disordered proteins (IDPs) built up of 

repeating units and they can demonstrate two types of thermoresponsive phase behavior. Systems 

characterized by lower critical solution temperatures (LCST) undergo phase separation above the 

LCST whereas systems characterized by upper critical solution temperatures (UCST) undergo 

phase separation below the UCST. There is congruence between thermoresponsive coil-globule 

transitions and phase behavior whereby the theta temperatures above or below which the IDPs 

transition from coils to globules serve as useful proxies for the LCST / UCST values. This 

implies that one can design sequences with desired values for the theta temperature with either 

increasing or decreasing radii of gyration above the theta temperature. Here, we show that the 

Monte Carlo simulations performed in the so-called intrinsic solvation (IS) limit version of the 

temperature-dependent the ABSINTH (self-Assembly of Biomolecules Studied by an Implicit, 

Novel, Tunable Hamiltonian) implicit solvation model, yields a useful heuristic for discriminating 

between sequences with known LCST versus UCST phase behavior. Accordingly, we use this 

heuristic in a supervised approach, integrate it with a genetic algorithm, combine this with 

IS limit simulations, and demonstrate that novel sequences can be designed with LCST phase 

behavior. These calculations are aided by direct estimates of temperature dependent free energies 

of solvation for model compounds that are derived using the polarizable AMOEBA (atomic 

multipole optimized energetics for biomolecular applications) forcefield. To demonstrate the 

validity of our designs, we calculate coil-globule transition profiles using the full ABSINTH 

model and combine these with Gaussian Cluster Theory calculations to establish the LCST phase 

behavior of designed IDPs.
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Introduction

Intrinsically disordered proteins (IDPs) that undergo thermoresponsive phase transitions are 

the basis of many naturally occurring elastomeric materials 1. These naturally occurring 

scaffold IDPs 2 serve as the basis of ongoing efforts to design thermoresponsive materials 3. 

Well-known examples of disordered regions derived from elastomeric proteins 4, include the 

repetitive sequences from proteins such as resilins 5, elastins 6, proteins from spider silks 7, 

titin 8, and neurofilament sidearms 9. Elastin-like polypeptides have served as the benchmark 

systems for the development of responsive disordered proteins that can be adapted for 

use in various biotechnology settings 10. The multi-way interplay of sequence-encoded 

intermolecular interactions, chain-solvent interactions, as well as chain and solvent entropy 

gives rise to thermoresponsive phase transitions that lead to the formation of coacervates 
1. Here, we show that one can expand the “materials genome” 11 through de novo 
design strategies that are based on heuristics anchored in the physics of thermoresponsive 

transitions and efficient simulation engines that apply the learned heuristics in a supervised 

approach. We report the development of a genetic algorithm (GA) and show how it can be 

applied in conjunction with multiscale computations to design thermoresponsive IDPs with 

LCST phase behavior.

Conformational heterogeneity is a defining hallmark of IDPs 12. Work over the past decade-

and-a-half has shown that naturally occurring IDPs come in distinct sequence flavors 12. 

Indeed, IDPs can be distinguished based on their sequence-encoded interplay between 

intramolecular and chain-solvent interactions that can be altered through changes in solution 

conditions. Recent studies have shown that IDPs can be drivers or regulators of reversible 

phase transitions in simple and complex mixtures of protein and nucleic acid molecules 
13. These transitions are driven primarily by the multivalence of interaction motifs that 

engage in reversible physical crosslinks 14. IDPs can serve as scaffolds for interaction motifs 

(stickers), interspersed by spacers. Alternatively, they can modulate multivalent interactions 

mediated by stickers that are situated on the surfaces 15 of autonomously foldable protein 

domains 16.

Thermoresponsive phase transitions arise either by increasing the solution temperature above 

a lower critical solution temperature (LCST) or by lowering the temperature below an 

upper critical solution temperature (UCST) 1. Many systems are capable of both types of 

thermoresponsive transitions, although only one of the transitions might be accessible in the 

temperature range of interest. Here, we leverage our working knowledge of the sequence 

features that encode driving forces for thermoresponsive phase transitions 17 to develop and 

deploy a GA for the design of novel IDPs characterized by LCST behavior. Inspired by work 

on elastin-like polypeptides 3, we focus on designing IDPs that are repeats of pentapeptide 

motifs. The amino acid composition of each motif contributes to the LCST behavior and the 

number of repeats determines the multivalence of stickers that drive phase transitions with 

LCST behavior.

The GA we adapt for this work is driven by advances that include: (a) an improved 

fundamental understanding of the physics of LCST phase behavior 18; (b) experiments 
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showing that many IDPs undergo collapse transitions with increased temperature 19; (c) 

a generalization of the ABSINTH implicit solvation model and forcefield paradigm20 

to account for the temperature dependence of chain solvation; (d) a growing corpus of 

information regarding the sequence determinants of LCST phase behavior in repetitive IDPs 
17; and (e) the prior demonstration that a GA based method known as GADIS (Genetic 

Algorithm for Design of Intrinsic Secondary structure) 21 can be combined with efficient, 

ABSINTH-based simulations to design IDPs with bespoke secondary structural preferences.

Studies of synthetic polymer systems have helped in elucidating the origins of the driving 

forces for and the mechanisms of LCST phase behavior 22. A well-known example is 

poly-N-isopropylacrylamide (PNIPAM) 23. Here, the dispersed single phase is stabilized at 

temperatures below ~32°C by the favorable hydration of amides in the sidechains. Solvation 

of amides requires that the solvent be organized around the hydrophobic moieties that 

include the backbone carbon chain and the isopropyl group in the sidechain. The entropic 

cost for organizing solvent molecules around individual chains increases with increasing 

temperature. Accordingly, above the LCST of ~32°C, and for volume fractions that are 

greater than a threshold value, the system phase separates to form a polymer-rich coacervate 

phase that coexists with a polymer-poor dilute phase. The driving forces for phase separation 

are the gain in solvent entropy through the release of solvent molecules from the polymer 

and the gain of favorable inter-chain interactions, such as hydrogen-bonding interactions 

between amides in the polymer.

Tanaka and coworkers have developed a cooperative hydration approach, inspired by the 

Zimm and Bragg theories for helix-coil transitions 24, to model the physics of phase 

transitions with LCST 25. Cooperative hydration refers to the cooperative association 

(below the LCST) or dissociation (above the LCST) of water molecules that are bound 

to repeating units along the polymer chain 26. Cooperativity is captured using the Zimm-

Bragg formalism by modeling each repeating unit as being in one of two states viz., 
solvated or desolvated. In the solvated state, the repeating unit has a defined interaction 

strength with solvent molecules. In the desolvated state, pairs of such repeating units have 

defined exchange interactions. In addition, desolvation is associated with a gain in solvent 

entropy. The three-way interplay of direct solvent-chain interactions, the interactions among 

desolvated pairs of units, and the gain in solvent entropy above the LCST can be captured 

in a suitable physical framework that can be parameterized to describe system-specific phase 

transitions. Accordingly, if one has prior knowledge of the interaction energies associated 

with each repeat unit, one can use the framework of Tanaka and coworkers to design novel 

sequences with LCST behavior.

An alternative approach, which we adopt in this work, is to leverage the corollary of 

LCST behavior at the single chain limit 27. At temperatures that are proximal to the LCST, 

the chain of interest will undergo a coil-to-globule transition in a dilute solution 28. This 

is because chain collapse is a manifestation of the physics of phase separation in the 

single chain limit. Here, we leverage this connection between phase separation and chain 

collapse of isolated polymer chains in ultra-dilute solutions to design novel IDPs that are 

predicted to undergo phase transitions with LCST phase behavior. We do so by using a 

multi-pronged approach that starts with improved estimates of the temperature dependencies 
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of free energies of solvation of model compounds that mimic amino acid sidechain and 

backbone moieties. For this, we use free energy calculations based on the AMOEBA 

forcefield 29, which is a second-generation, molecular mechanics based, polarizable model 

for water molecules and proteins. We incorporate these temperature dependent free energies 

of solvation into the ABSINTH implicit solvation model and show that thermoresponsive 

changes to chain dimensions, calculated in the “intrinsic solvation (IS) limit” 30, yields 

robust heuristics that discriminates sequences with known LCST phase behavior from those 

that show UCST behavior. We then describe the development of a GA, an adaptation of the 

GADIS approach, to design novel sequences that relies on all-atom simulations, performed 

using the ABSINTH model in the IS limit, and learned heuristics as fitness scores. Distinct 

classes of designed sequences emerge from our approach and these are screened to filter 

out sequences with low disorder scores as assessed using the IUPRED2 algorithm 31. The 

resulting set of sequences are analyzed using simulations based on the full ABSINTH 

model, which show that the designed sequences do undergo collapse transitions above a 

threshold temperature. The contraction ratio, defined as the ratio of chain dimensions at 

temperature T  to the dimensions at the theta temperature and computed as a function of 

simulation temperature, is analyzed to extract temperature dependent two-body interaction 

parameters and athermal three-body interaction parameters that are used in conjunction 

with the Gaussian Cluster Theory (GCT) 32 to calculate system-specific phase diagrams 
28. The upshot is a multiscale pipeline whereby a GA, aided by a derived heuristic and 

IS limit simulations, leads to the design of novel sequences with predicted LCST phase 

behavior. Following a post-processing step that selects for sequences with a high confidence 

of being intrinsically disordered, we combine all-atom ABSINTH-T based simulations with 

Gaussian Cluster Theory to obtain sequence-specific phase diagrams. These last two steps 

allow further pruning of the sequence space derived from the designs and provide further 

confidence regarding the authenticity of the predicted LCST phase behavior.

Temperature-dependent free energies of solvation are central to accurate descriptions 

of LCST behavior. Each protein may be viewed as a chain of model compounds and 

measured / calculated temperature dependent values of temperature dependent free energies 

of hydration Δμh for fully solvated model compounds can be used as the reference free 

energies of solvation (rFoS) in implicit solvation models such as EEF133 or ABSINTH 20. 

Where possible, the ABSINTH model 20,34 uses experimentally measured free energies of 

solvation for model compounds. In the original formalism, Vitalis and Pappu 20 adapted 

experimentally derived rFoS values at 298 K and assumed these values to be independent 

of temperature. This approach was generalized by Wuttke et al.,19 to calculate temperature 

dependent rFoS values, using data from calorimetric measurements made by Makhatadze 

and Privalov35 for the enthalpy and heat capacity of hydration at a reference temperature. 

These values were augmented by those of Cabani et al.,36 for naphthalene, which is used as 

a model compound mimic of tryptophan. Wuttke et al.,19 incorporated the enthalpy and heat 

capacity of hydration estimated at a reference temperature into an integrated version of the 

Gibbs-Helmholtz equation to yield a thermodynamic model for temperature dependent rFoS 

values for all the relevant model compounds. In this formalism, rFoS(T ) or Δμh(T ) is written 

as:
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Δμh T = Δμh T0 − Δℎ T
T0

+ Δℎ + ΔcP T 1 − ln T
T0

− T0 ;

(1)

Here, Δℎ is the enthalpy of solvation (hydration) at a reference temperature T0, which is 

typically set to be 298 K, and ΔcP is the molar heat capacity change associated with the 

solvation process. Based on measurements, the assumption is that ΔcP is independent of 

temperature 37.

We built on the approach of Wuttke et al.,19 to incorporate temperature dependent rFoS 

values in ABSINTH. This is implemented in a version that we refer to as ABSINTH-T. 

The issues we faced in developing ABSINTH-T were two-fold. First, the values for Δcp and 

Δℎ that were used by Wuttke et al., rely on decompositions of measurements for model 

compounds into group-specific contributions. In contrast, the Δμh values used in ABSINTH 

are for model compounds and explicitly avoid the group-specific decompositions made by 

Makhatadze and Privalov 35. This choice reflects the fact that group-specific decompositions 

are not measured. Instead, they are derived quantities that are based on empirical reasoning. 

This creates a mismatch with the paradigm that underlies the ABSINTH framework 20. 

Put simply, we require values of Δμh, Δcp and Δℎ that correspond to model compounds as 

opposed to group-specific decompositions.

Second, model compounds that mimic the sidechains of ionizable residues pose unique 

challenges. For any solute, including ions, the free energy of hydration at a specific 

temperature and pressure is defined as the change in free energy change associated 

with transferring the solute of interest from a dilute vapor phase into water 38. The 

accommodation of the solute into liquid water is associated with the cost to create a cavity 

in the solvent 38, the electronegative cavity potential 39, the work to add soft dispersion 

interactions 40, and distribute charges uniformly or non-uniformly across the solute 41. 

Vapor pressure osmometry with radioactive labeling, as used by Wolfenden42 to measure 

free energies of hydration for polar solutes, including neutral forms of ionizable species, 

cannot be used to measure free energies of hydration of ions because of the ultra-low 

vapor pressures and the confounding effects of ion-pairing in the gas phase. Calorimetry, 

as used by Makhatadze, Privalov, and colleagues provides an alternative approach 35,43. 

However, the large magnitudes of free energies of hydration, which are expected to be 

on the order 102 kcal/mol 44,45, giving rise to even larger magnitudes for enthalpies of 

hydration, make it impossible to obtain the numbers of interest directly from calorimetric 

measurements. Measurements of activity coefficients on the concentration of whole salts in 

aqueous solutions can be used to place bounds on the values of Δμh 46, but these are not 

direct measurements of Δμh.

A key challenge is that stable solutions are electroneutral 45. Accordingly, all measurements 

aimed at estimating the free energies of hydration of ionic species have to rely on parsing 

numbers derived from measurements on whole salts against those of reference salts 44– 

see the work of Grossfield et al.,41 and references therein. Alternatives rely on referencing 
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measurements for whole salts against the free energy of hydration of the proton 47 – a 

quantity plagued by considerable uncertainty given the interplay between Zundel and Eigen 

forms for the hydronium ion 48. One can also use direct measurements of neutralized 

versions of ionic species 35,42,43; however, extracting the parameters of interest ends up 

relying on explicit or implicit assumptions regarding proton hydration free energies to 

extract estimates of the desired free energies of hydration of ionic species. The upshot is 

that direct measurements of free energies of hydration of ionic species are not feasible, and 

hence one has to rely on the validity of models that are used to parse experimental data.

In 1996, in their work aimed at accounting for reaction-field effects in calculations of 

hydration free energies in continuum models, Marten et al.,49 compiled a set of values for 

hydration free energies for all the relevant model compounds. In the original ABSINTH 

model, 20 the values tabulated by Marten et al., were used for all uncharged solutes. 

For charged species, specifically the protonated versions of Arg and Lys sidechains and 

deprotonated versions of Asp and Glu sidechains, Vitalis and Pappu 20 used the numbers 

tabulated and parsed by Marcus 50 for a reference temperature of 298 K.

Wuttke et al.,19 used the rFoS values tabulated by Vitalis and Pappu 20 at 298 K, and 

tested three different models for generating T-dependent rFoS values of model compounds 

used to mimic the charged versions of Arg, Asp, Lys and Glu. Model 1 uses the measured 

enthalpies and heat capacities measured for the neutral compounds 35, i.e., protonated Asp 

and Glu and deprotonated Lys and Arg. These were then scaled by the rFoS values used by 

Vitalis and Pappu 20 for the charged variants. The scaled enthalpies and heat capacities were 

then deployed in Equation (1). Model 2 of Wuttke et al.,19 uses the enthalpies of hydration 

estimated by Marcus 51 and the heat capacities of hydration tabulated by Abraham and 

Marcus 52. As noted above, these numbers are not direct measurements. Instead, they were 

derived from measurements of whole salts and then parsed using different models to arrive 

at a consensus set of estimates for the enthalpies and heat capacities. Model 3 of Wuttke 

et al.,19 uses the same heat capacities as model 2, and empirical choices were made for the 

enthalpies based on “expectations for a variety of charged model compounds”.

The preceding discussion emphasizes the fact that direct measurements of the rFoS values as 

a function of temperature or of the enthalpies and heat capacities of hydration at reference 

temperatures are unavailable for model compounds that mimic charged versions of the 

sidechains of Arg, Asp, Lys, and Glu. To put the challenge into perspective, we note 

that models 1 and 2 of Wuttke et al.,19 yield values of 50.37 cal mol−1K−1 and 5.30 cal 

mol−1K−1, respectively for the Δcp of the acetate ion. The large variations are a reflection 

of the challenges associated with estimating temperature independent and temperature rFoS 

values for charged species.

Here, we pursue a different approach: we use AMOEBA, which is a second generation 

molecular mechanics based polarizable forcefield 29, in direct calculations of T-dependent 

rFoS values for all the relevant model compounds. The AMOEBA water model reproduces 

the temperature-dependent anomalies of liquid water 53 and yields accurate free energies of 

solvation for model compounds in aqueous solvents 29,54,55. Our goal was to have a common 

source for T-dependent rFoS values of the key model compounds that are used in ABSINTH. 
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The free energy calculations were performed at specific temperatures and the integrated 

version of the Gibbs-Helmholtz equation was used to the data to extract Δℎ and ΔcP. The 

values of Δℎ and ΔcP in conjunction with Equation (1) are used to calculate T-dependent 

rFoS values in ABSINTH-T.

Results and Discussion

Results from AMOEBA-based free energy calculations for model compounds:

We performed temperature dependent free energy calculations based on the Bennett 

Acceptance Ratio (BAR) free energy estimator 56 for direct investigation of how Δμh

varies with temperature. These calculations were performed for nineteen different model 

compounds that mimic the twenty sidechain moieties and the backbone peptide unit. Details 

of the parameterization of the AMOEBA forcefield for model compounds used in this study, 

and the design of the free energy calculations are provided in the methods section.

The temperature-dependent values for Δμh with error bars are shown in Table S1 of the 

Supporting Information. Figure S1 shows two sets of plots that compare the AMOEBA-

derived rFoS values at 298 K to direct measurements for uncharged molecules, and to 

inferred values from parsing of data for charged compounds. The calculated values are in 

good agreement with experimental data for uncharged molecules. This is reassuring because 

AMOEBA is parameterized directly from ab initio quantum mechanical calculations and 

no knowledge is used with regard to condensed phases or experimental data in condensed 

phases. We do observe deviations between the AMOEBA derived rFoS values of charged 

species and the inferred values from experimental data for whole salts (Figure S1). These 

deviations are in accord with the concerns expressed in the introduction. Inasmuch as the 

AMOEBA derived values are direct calculations, we use these numbers as a self-consistent 

set for uncharged and charged molecules alike.

Results from temperature dependent calculations of Δμh for the nineteen relevant model 

compounds are shown in Figure 1. The enthalpy of hydration (Δℎ) at T0 = 298 K and the 

temperature independent heat capacities of hydration (ΔcP) were extracted for each model 

compound by fitting the calculated temperature dependent free energies of solvation to 

the integral of the Gibbs-Helmholtz equation. The results are summarized in Table 1. As 

expected 37, the large positive heat capacity of hydration combined with the favorable 

enthalpies and unfavorable entropies lead to non-monotonic temperature dependencies for 

model compound mimics of the sidechain moieties of Ala, Val, Leu, Ile, and Pro. Similar 

results are observed for mimics of Phe, Tyr, and Trp. Of import, are the differences in 

hydration thermodynamics of the model compounds that mimic sidechains of Lys, Arg, 

Asp, and Glu. The model compounds 1-butylamine and n-propylguanidine that mimic the 

sidechains of Lys and Arg feature a duality of favorable enthalpy of hydration and large 

positive values for ΔcP. Finally, the deprotonated versions of acetic acid and propionic acid 

that mimic the deprotonated versions of Asp and Glu, respectively, have the most favorable 

free energies of hydration across the temperature range studied. Interestingly, these two 

solutes stand out for their distinctive negative heat capacities of hydration. Inferences based 

on integral equation theories 57 suggest that negative heat capacities of hydration derive 
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from a weakening of the favorable solute-solvent interactions and a reduction of the extent 

to which water molecules are orientationally distorted within and in the vicinity of the first 

hydration shell.

Incorporation of T-dependent rFoS values into ABSINTH:

In the ABSINTH model, each polyatomic solute is parsed into a set of solvation groups 
20,34. These groups are model compounds for which the free energies of solvation rFoS 

are known a priori. In this work, we follow Wuttke et al.,19 and generalize the ABSINTH 

model to incorporate temperature dependencies of model compound rFoS values. In this 

ABSINTH-T model, the total solvent-mediated energy associated for a given configuration 

of the protein and solution ions is written as:

Etotal = W solv(T ) + W el(T ) + ULJ + Ucorr;

(2)

Here, W solv({rFoS(T )}, {r}) is the many-body direct mean field interaction (DMFI) with 

the continuum solvent that depends on {rFoS(T )}, the set of temperature dependent 

rFoS values of model compounds that make up the solute and solution ions, and {r}
is the set of configurational coordinates for polypeptide atoms and solution ions. The 

term W solv({rFoS(T )}, {r})quantifies the free energy change associated with transferring 

the polyatomic solute into a mean field solvent while accounting for the temperature 

dependent modulation of the reference free energy of solvation for each solvation group 

due to other groups of the polyatomic solute as well as the solution ions. Additional 

modulations to the free energy of solvation of the solute due to interactions with charged 

sites on the polyatomic solute are accounted for by the W el term. In ABSINTH-T the 

term W el({r}, {υ}, ε(T )) is a function of the set of configurational coordinates {r}, solvation 

states {υ} of the solute atoms and solution ions, and the temperature dependent dielectric 

constant ε(T ). For ε(T ), we used the parameterization of Wuttke et al., 19. The effects of 

dielectric inhomogeneities, which are reflected in the configuration dependent solvation 

states, are accounted for without making explicit assumptions regarding the distance or 

spatial dependencies of dielectric saturation. The term ULJ is a standard 12-6 Lennard-Jones 

potential and Ucorr models specific torsion and bond angle-dependent stereoelectronic effects 

that are not captured by the ULJ term. The ABSINTH paradigm is optimally interoperable 

with the OPLS-AA/L (Optimized Potentials for Liquid Simulations – All Atom / with LMP2 

corrections) and the CHARMM 58 family of forcefields, and we use the OPLS-AA/L 59 

forcefield.

Intrinsic solvation (IS) approximation of ABSINTH-T as an efficient heuristic 

for discriminating IDPs with LCST versus UCST behavior

In the single chain limit, accessible in dilute solutions, polypeptides that show LCST phase 

behavior undergo collapse above a system specific theta temperature, whereas polypeptides 

that show UCST phase behavior expand above the system specific theta temperature 1,28. 

A GADIS-like strategy 21 for de novo design of polypeptide sequences with LCST phase 
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behavior would involve ABSINTH-T based all-atom simulations to evaluate whether an 

increase in temperature leads to chain collapse. In effect, the fitness function in a GA comes 

from evaluation of the simulated ensembles as a function of temperature. Computationally, 

this becomes prohibitively expensive. Accordingly, we pursued a pared down version of 

ABSINTH-T, which is referred to as the intrinsic solvation (IS) limit of the model 30. The 

IS limit was introduced to set up sequence and composition specific reference models with 

respect to which one can use mean-field models to uncover how desolvation impacts IDP 

ensembles 30,60. In effect, the IS limit helps us map conformations in the maximally solvated 

ensemble and assess how this ensemble changes as a function of temperature. In the IS limit, 

the energy in a specific configuration for the sequence of interest is written as:

EIS‐limit = W solv(T ) + ULJ + Ucorr;

(3)

The only difference between the full model, see equation (2), and the IS limit is the 

omission of the W el term. This increases the speed of simulations by 1-2 orders of 

magnitude depending on the system. Next, we asked if ensembles obtained from temperature 

dependent simulations performed in the IS limit could be used to obtain a suitable heuristic 

that discriminates sequences with LCST versus UCST behavior. These simulations were 

performed for a set of thirty sequences (see Table S2 in the supporting information) 

that were previously shown by Garcia Quiroz and Chilkoti to have LCST and UCST 

phase behavior 17. The results are summarized in Figure 2 and Figures S2 and S3 in the 

Supporting Information. As shown in panel (a) of Figure 2, the radii of gyration (Rg), 

suitably normalized for comparisons across different sequences of different lengths, appear 

to be segregated into two distinct classes. To test this hypothesis, we computed the slopes m
for each of the profiles of normalized Rg versus temperature. These slopes were calculated 

in the interval of simulation temperatures between 230 K and 380 K. The results, shown 

in panel (b) of Figure 2, clearly indicate that there indeed are two categories of sequences. 

Those that are known to show LCST phase behavior are colored in red, and they fall into 

a distinct group characterized by negative values of the slope m with an average value of 

−5.9 × 10−3 åK−1. Here, we use å to denote the units of Rg values normalized by the square 

root of the chain length N. In contrast, the slope for sequences that show UCST behavior is 

−1.4 × 10−3 åK−1. Given the range of sequences covered in the calibration based on the IS 

limit, we pursued an approach whereby we use slopes of RgN−0.5 versus T  as a heuristic to 

guide the design of a genetic algorithm to find new sequences with LCST phase behavior. It 

is worth noting that we use the slopes of RgN−0.5 versus T  plots instead of specific values 

of slopes of RgN−0.5 because: (a) a priori we would not know which temperature to choose 

for comparison of the Rg values; and (b) there is the formal possibility that the curves for 

RgN−0.5 versus T  obtained for different constructs might cross one another, making the issue 

raised in (a) more confounding.
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GA for the design of IDPs that are likely to have LCST phase behavior

We adapted the GADIS algorithm 21 to explore sequence space and discover candidate IDPs 

with predicted LCST phase behavior. To introduce the GA and demonstrate its usage, we 

set about designing novel sequences that are repeats of pentapeptide motifs. We focused on 

designing 55-mers, i.e., sequences with 11 pentapeptides. To keep the exercise simple, we 

focused on designing polymers that are perfect repeats of the pentapeptide in question. The 

GA used in this work is summarized in Figure 3 and the details are described below.

The GA based design process is initiated by choosing a random set of 200 sequences. 

Next, for each of the random sequences we performed temperature based replica exchange 
61 Metropolis Monte Carlo simulations in the IS limit. The simulation temperatures range 

from 200 K to 375 K with an interval of 25 K. From each converged IS limit simulation 

we computed the ensemble averaged Rg values as a function of simulation temperature T . 

These data were then used to evaluate the initial set of 200 values for the slope m using the 

following relationship:

m = 1
N0.5 n − 1

∑
i = 1

n − 1 Rg T i + 1 − Rg T i
T i + 1 − T i

;

(4)

Here, N is the number of amino acids in each sequence, n is the number of replicas used 

in the simulation, and T i is the temperature associated with replica i. The slope m was used 

to select 100 out of the 200 sequences that were chosen at random initially. The picking 

probability p was based on the following criterion:

p ∝ exp −c m − m0 ;

(5)

Here, c = 400 in units that are reciprocal to m, and m0 is set to −6.9 × 10−3 åK−1. This choice 

enables efficient evolution of the GA and a strong selection for sequences with negative 

values of m. The parameter c ensures numerical stability, guarding against the unnormalized 

value of p becoming too large or too small.

The chosen parent sequences were used to generate 100 child sequences by mutating a 

single, randomly chosen position to a randomly chosen residue in the repeating unit. To 

avoid the prospect of introducing spurious disulfide bonds, we do not include Cys residues 

either in the original parent pool or for propagating the child sequences. The GA was 

allowed to evolve for multiple iterations until the convergence criteria were met. These 

include the generation of at least 250 new sequences, each with a value of m being less than 

−5.0 × 10−3 åK−1. For the results presented here, six iterations were sufficient to meet the 

prescribed convergence criteria. The picking probability p determines the selection pressure 

encoded into the GA. There needs to be an optimal balance between the two extremes 

in selection pressure. High selection pressures can lead to early convergence to a local 

optimum whereas low selection pressures can drastically slow down convergence 62. The 

Zeng et al. Page 10

APL Mater. Author manuscript; available in PMC 2024 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



use of a single evolutionary operator can lead to a single sequence becoming the dominant 

choice. The number of iterations that pass before the emergence of a single sequence is 

known as the takeover time 62. High selection pressures lead to low takeover times and vice 

versa. The issue of a single dominant individual emerging is less of a concern in sequence 

design given the high dimensionality of sequence space. We tuned the choices for c and m0

to ensure that candidate sequences with putative UCST phase behavior can be part of the 

offspring, thus lending diversity to sequence evolution by the GA.

Panel (a) in Figure 4 quantifies the progress of the GA through each iteration of the design 

process. The quantification is performed in terms of cumulative distribution functions, which 

for each iteration will quantify the probability that the emerging sequences have associated 

slope values that are less than or equal to a specific value. The rightward shift in each 

iteration is indicative of the improved fitness vis-à-vis the selection criterion, which is the 

lowering of m.

Finally, we added a post-processing step to increase the likelihood that the designed 

sequences are bona fide IDPs. We used the disorder predictor IUPRED2 31 to quantify 

disorder scores for each of the designed sequences. IUPRED2 yields a score between 0 and 

1 for each residue, and only sequences where over half of the residues in the repeat are 

above 0.5 were selected as the final set of designed IDPs that are predicted to have LCST 

phase behavior. A particular concern with designing sequences for experimental prototyping 

is the issue of aggregation / precipitation. To ensure that designs were unlikely to create 

such problems, we calculated predicted solubility scores using the CamSol program 63 and 

found that all sequences that were selected after the post-processing step also have high 

solubility scores. This provides confidence that the designed IDPs are likely to show phase 

behavior via liquid-liquid phase separation above system-specific LCST values without 

creating problems of precipitation / aggregation.

Panel (b) in Figure 4 summarizes the mean number of each amino acid type observed across 

the final tally of 64 designed sequences that survive the post-processing step. These statistics 

are largely in accord with the observations of Garcia Quiroz and Chilkoti 17. Essentially 

every sequence has at least once Pro residue in the repeat. The beta branched polar amino 

acid Thr is the other prominent feature that emerges from the selection. The remaining 

selection preferences fall into four distinct categories that include: (i) a clear preference 

for at least one polar amino acid viz., His, Ser, Thr, Asn, and Gln; (ii) a clear preference 

for the inclusion of at least one hydrophobic amino acid viz., Ala, Ile, Met, and Val; (iii) 

negligible selection, essentially an avoidance of the acidic residues Asp and Glu, as well 

as the aromatic residues Phe, Trp, and Tyr; and finally (iv) a weak preference for Arg over 

Lys, which is concordant with the distinct temperature dependent profiles for Δμh (Figure 1) 

and the large positive heat capacity of Arg (Table 1). Interestingly, if we fix the positions 

of Pro and Gly and select for residues in XPXXG or other types of motifs that are inspired 

by previous work on elastin-like polypeptides, the design process often converges on repeats 

that are known to be generators of polypeptides with bona fide LCST phase behavior (see 

Figure S4 in the Supporting Information). This observation, and the statistics summarized in 

Figure 4b indicate that the design process uncovers sequences that are likely to have LCST 

phase behavior.
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The designed sequences fall into distinct sequence classes:

To quantify the degree of similarity among the set of designed sequences, we computed 

pairwise Hamming distances between all pairs of the 64 sequences. The resulting Hamming 

distances were then sorted, and sequences were clustered into distinct groups. Highly 

similar sequences have low Hamming distances, whereas the converse is true for dissimilar 

sequences. The resultant Hamming distance map is shown in Figure 5. The 64 sequences are 

unevenly distributed across nine major clusters. The actual sequences of the repeats, color-

coded by their Hamming distance-based groupings, are shown in Figure 6. There are two 

features that stand out. First, sequences deviate from being behavior. repeats of VPGVG, 

which is the elastin-like motif. Second, we find that different sequence permutations on 

identical or similar composition manifolds emerge as candidates for LCST phase behavior. 

This observation suggests that at least in the IS limit it is the composition of each motif 

rather than the precise sequence that underlies adherence to the selection pressure in the 

GA. Interestingly, our observations are in accord with results from large-scale in vitro 

characterizations of sequences with LCST phase behavior 64. These experiments show that 

composition, rather than the precise sequence, is a defining feature of LCST phase behavior 

– a feature that is distinct from sequences that show UCST phase behavior 3.

ABSINTH-T simulations of coil-to-globule transitions for select sequences:

We selected four sequence repeats viz., (TPTGM)11, (PTPLV)11, (LTPTA)11, and 

(RTAMG)11 for characterization using the full ABSINTH-T model and the calculation of 

phase diagrams. These sequences were chosen because they are representatives from each 

of the four major classes that emerge from the design process. Additionally, these sequences 

bear minimal resemblance to extant designs or naturally occurring sequences that are known 

to have LCST phase behavior.

Using all-atom, thermal replica exchange Monte Carlo simulations and the full ABSINTH-T 

model we performed simulations to test for the presence of a collapse transition for each of 

the four sequences. The results are shown in Figure 7. All sequences show a clear tendency 

to form collapsed conformations as temperature increases. This is diagnosed by there being 

a clear preference for values of RgN−0.5 being less than the theta state reference value of 2.5 

at higher temperatures and values of RgN−0.5 being greater than 2.5 at lower temperatures.

Analysis of coil-globule transitions, extraction of parameters, and calculation of phase 
diagrams using the Gaussian Cluster Theory:

The profiles of RgN−0.5 versus T  were analyzed to extract the theta temperature (Tθ) for each 

of the four sequences. For this, we used a method that described recently by Zeng et al., 
28. Only three of the four sequences have coil-globule transition profiles for which a robust 

estimate of the theta temperature can be made. The extent of expansion at low temperatures 

is modest and suggests that the apparent Tθ for (LTPTA)11 is outside the window where 

converged simulations can be performed. For the other three sequences namely, (PTPLV)11, 

(RTAMG)11, and (TPTGM)11, the estimated Tθ values are 210 K, 210 K, and 200 K, 

respectively.
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Next, we used the estimates of Tθ in conjunction with the Gaussian Cluster Theory of 

Raos and Allegra 32. We extracted the two and three-body interaction coefficients by 

fitting the contraction ratio αs calculated from simulations using the formalism of the 

Gaussian Cluster Theory and this yields sequence-specific estimates of B, the two-body 

interaction coefficient, and w, the three-body interaction coefficient (see panels (a) – (c) 

in Figure 8). These parameters were then deployed to compute full phase diagrams using 

the numerical approach developed by Zeng et al.,28 and adapted by others 65. The results 

are shown in panels (d) – (f) of Figure 8. The abscissae in these diagrams denote the 

bulk polymer volume fractions whereas the ordinates quantify temperature in terms of the 

thermal interaction parameter τB nK. Here, τ = T − Tθ
T  which is positive for T > Tθ, B is 

the temperature-dependent two-body interaction coefficient inferred from analysis of the 

contraction ratio, and nK is the number of Kuhn segment in the single chain, which we set 

to 8. Note that B is negative for temperatures above Tθ. Accordingly, the thermal interaction 

parameter is positive above Tθ as well as the critical temperature T c. Therefore, comparative 

assessments of the driving forces for LCST phase behavior can be gleaned by comparing 

the sequence-specific values of τB nK and the volume fraction at the critical point. It follows 

that the sequences can be arranged in descending order of the driving forces as (TPTGM)11, 

(RTAMG)11, and (PTPLV)11, respectively. Importantly, full characterization of the phase 

behavior using a combination of all-atom simulations and numerical adaptation of the 

Gaussian Cluster Theory shows that, in general, sequences designed to have LCST phase 

behavior, do match the predictions (see Figure 8).

Discussion

In this work, we have adapted a GA to design novel sequences of repetitive IDPs that we 

predict to have LCST phase behavior. Our method is aided by a learned heuristic that was 

shown to provide clear segregation between sequences with known LCST vs. UCST phase 

behavior. This heuristic is the slope m of the change in RgN−0.5 versus T  from simulations 

of sequences performed in the IS limit of the ABSINTH-T model. We use the heuristic 

in conjunction with IS limit simulations to incorporate a selection pressure into the GA, 

thereby allowing the selection of sequences that are “fit” as assessed by the heuristic to be 

predictive of LCST phase behavior.

Here, we presented one instantiation of the GA and used it to uncover 64 novel sequences 

that can be grouped into four major classes and several minor classes (Figure 6). We then 

focused on four sequences, one each from each of the four major classes and characterized 

temperature dependent coil-globule transitions. These profiles, analyzed in conjunction with 

recent adaptations of the Gaussian Cluster Theory 32, allowed us to extract sequence-specific 

values for theta temperatures, temperature dependent values of the two body interaction 

coefficients, and three-body interaction coefficients. We incorporated these parameters into 

our numerical implementation 28 of the Gaussian Cluster Theory to calculate full phase 

diagrams for three sequences. These affirm the predictions of LCST phase behavior and 

demonstrates sequence-specificity in control over the driving forces for thermoresponsive 

phase behavior.
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Our overall approach is aided by the following advances: We used the AMOEBA forcefield 
29 to obtain direct estimates of temperature dependent free energies of solvation for model 

compounds used to mimic sidechain and backbone moieties. These temperature dependent 

free energies of solvation were used in conjunction with the integral of the Gibbs-Helmholtz 

equation to obtain model compound specific values for the enthalpy and heat capacity of 

hydration.

The methods we present here are a start toward the integration of supervised learning 

to leverage information gleaned from systematic characterizations of IDP phase behavior 

and physical chemistry based computations that combined all-atom simulations with 

improvements such as ABSINTH-T, and theoretical calculations that allow us to connect 

single chain coil-globule transitions to full phase diagrams 28. The heuristic we have 

extracted from IS limit simulations helps with discriminating sequences with LCST versus 

UCST phase behavior. These simulations are sufficient for IS limit driven and GA aided 

designs of sequences that are expected to have LCST phase behavior. This is because 

composition as opposed to the syntactic details of sequences play a determining role of 

LCST phase behavior 3. Recent studies have shown that even the simplest changes to 

sequence syntax can have profound impacts on UCST phase behavior 66. This makes it 

challenging to guide the design of sequences with predicted UCST phase behavior that 

relies exclusively on IS limit simulations. We will need to incorporate simulations based 

on either transferrable 67 or learned coarse-grained models 68 as a substitution for the IS 

limit simulations. This approach comes with challenges because one has to be sure that 

the coarse-grained models afford the requisite sequence specificity without compromising 

efficiency. The work of Dignon et al., 69 is noteworthy in this regard. Their coarse-grained 

model, which is based on knowledge-based potentials parameterized to have temperature-

dependent interactions, have been shown to be very effective in discriminating sequences 

that are shown to have UCST versus LCST phase behavior 69. The conceptual underpinnings 

of their approach and that presented here derive from the work of Wuttke et al.,19. It would 

be interesting to combine or compare our approach to that of Dignon et al., in the context 

of designing novel IDPs and characterizing their phase behavior. We view these approaches 

as being complementary rather than competing ones and we expect that the approaches will 

have distinct advantages in different settings. The specific feature of our approach is that the 

calculations, at least for designing sequences with LCST phase behavior, do not ever become 

more complex than single chain simulations. This has value for achieving design objectives. 

It also has value for designing sequences that are not only thermoresponsive, but are also 

responsive to changes in pH, pressure, and other solvent parameters, especially since recent 

studies suggest that solution space scanning is a way to obtain efficient delineation of the 

desirable conformational and phase equilibria for IDPs 70.

The design of sequences with UCST phase behavior or sequences that combine UCST and 

LCST phase behavior, going beyond simple block copolymeric designs, will be of utmost 

interest for developing new IDP based materials. Additionally, we hope to build on improved 

understanding 71 of the impact of pH on conformational 72 and phase equilibria 73 of IDPs 

as well as the impact of metal chelation sites on phase behavior 74 to design sequences that 

combine the ability to exhibit phase behavior in response to orthogonal stimuli. Such efforts 

are of direct relevance to engineering orthogonal biomolecular condensates into simple 
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unicellular prokaryotic and eukaryotic cells, as has been demonstrated recently with the 

engineering a protein translation circuit into protocells based on a thermoresponsive elastin 

like polypeptide 75. Of course, the proof of the validity / accuracy of designs and predictions 

will have to come from experimental work geared toward testing the predictions / designs. 

These efforts – that leverage high-throughput expression of these de novo sequences in 

E. coli and in situ characterization of their phase behavior – are underway 76. Initial 

experimental investigations suggest that the designs reported here and those that will emerge 

from application of the methods deployed in this work do indeed show LCST phase 

behavior. Detailed reports of these experimental characterizations will follow in separate 

work.

Methods

AMOEBA force field parametrization for the model compounds of interest

To obtain values of free energies of solvation from AMOEBA simulations, we first derived 

the AMOEBA force field parameters for the model compounds listed in Table 1 of the main 

text. The parameters for N-methylacetamide, methane, methanol, ethanol, toluene and p-

Cresol are taken from previous work 55, which was released in the amoeba09.prm parameter 

file in the TINKER package 77. The parameters for other model compounds are derived 

following the standard automated protocol that has been established for the AMOEBA 

forcefield 78. Briefly, the protocol involves the following steps: Quantum chemical 

calculations were utilized to derive the electrostatic parameters; these include atom-centered 

partial charges, dipole and quadrupole moments. The molecular structures were fully 

optimized at MP2/6-31G* level of theory 79 followed by MP2/cc-pvtz calculations to obtain 

the electron density of the molecules. Then initial multipole parameters were determined 

via distributed multipole analysis calculation via GDMA (Gaussian Distributed Multipole 

Analysis) program 80. With the charges being fixed, the dipole and quadrupole moments 

were further fit to the electrostatic potential generated at MP2/aug-cc-pvtz level on a grid of 

points outside of the molecules, where the least square restrained optimization was used to 

keep the multipole moments close to their DMA (Distributed Multipole Analysis) derived 

values while providing improved electrostatic potentials. The poledit and potential 

programs of TINKER package 77 were used in this process.

The Thole damping 81 value of 0.39 and the standard AMOEBA atomic polarizabilities 

were assigned for each atom. Valence and van der Waals (vdW) parameters were directly 

assigned from the existing small molecule library and MM3 (Molecular Mechanics 3) force 

field, and the equilibrium values for bond lengths and bond angles were calculated from 

above QM-optimized geometry. Torsional parameters of rotatable bonds were obtained by 

comparing the conformational energy profile of QM and AMOEBA model, which includes 

electrostatics, polarization, vdW and valence terms. The dihedral angle was scanned by 

minimizing all torsions about the rotatable bond of interest at 30° intervals with restrained 

optimization at HF/6-31G* level of theory. The QM conformational energy was obtained as 

the single point energy at ωB97XD/6-311++G(d,p) level of theory 82. Torsions about the 

same rotatable bond that are also in-phase are collapsed into one set of parameters for the 

fitting, and the contributions are distributed evenly among the parameters. AMOEBA uses 
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the traditional Fourier expansion up to six-fold. Here, the force constant parameters were 

fit using 1, 2 and 3-fold trigonometric forms. All the quantum calculations were performed 

using the Gaussian 09 software package 83. The parametrization process has been automated 

in the Poltype (version 2) software 78. All the parameters derived above are appended as part 

of a separate text file in the supporting information.

Set up of molecular dynamics simulations using AMOEBA

All AMOEBA simulations were performed using the TINKER-OpenMM package 84. Each 

model compound was solvated in a cubic water box with periodic boundary conditions. 

The initial dimensions of the central cell were set to be 30×30×30 Å3. Following energy 

minimization, molecular dynamics simulations were performed using reversible reference 

system propagator algorithm integrator 85 with an inner time step of 0.25 ps and an 

outer time step of 2.0 fs in isothermal-isobaric ensemble (NPT) ensemble with the target 

temperature being between 273 and 400 K depending on the temperature of interest and 

the target pressure being 1 bar. The temperature and pressure were controlled using a 

stochastic velocity rescaling thermostat 86 and a Monte Carlo constant pressure algorithm 
87, respectively. The particle mesh Ewald (PME) method 88 with PME-GRID being 36 grid 

units, an order 8 B-spline interpolation 89, with a real space cutoff of 7 Å was used to 

compute long-range corrections to electrostatic interactions. The cutoff for van der Waals 

interactions was set to be 12 Å. This combination of a shorter cutoff for PME real space 

and longer cutoff for Buffered-14-7 potential has been verified 90 for AMOEBA free energy 

simulations 91. Snapshots were saved every ps. In simulations performed along a prescribed 

schedule for the Kirkwood coupling parameters (please see below), we use the same solvent 

box across the schedule. However, the velocities were randomized at the start of each 

simulation, and the first 1 ns of data were set aside as equilibration, and not used in the free 

energy estimations.

Free energy calculations

We used the Bennett Acceptance Ratio (BAR)56 method to quantify the free energies of 

solvation for the model compounds of interest. This method has been shown to be superior 

to other free energy estimators in terms of reducing the statistical errors in calculations 

of free energies of solvation 92. The solute is grown in using two different Kirkwood 

coupling parameters λvdW and λel that scale the strengths of solute-solute and solute-solvent 

van der Waals and electrostatic interactions. A series of independent molecular dynamics 

simulations were performed in the NPT ensemble for different combinations of λvdW and 

λel. A soft-core modification of the Buffered-14-7 function was used to scale the vdW 

interactions as implemented in Tinker-OpenMM 84. We used the following combinations for 

the scaling coefficients: [λvdW, λel] ≡ [0, 0], [0.1, 0], [0.2, 0], [0.3, 0], [0.4, 0], [0.5, 0], [0.6, 

0], [0.7, 0], [0.8, 0], [0.9, 0], [1, 0], [1, 0.1], [1, 0.2], [1, 0.3], [1, 0.4], [1, 0.5], [1, 0.6], [1, 

0.7], [1, 0.8], [1, 0.9], [1, 1]. For each pair of λ values, we performed simulations, each of 

length 6 ns, at the desired temperature and a pressure of 1 bar. We then used the TINKER 

bar program to calculate the free energy difference between neighboring windows defined 

in terms of the scaling coefficients. For every combination of λvdW and λel, we set aside the 

first 1 ns simulation as part of the equilibration process. Finally, for each model compound 
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we computed free energies of solvation at six different temperatures viz., 275 K, 298 K, 

323 K, 348 K, 373 K, 398 K, thus giving us the direct estimates of temperature dependent 

free energies of solvation that we sought from the AMOEBA based simulations. Note that 

398 K is above the boiling point of water. However, although the physical properties of 

water are accurately captured by the AMOEBA model, the finite size of the system, the 

starting conditions, and the finite duration of the simulations, even though they are in the 

NPT ensemble, imply that water at 398 K and 1 bar corresponds to superheated liquid water.

The temperature dependent free energies of solvation were fit to the integral of the Gibbs-

Helmholtz equation – see equation (1) in the main text. The free energy calculations provide 

us with direct estimates for rFoS(T ) at specific values for T . We set T0 = 298K and fit use 

non-linear regression to fit equation (1) to the calculated values for rFoS(T ). The regression 

analysis provides estimates of Δℎ and ΔcP, which we then use, in conjunction with equation 

(1) in the manner prescribed by Wuttke et al.,19 for all the ABSINTH-T based simulations.

Setup of Monte Carlo simulations in the IS limit and using ABSINTH-T

Thermal replica exchange 61 Monte Carlo simulations were performed using version 2.0 

of the CAMPARI modeling software (http://campari.sourceforge.net/). The temperature 

schedule for thermal replica exchange simulations that use the full ABSINTH-T model 

ranges from 200 K to 470 K with an interval of 25 K. A total 6×107 independent moves 

were attempted per replica. For systems in Figure 7, we performed three independent sets of 

thermal replica exchange simulations. All the simulations are performed within a spherical 

droplet with the radius of 100 Å. The other settings were identical to those used by Zeng et 

al., 28.

Details of the simulations including parameters, move sets, analyses, and design of the 

simulations are identical to those published in the recent work of Zeng et al., 28 . Briefly, 

we used the ABSINTH-T implicit solvent model and forcefield paradigm. The forcefield 

parameters are based on the abs_opls_3.2.prm set and they include the parameters for 

proline residues that were developed by Radhakrishnan et al., 93. However, they do not 

include the CMAP corrections introduced by Choi and Pappu 34. The AMOEBA-based rFoS 

values at 298 K were incorporated into the standard parameter file, and the temperature 

dependent rFoS values were calculated using the model compound specific values for Δℎ
and Δcp that were derived using the AMOEBA-based calculations of Δμh(T0) – see Table 1. 

As in our recent work 28, we used the temperature dependent dielectric constant prescribed 

by Wuttke et al., 19. Neutralizing counterions were added to the simulation droplet for 

polypeptides with net charges to neutralize the system. For the Na+ and Cl− ions we use 

the following values for Δμh at 298 K, Δℎ, and Δcp, respectively: {−74.6 kcal / mol, −80.2 

kcal / mol, −18.4 cal/mol-K} and {−87.2 kcal / mol, −99.2 kcal / mol, −11.7 cal/mol-K}. 

The Lennard-Jones parameters for Na+ and Cl− ions are default parameters in the original 

work of Vitalis and Pappu 20.

For the IS limit simulations, we turned off the W el term by setting the keyword SC_POLAR 

to be 0 in the key file. For each of the systems shown in Figure 2, we performed one set of 

replica exchange simulations, and the total of 6 × 107 independent moves were attempted 
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per replica. The temperature schedule for the replica exchange simulation is from 230 K to 

380 K with an interval of 30 K. Error bars in Figure 7 as well as Figures S2 and S3 are 

reported as standard deviations of the distribution of mean Rg values for each simulation 

temperature.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Temperature dependent free energies of solvation Δμh for model compounds that 
mimic sidechain and backbone moieties.
The dots show results from free energy calculations based on the AMOEBA forcefield. 

These values are then fit to the integral of the Gibbs-Helmholtz equation (see main text) 

and the results of the fits are shown as solid curves. Parameters from the fits, which include 

estimates for Δℎ and ΔcP are shown in Table 1. In the legends we use the three letter 

abbreviations for each of the amino acids. Here, BB in panel (d) refers to the backbone 

moiety, modeled using N-methylacetamide, that mimics the peptide unit.
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Figure 2: Analysis of IS limit simulations yields a heuristic that discriminates sequences with 
UCST vs. LCST phase behavior.

(a) Plots of RgN−0.5 vs. temperature, extracted from IS limit simulations, for sequences 

shown by Garcia Quiroz and Chilkoti to have UCST (dashed lines) vs. LCST (solid lines) 

phase behavior. The sequences are shown in Table S1 in the supporting information. (b) 

The slope m of the RgN−0.5 vs. temperature profiles. These slopes fall into two distinct 

categories, one for those with LCST phase behavior (blue) and another for those with UCST 

phase behavior (red). The gray region corresponds to the values of m that clearly demarcate 

the two categories of sequences.
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Figure 3. Workflow of the GA.
We use this approach to design sequences that are predicted to have LCST phase behavior. 

A final post-processing step is added to filter our sequences that do not have high disorder 

scores (see main text).

Zeng et al. Page 25

APL Mater. Author manuscript; available in PMC 2024 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Calibration of the performance of the GA and statistics for compositional biases that 
emerge from application of the design protocol.
(a) The cumulative distribution function (CDF) of the slope for sequences in each iteration. 

There is an overall shift for these CDFs towards smaller m-values with each iteration of the 

GA. (b) The mean number of each residue in the 64 designed IDPs that are predicted to 

show LCST phase behavior. Residues in panel (b) are grouped into categories based on their 

sidechain chemistries i.e., basic residues in blue bars, acidic residues in red bars (although 

these are not visible since they are not selected), polar residues in green, Pro and Gly in 

purple, and aliphatic as well as aromatic residues in cyan. Within each group, the bars are 

sorted in descending order of the mean numbers of occurrences in the designs.
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Figure 5. Identification of distinct sequence classes using a Hamming distance-based assessment 
of pairwise sequence similarities.
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Figure 6. Sequences of 64 designed IDPs that emerge from application of the GA.
Different colors except black are used to label sequences in the same group.
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Figure 7. Profiles of normalized RgN−0 . 5
 vs. temperature for four IDPs designed using the 

GA.
The results shown here use the full ABSINTH-T model. The theta temperatures extracted 

from these simulations are presented in the main text.
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Figure 8. Results from application of the Gaussian Cluster Theory for calculating full phase 
diagrams.
Panels (a-c) show the contraction ratio profiles for (PTPLV)11, (RTAMG)11 and 

(TPTGM)11, respectively. Blue dots are the contraction ratios calculated from all atom 

simulations with ABSINTH-T at temperatures from 200 K to 350 K and red curves are 

fits to these data using the Gaussian Cluster Theory that lead to estimates of the sequence-

specific values for the temperature dependent two-body interaction coefficient B and the 

temperature independent three-body interaction parameter w. Panels (d-f) show the full 

phase diagrams, including the binodal, spinodal, and the estimated location of the critical 

point for (PTPLV)11 , (RTAMG)11 and (TPTGM)11, respectively.
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Table 1:
Results from free energy calculations that summarize values obtained for Δμh at 298 K.

Data for the temperature dependence of Δμh were fit to equation (1), setting T0 = 298 K, to extract values for 

Δℎ and ΔcP.

Residue / unit Model compound
Δμh

kcal/mol
Δh

kcal/mol
ΔcP

cal / mol-K

Ala methane 1.63 −2.57 48.93

Val / Pro propane 1.85 −6.33 105.80

Leu 2-methalpropane 2.22 −5.92 109.38

Ile n-butane 2.00 −6.34 105.23

Met ethyl methyl thioether −1.92 −10.11 71.10

Phe toluene −0.17 −8.68 102.24

Cys methanethiol −1.04 −5.84 43.61

Tyr p-Cresol −5.85 −15.62 71.09

Trp 3-Methylindole −4.46 −12.67 108.10

Ser methanol −5.08 −10.41 10.43

Thr ethanol −4.98 −12.55 50.06

Asn acetamide −8.61 −14.37 6.18

Gln propionamide −8.39 −16.06 51.47

His 4-methylimidazole −10.04 −17.60 38.01

backbone / Gly N-methylacetamide −8.33 −16.10 44.73

Arg n-propylguanidine −47.62* −57.24* 69.39

Lys 1-butylamine −60.49* −70.37* 29.98

Asp acetic acid −89.91* −98.65* −44.97

Glu propionic acid −86.16* −96.62* −8.75

*
As with the default ABSINTH model, in ABSINTH-T, the rFoS values, and therefore the Δℎ values we used for ionizable residues are offset 

from the calculated Δμh by a fixed constant of −30 kcal/mol. This, as was shown in the original work, is required to avoid the chelation of solution 

ions around ionizable residues. This “feature” remains a continuing weakness of the ABSINTH paradigm and one that we hope to remedy through 
suitable generalization of the model used in ABSINTH to interpolate between fully solvated and fully desolvated states.
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