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Abstract

Skin-interfaced electronics is gradually changing medical practices by enabling continuous and 

noninvasive tracking of physiological and biochemical information. With the rise of big data and 

digital medicine, next-generation electronic skin (e-skin) will be able to use artificial intelligence 

(AI) to optimize its design as well as uncover user-personalized health profiles. Recent multimodal 

e-skin platforms have already employed machine learning (ML) algorithms for autonomous 

data analytics. Unfortunately, there is a lack of appropriate AI protocols and guidelines for 

e-skin devices, resulting in overly complex models and non-reproducible conclusions for simple 

applications. This review aims to present AI technologies in e-skin hardware and assess their 

potential for new inspired integrated platform solutions. We outline recent breakthroughs in AI 

strategies and their applications in engineering e-skins as well as understanding health information 

collected by e-skins, highlighting the transformative deployment of AI in robotics, prosthetics, 

virtual reality, and personalized healthcare. We also discuss the challenges and prospects of 

AI-powered e-skins as well as predictions for the future trajectory of smart e-skins.
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1. Introduction

Electronic skin (e-skin) refers to integrated electronics that mimic and surpass the 

functionalities of human skin. Due to their flexible and conformable nature, e-skins may be 

placed on various robotic and human bodily locations for continuous biosignal monitoring, 

rivaling bulky medical equipment in the fields of robotics and prosthetics1,2. Engineered 

for self-contained operational frameworks, e-skins act as human-machine interfaces for 

smart bandages3, wristbands4, tattoo-like stickers1, textiles5, rings6, face masks7, as well as 

customized smart socks and shoes8 for various applications. Compared with conventional 

rigid devices, soft e-skin patches seamlessly interface with the skin, achieving a conformal 
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and stable contact that minimizes motion-induced artifacts and wearing discomfort9. The 

convenience and flexibility of applying these electronic patches to any target location, while 

continuously and noninvasively measuring multiplexed signals via mobile connectivity, has 

surpassed conventional point-of-care to become an ideal form of wearable systems. With 

the increasing demands for remote and at-home care, e-skins have been applied for personal 

fitness4,10, virtual reality11,12, telemedicine and early disease detection13,14, as well as 

COVID-19 tracing and monitoring15,16.

While emerging e-skin is revolutionizing robotics and medical practices by continuously 

monitoring multimodal data17, data analysis is playing an increasingly important role 

for interpreting the large, complex biological profiles generated from various sensors. 

Conventional analysis of e-skin data largely relies on human supervision, where signal 

processing and data evaluation is time-consuming and interpreted from a restricted point 

of view1,4,5. There is an unmet demand between e-skin hardware and efficient data 

analysis solutions. Recent developments in deep learning have permitted the evaluation 

and even generation of big data for health applications18. Artificial intelligence (AI) can 

reveal medical insights that are challenging to acquire with traditional data-analytics while 

providing accurate predictions that can mimic or even surpass human expertise19–21. AI 

together with the rapidly growing interest in health monitoring and remote robotics have 

become the main catalyst pushing forward advanced e-skin innovations.

This review details the recent developments of e-skin technologies with a particular focus 

on AI (Fig. 1 and Table 1). We first present the general machine learning (ML) pipeline 

for e-skin applications, along with a summary of emerging sensors. We then discuss how 

machine intelligence could revolutionize the field of e-skin by optimizing manual designs 

and facilitating high-accuracy task assistance and decision-making. We then highlight 

use cases for AI-powered e-skins in human-machine interfaces (HMI) and personalized 

healthcare. Finally, we will discuss the challenges and prospects for e-skins in the era of AI 

and big data.

2. Emerging Sensor Landscape in E-skins for Data Acquisition

In a typical ML pipeline (Fig. 1), raw data collected from e-skins will first be preprocessed 

for feature extraction. Popular preprocessing techniques include filtering, smoothing, 

downsampling with a sliding window, dimensionality reduction, as well as baseline removal 

and normalization22. An ML algorithm is then selected for the specific objective (Table 

1), which can be supervised or unsupervised, classification or regression, discriminative or 

generative22. During model selection, one needs to account for data availability20. While 

simple models may struggle to represent the expected trends, complex models on simple 

datasets may lead to non-reproducible conclusions, particularly in health applications when 

a small dataset may be specific to a particular demographic.

Training of an intelligent ML system requires a substantial amount of high-quality data. 

Unlike conventional clinical laboratory tests that are performed discretely and infrequently, 

emerging wearable sensors provide the ability for continuous acquisition of digitalized data 

with multiplexed sensors, allowing for more personalized care by analyzing deviations in 
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individual baselines23. This approach greatly mitigates the biases from environmental factors 

such as diet, age, stress, and drug use, yielding a more appropriate and accurate medical 

diagnostic tool based on the individual rather than population-level statistics. Here we focus 

on the two primary sensing domains in e-skin platforms (Fig. 2), namely physical and 

biochemical sensors, highlighting their key usage and applications.

Strain and pressure sensing

A commonly integrated sensor, strain sensors track the resistance of electronic materials 

under deformations. These sensors enable the detection of large distortions from bodily 

motions24 and small deviations for tactile perception25. As another motion sensing 

mechanism, pressure sensors utilize piezoresistive materials or capacitors with a pressure 

cavity. Similar to strain sensors, pressure sensors could be customized to perform pressure 

mapping26,27, user interactive visualization28,29, as well as tactile sensing30,31.

To fully mimic skin sensations, strain and pressure sensors are often combined for haptic 

interfaces in HMI applications11. When placed near arteries, strain and pressure sensors can 

detect vital signs such as blood pressure and heart rate variability32. Recent studies have also 

utilized piezoelectric sensor arrays, which capture acoustic vibrations from tissue for blood 

pressure monitoring and imaging applications33–35.

Temperature monitoring

While elevated core body temperatures often result from infections and overheating, a 

decreased temperature can lead to faltered physiological systems and even organ failure. 

Although e-skin sensors are commonly applied to monitor skin surface temperature, arrays 

of sensors could be used in conjunction to minimize local deviations and display an accurate 

temperature profile36. Further studies have investigated correlating skin surface temperatures 

to core body profiles37. In addition, temperature data is of significance for calibrating 

biochemical sensors, as chemical reactions are sensitive to their operating temperature38.

Electrophysiology

Electrophysiology refers to measuring the electrical activities of tissues and organs. 

Common skin-interfaced biopotential modalities involve electrocardiography (ECG)39, 

electromyography (EMG)40,41, and electroencephalography (EEG)42,43. These signals are 

measured by placing arrays of electrodes on the skin at different locations. E-skin-based 

electrophysiology sensors commonly show high performance due to the conformal contact 

between the soft e-skin and body with a low contact impedance.

Biochemical sensing

E-skin-based biochemical sensors have been widely applied to analyze molecular 

biomarkers (e.g., electrolytes44, metabolites4, amino acids10, neurotransmitters45, and 

proteins46) in human biofluids including sweat4,10,13,47, saliva48, and interstitial fluids49. 

Common biosensing signal transduction strategies include electrochemical and optical 

detection mechanisms50. These sensors can be applied for a wide range of biomedical 

applications including fitness tracking, metabolic monitoring4, cystic fibrosis diagnosis44, 

gout management13, and stress assessment51.
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Substance monitoring

In addition to natural biofluid components, e-skins can also detect substances that are 

extrinsic to the normal metabolism such as drugs52 (e.g., vancomycin53 and levodopa54,55), 

alcohol56,57, caffeine58, and heavy metals59. By focusing on personalized pharmacokinetics 

instead of population studies, continuous therapeutic drug monitoring can improve treatment 

outcomes and reduce side effects through dosage adjustments, which are especially 

important for drugs with narrow therapeutic windows52. Moreover, e-skin sensors can serve 

as a rapid screening tool for drug abuse60,61.

Gas sensors

Human breath contains rich molecular information and could provide a noninvasive 

health profile like biofluids. Many volatile organic compounds (VOCs) in the breath are 

diagnostic biomarkers for infectious, metabolic, and genetic diseases62,63; For example, 

breath carbon monoxide is linked to neonatal jaundice and breath ammonia and nitric oxide 

are connected to asthma64. Integrated sensor arrays known as electronic noses (e-noses) 

have been developed to detect humidity, VOCs and other gas components in exhaled breath 

and the surrounding environment65. Combined with ML, these sensors can distinguish 

complex chemical signatures66,67, and have been employed for breath-based individual 

authentication68, soil nitrogen assessment69, and evaluating food freshness70.

Environmental monitoring

Environmental risk factors, including chemical threats and pathogenic biohazards, pose 

a risk to both the human body and safe robotic operations. AI-powered e-skins have 

expanded their scope to encompass not only monitoring the human body but also the 

surrounding environment. During remote operations, e-skin systems can detect trace 

amounts of dangerous compounds and provide environmental feedback without human 

exposure2. A combination of biochemical sensors was integrated into an e-skin patch 

attached to a robotic arm that could detect hazardous materials including nitroaromatic 

explosives, pesticides, nerve agents, and infectious pathogens with autonomous ML-based 

decision-making algorithms2.

3. AI-generated e-skin

Human skin possesses outstanding mechanical properties, including flexibility, 

stretchability, toughness, along with multifunctional sensing abilities. However, there are 

many unsolved material challenges to replicating key properties in artificial skin71. AI 

has been proposed to optimize materials discovery and sensor designs to autonomously 

redesign new e-skin patches71,72. AI can be integrated into the materials design process in 

three phases (Fig. 3). The first phase involves model prediction and patch design based on 

functional requirements: size, weight, lifetime, cost, and other material specifications; the 

second phase entails computational modeling and experimental validation; and lastly, the 

improvement of current databases and model accuracies based on the results.
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Emerging materials and e-skin designs

The conventional selection of substrate materials typically involves natural materials such 

as cotton and silk, which are known for their biocompatibility, low-cost, and comfort. 

However, natural materials have inherent limitations in stretchability and tunability. Material 

scientists and chemists consequently synthesize soft materials based on a combination of 

manual designs, drawing inspiration from nature, and leveraging previous material examples 

as references73–75. Some material design strategies include ultrathin tattoo-like substrates1, 

applying serpentine interconnects76, and using nature-inspired skin adhesion to realize high 

fiducial signal collection77. Meanwhile, these materials and designs require extra validation 

to characterize their properties, and many synthetic processes involve toxic precursors and 

require careful biocompatibility tests.

With a diverse availability of material candidates, designing or selecting a material with 

desired properties for a specified task is becoming increasingly challenging78. ML provides 

an attractive pathway to explore new materials and identify promising candidates with 

targeted properties, including alloy materials79, nanoparticle synthesis80, and electronic 

materials81. To date, a number of publicly available databases have been launched for 

simulating functional materials and recipes71. Moreover, ML can also be used to optimize 

and explore material synthesis, such as extracting text from scientific literature and giving 

synthesis protocol suggestions82,83.

AI can help select and optimize fabrication methods based on material characteristics. 

Additionally, ML is can assist in quality control during mass fabrication, such as with 

jet printing of electronic circuits84. In addition to materials and fabrication methods, ML 

is also capable of optimizing e-skin designs. For example, a ML-based circuit designer 

has enabled transistor sizing adjustments using graph convolutional neural networks85. 

While conventional e-skin designs from planar designs typically do not conform to curvy 

surfaces86, ML can guide structural designs of e-skins by finding kirigami designs for 3D 

shape-adaptive e-skins and pixelated planar elastomeric membranes more efficiently than 

mechanical simulations87,88.

As most data from material experiments are discrete and noisy with high variance, it 

is necessary to preprocess the data through interpolating missing data and rebalancing 

biased training sets89,90. Additionally, many material science fields are not data-rich, and 

anthropogenic biases in the limited dataset may hinder model generalization90. This can 

be particularly true for collecting data about novel materials for human subjects. It is 

anticipated that a more standardized materials dataset and pipeline will speed up materials 

development and discovery72.

Signal processing and augmented sensor performance

While traditional intuition-driven sensors are based on situation-specific experimental trials 

and time-consuming numerical simulations, ML algorithms can search for optimal sensor 

architectures as a function of required material properties with an accelerated and efficient 

prediction time66,91. In addition to conventional task-specific and labor-intensive signal 

processing, ML is capable of fast, robust data analysis to provide transferrable frameworks 

Xu et al. Page 5

Nat Mach Intell. Author manuscript; available in PMC 2024 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



under different initial conditions. For example, ML can perform signal denoising92, multi-

source separation93, artefact identification and elimination94. Two crucial guidelines for 

e-skin sensors are sensitivity and selectivity to the target biomarker. Indistinctive signal-

to-noise ratios and overlapping detection between targets and interferents are two main 

bottlenecks for applying sensors for trace-level molecular detections in complex biomatrices. 

Substrates with similar structures to the target in biofluids could lead to confounding 

results. ML has been illustrated to improve the specificity and sensing limit of detection 

in multimodal sensing95. Many biochemical sensors involve enzymes that have a narrow 

working range, while AI algorithms could surpass signal saturation and calibrate non-linear 

sensors in a dynamic testing environment96.

Motion artifacts are another major source for background noise in e-skins. While extensive 

analog and digital signal processing techniques have been applied to reduce artifacts and 

improve data quality39,97, they typically involve manual circuit designs and simulations, 

which entail high costs and are not easily expandable to different scenarios. ML can be 

used for precise data acquisition by compensating noise and defects in wearable sensors98. 

In addition, data acquisition hardware can be fundamentally redesigned for optimal sensing 

with an intelligent platform67,99. The improved sensing capabilities as well as compact 

systems will fundamentally enhance sensor performance through iterative analysis of data-

driven sensing outcomes91.

4. AI-powered e-skin for HMIs

HMIs enable the interaction between users and robotics, and have become crucial in 

remote robotic teleoperations. As the demand for precise and intuitive robotic control 

continues to grow, research has been turning its attention from conventional control theory 

towards a more immersive and interactive interfacing platform. The emerging AI-powered 

e-skins are creating new paradigms for robotic control and human commanded perception 

(Fig. 4)100,101. AI could quickly analyze multimodal data from e-skin patches and make 

autonomous decisions to manipulate robotics and provide human aid, which has already 

bridged the gap between human and machine interactions.

Tactile perception

Tactile perception decodes and transmits physical information to a computer system about 

hand movements, gestures, and force recognition102. The associated robotics can then 

accomplish tasks such as object grasping103, shape detection2, and object identification104. 

Haptic sensors are therefore widely adopted as a fundamental element for e-skin based 

HMI systems, which are usually built with arrays of strain and pressure sensors or 

electrophysiology electrodes such as surface EMG electrodes to capture complex hand 

movements41,102,105,106, producing a large quantity of continuous data. Real-time haptic 

perception with the aid of AI has made tremendous progress in dynamic whole-body 

movements106, gesture interpretation107, tactile recognition105,108, as well as object 

manipulation and detection109.

Xu et al. Page 6

Nat Mach Intell. Author manuscript; available in PMC 2024 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Prosthetics and robotic feedback

Developing prostheses that rehabilitate motion for people with disabilities is a crucial goal 

in machine intelligence. Prosthetics typically involve a large sensing area with robotic 

feedback, where the e-skin extracts motion or audio data and ML algorithms analyze 

and control robotic operations accordingly. Strain and pressure sensors are fundamental 

components for actuators and grippers in robotics, enabling tactile feedback for enhanced 

functionality105,110. A variety of prosthetic solutions have been developed for different 

scenarios, including facial expressions111, robotic control and feedback2, translation of 

sign language into speech112, personalized exoskeleton walking assistance113, as well as 

providing steering and navigation assistance for people with impaired vision114.

Smart robotic hands for prosthetics can also be applied for task assistance in healthy 

people. For example, a nanomesh-based e-skin integrated with meta-learning could assist 

rapid keyboard typing with a few-shot dataset103. Smart e-skin also has the potential for 

driving assistance by monitoring the driver’s state and preventing sleep deprivation-related 

accidents115, which provides an alternative solution for vehicle automation.

Hearing aid and natural language processing (NLP)

Verbal communication with machines is another promising e-skin application that 

relies on AI, where a voice-user interface leveraging NLP is highly intuitive and 

convenient. Numerous studies have developed resonant acoustic sensors in e-skin for 

voice recognition116, vocal fatigue quantification117, and voice control of intelligent 

vehicles118. These sensors integrate resistive or piezoelectric membranes as sensing 

components116,119,120, which converts human hearing range of around 20 Hz to 20 kHz. 

The customized frequency filtering can identify physical activities with different intrinsic 

frequency bands119, or filter acoustic vibrations against human perspirations and background 

noise121. Voice sensors may also serve as a security device for biometric authentication120.

Virtual and augmented reality

Virtual reality (VR) and augmented reality (AR) create a virtual environment where visual 

and auditory stimuli replicate sensations in the physical world11. E-skin provides an 

additional sensation of touch due to its unique skin interface122. For example, wireless 

actuators could be integrated in e-skins for programmed localized mechanical vibrations11. 

Such mechanical feedback can also form a closed-loop HMI system for motion capturing 

and vivid haptic feedback when interacting with virtual objects123,124. To further implement 

gesture controls for VR, a textile glove was developed with ML algorithms to classify 

hand patterns in various VR games125. AI could accelerate machine vision processing by 

utilizing a simple image sensor array matrix126, empowering a high frame rate in VR 

visualizations. Additionally, some pioneering demonstrations have illustrated the potential of 

odor generators for olfactory VR applications127.

5. AI-powered e-skin for healthcare and diagnostics

E-skin with arrays of integrated sensors can record the health profile of an individual in 

remote and community settings, detect aberrant physiology over time, and unveil health 
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distributions at a population level. ML has aided diagnostics by identifying complex 

relationships between input physiological information and disease states18,23,128. There 

is a growing trend using AI-powered e-skins to address the growing demands in health 

monitoring and diagnosis (Fig. 5). Emerging AI has shown promising capabilities in 

approaching expert-level diagnosis, which could reduce the rate of misdiagnosis and create 

great clinical and market potential. For complex disease syndromes without established 

biomarkers, these ML algorithms could also facilitate our understanding in biomarker 

discovery, psychological predictions, and precision therapy.

Cardiovascular monitoring

Heart failure can worsen progressively over days while current telemedicine tools are 

not sufficient to detect acute exacerbations. AI-powered e-skins hold the promise of 

specialist-level diagnosis for cardiac contractile dysfunction or arrhythmias129,130. E-skins 

can integrate multiple modalities and facilitate the rapid evaluation of hemodynamic 

consequences of heart failure131. ML has been widely adapted for data analysis to extract 

cardiac parameters, such as blood pressure predictions132,133 and left ventricular volume34. 

AI-based e-skin is anticipated to spot small and gradual cardiovascular changes over time 

and facilitate automatic diagnosis in a timely manner131. Such an approach will also 

alleviate the clinical load of physicians by reducing unnecessary hospital consultations.

Stress and mental health

Stress and mental health are significant problems for global health but their assessments 

rely heavily on subjective questionnaires. Pioneering studies for mental health predictions 

have been introduced including stress134–136 and fatigue137–139, but most studies still 

focus on commercial wearables such as watches which only monitor physical vital signs 

and are prone to motion artefacts. Several pioneering studies have demonstrated dynamic 

monitoring of the stress hormone cortisol using e-skin devices51,140. Next generation e-skins 

will combine physiological data with molecular signatures and perform multimodal data 

analysis141. By identifying previously unrecognized associations between health patterns 

and stress risk factors142, smart multimodal e-skins with the aid of AI have the potential to 

model risk associations and unveil stress outcomes for mental health.

Biomarker discovery

The development of AI is driving advances in both medical diagnosis and fundamental 

studies. Given the quantity of data in clinical studies, ML could be a transformative 

technology for data-driven biomarker discovery143. ML-based algorithms perform automatic 

data analysis for biomarker prediction, including skin disease144, dysphagia145, seizure146, 

and COVID-19147, where multiparametric monitoring based on multimodal e-skin platforms 

can reveal correlations between sensors and target outputs148. For diseases such as 

Parkinson’s disease where no known effective biomarker is available, ML has the potential 

to unveil underlying correlations from the multi-dimensional data14.
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Personalized therapy

The development of drug and metabolic monitoring using e-skins has also aided in 

personalized therapy. AI-powered e-skins could benefit drug dosage personalization, where 

multimodal data coupled with ML models can be applied to evaluate pharmacokinetics 

and pharmacodynamics for personalized dosage149,150. Additionally, dynamic treatment of 

a disease affected by the individual’s history and current course of action is well suited for 

the sequential decision-making used in reinforcement learning151. Prospective cohort studies 

involving physiological, metabolomic, environmental, and genomic data are anticipated 

to pave the way for the advancement of personalized therapy through the integration of 

AI-powered electronic skin.

6. Challenges and outlook

With the continued development and innovations in AI-powered e-skin, next generation 

e-skin is expected to aid prosthetics and the discovery of diseases, yet there remains 

several major bottlenecks including data acquisition and handling, data security, and data 

generalization.

Data handling in both quantity and quality has become a challenge for model deployment. 

AI-driven data analytics are typically data-hungry, and training models with high prediction 

accuracy depends on large amounts of high-quality labeled data. Mature models such as 

decision trees and support vector machines demonstrate great accuracy and reproducibility 

and find extensive applications, yet their reliance on structured and manually labeled data 

poses high acquisition costs. In contrast, unsupervised learning unveils hidden patterns in 

unlabeled data, albeit with reduced accuracy and constrained applicability. Recent advanced 

models such as transformers have shown success in language processing and generation, 

but these models are of high complexity and require pre-training over big data sources 

using resource-intensive computing, with the underlying mechanisms still insufficiently 

understood. The time-continuous datastream from e-skin sensors carrying large amounts 

of unlabeled and heterogeneous data poses high demand for data processing and system 

integration. This necessitates a fast and cost-effective system for collecting and transmitting 

data to cloud-computing-based e-skins, while high-performance computing and storage units 

with low latency are required for in-situ applications23. Despite the growth in AI-driven 

e-skins, comprehensive regulatory frameworks addressing data accessibility, ownership, and 

security are yet to be fully established. This is crucial as public perception of data privacy 

risks can directly influence the adoptability of wearable devices, while user acceptance to 

disclose their medical information is uncertain at present152. While latest ML algorithms 

such as GPT-4 models have been reshaping the world, the success of large language model 

(LLMs) stems from the enormous amount of publicly available Internet data, which may 

not apply to the privately restricted medical datasets. Accessing regulated medical records 

and data poses significant challenges as they are highly restricted and obtaining them entails 

stringent protocols and privacy considerations153, and data differences may potentially result 

in divergence from training accuracy. The FDA has recently updated its guidelines for 

handling sensitive medical data after announcing a new Office of Digital Transformation 

in 2021. Data generalization originating from built-in bias is another issue that could 
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harm marginalized groups of people, which warrants special consideration for adopting 

ML models in medical practice. AI models can often make mistakes, but it is unknown 

who or what will be held responsible for controversial behaviors and outcomes of AI 

systems. Although models will become more powerful and capable over time, to what extent 

people can trust the ML predictions is still unknown153. The ability of fact-checking versus 

proof-reading may be beyond the expertise of users without clinical expertise20. Studies on 

interpretation and explanation of AI may be a possible solution154.

From an e-skin perspective, another challenge is collecting high-quality biochemical data. 

Dealing with enormous amounts of rapidly fluctuating unlabeled data during continuous 

health monitoring may have adverse effects on model learning. Minimizing motion-induced 

artifacts from both the human and robotic bodies have required a strong interface and 

wearing comfort, and therefore poses need for strict materials properties, including 

biocompatibility, permeability, durability, mechanical strength, and conformability9,22. 

Biocompatible and non-toxic materials with strong, breathable and reversible skin adhesion 

are highly desirable for prolonged daily wearing, where the durability lifetime may depend 

on the specific use case50. Data accuracy can be improved by implementing multimodal 

sensing using one integrated platform to reduce defects from a single sensor47. Moreover, 

despite their high correlation with multiple potential diseases155, many biochemical sensors 

struggle with low sensor stability, the necessity for frequent calibrations, and difficulty 

in detecting low-concentration biomarkers, which cannot provide as high-quality data as 

electrophysiological ones. Additionally, sensor embodiment and system integration is of 

concern when considering power sources, sensor arrays, signal processing and wireless data 

transmission22. Most integrated e-skins are powered through bulky rechargeable lithium-ion 

batteries; however, more research into wireless and low-power energy harvesting and storage 

is needed to develop fully flexible and sustainable e-skins38,156. These challenges have 

opened the door to exciting new opportunities in improving electronic sensors, optimizing 

patch designs, integrating cloud storage, protecting data privacy157, and interpreting model 

accuracy154. The interdisciplinary collaborations among materials scientists, chemists, 

engineers, physicians, and data scientists are crucial to realize the full potential of the e-skin. 

The emergence of AI-powered e-skin marks a new era in the field of robotics and healthcare 

and is envisioned to transform the way human interacts with robotics and revolutionize 

medical diagnostics.
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Figure 1. 
Overview of AI-powered electronic skin (e-skin) and machine learning (ML) pipelines. 

E-skin provides access to human information or serves as an interface to robotics by 

continuous and noninvasive monitoring of multimodal physical and biochemical sensors. 

The data stream is constructed and transformed into a standard numerical format through 

data preprocessing and feature extraction. Based on the intrinsic data properties, different 

ML algorithms can be selected and trained, allowing for real-world applications. GPT, 

generative pre-trained transformer.
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Figure 2. 
Emerging sensors in e-skin for health monitoring and robotics. The combination of physical 

and biochemical sensors provides access to force sensing and mapping, electrophysiology, 

as well as biochemical substances in body fluids and surroundings.
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Figure 3. 
ML optimizations for e-skin designs. AI algorithms serve as an alternative pathway to 

optimize and explore materials synthesis, facilitate automatic mass-fabrication, and optimize 

current sensor limits.
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Figure 4. 
AI-powered e-skin for human-machine interfaces (HMI). ML bridges the gap between 

humans and machines through task assistance, robotic control, and virtual reality.
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Figure 5. 
AI-powered e-skins for personalized healthcare and predictive disease diagnostics. a, 

Cardiovascular health can be investigated through continuous monitoring of one’s cardiac 

activities (ECG, pulse waveforms, etc.) with e-skins. Integrating autonomous analysis 

through AI algorithms creates further potential for screening urgent conditions such as 

arrythmias. b, The application of AI-powered e-skin can extend to mental health which is 

a complex event that involves behavioral and physiological responses, metabolic changes, 

and fluctuations in a number of stress hormones. PTSD, post-traumatic stress disorder. 

c, Biomarker discovery through AI algorithms will further aid in finding new missing 

information potential links between measured sensor data and health status of individuals. d, 

Personalized therapy can be achieved by measuring individual’s genetic and metabolic status 

using e-skins to develop highly targeted medicine for medical treatment.
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Table 1.

Representative studies that used ML-powered electronic skin for tasks.

Category E-skin platform Targeted parameters ML models Learning objectives Ref Year

ML for e-skin design

Soft membrane Shape NN 3D shapes 88 2022

Graphene on 
polyimide Electrical conductivity DT Jet printing design 84 2022

Graphene kirigami Stretchability NN Kirigami design 87 2018

ML for sensor 
enhancement

E-nose VOC gas RF Multi-gas 
classification

66 2022

Stretchable 
synaptic patch

Neuromorphic 
computing NN Handwritten digits 

(MNIST)
99 2022

Field-effect 
transistors Hg2+ sensors Linear regression Hg2+ sensor 

calibration
96 2021

Colorimetric strips Amine gas CNN Food freshness 70 2020

ML for HMI

Substrate-less 
nanomesh Strain at finger joint Transformer Hand tasks 103 2023

Graphene artificial 
throat Strain from throat CNN Basic speech 

elements
121 2023

Stretchable patch Strain from throat NN Throat activities 119 2023

Stretchable patch
Force reception using 
fibre Bragg grating 
transducers

CNN Tactile force mapping 158 2022

Smart finger Triboelectric output on 
different surfaces LDA Materials 109 2022

Stretchable 
magnetic patch

Force reception using 
Hall effect in magnetic 
film

NN Tactile sensing with 
force self-decoupling

159 2021

Flexible patch EMG mapping on 
forearm

Hyperdimensional 
computing Hand gestures 102 2021

Textiles Strain on different parts 
of body CNN Whole-body poses 106 2021

Ultrathin flexible 
patch

Phonetic spectrum from 
piezoelectric acoustics

Gaussian mixture 
model

Biometric 
authentication

120 2021

Stretchable patch Strain at finger joint, 
hand gesture images

NN for sensor, CNN 
for image Hand gestures 107 2020

Stretchable patch Strain at finger joints SVM Sign-to-speech 
translation

112 2020

Flexible patch
Thermal conductivity, 
contact pressure and 
temperature

NN Objects 104 2020

Stretchable patch Strain mapping on face kNN Facial kinematics 111 2020

Textile glove Full-hand strain 
distribution CNN Tactile signatures of 

hand grasp
105 2019

Stretchable patch EEG CNN EEG frequency 43 2019

ML for healthcare

Stretchable cardiac 
imager

Ultrasound image of 
heart CNN Left ventricular 

volume
34 2023

Stretchable patch Vocal intensity and 
energy dose CNN Vocal fatigue 117 2023
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Category E-skin platform Targeted parameters ML models Learning objectives Ref Year

Microfluidic skin 
patch Heart rate, alcohol Linear regression Behavior impairment 57 2023

Graphene tattoos Pulse on wrist AdaBoost Systolic and diastolic 
pressure

133 2022

Radio sensor Night nocturnal 
breathing signals NN Parkinson’s disease 14 2022

Commercial EEG 
helmet EEG CNN Drowsiness 139 2021

Textiles Pulse on wrist NN Systolic and diastolic 
pressure

132 2021

Smart bandage Vital signs from throat CNN Cough-like events for 
COVID-19

147 2021

Epidermal 
electronic tattoos

ECG, respiration and 
GSR DT Fatigue 137 2020

Textiles Strain on leg RF Running fatigue 138 2020

Commercial leads ECG CNN Stress 136 2018

Commercial wrist 
watch Vital signs on wrist SVM Stress 135 2017

Commercial wrist 
watch and straps Vital signs on wrist Logistic regression Stress 134 2012

NN, neural networks. CNN, convolutional neural networks. DT, decision tree. RF, random forest. SVM, support vector machine. LDA, linear 
discriminant analysis. kNN, k-nearest neighbors. MNIST, Modified National Institute of Standards and Technology database.
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