
RESEARCH ARTICLE

Interpreting polygenic score effects in sibling

analysis

Jason FletcherID
1*, Yuchang Wu2, Tianchang Li2, Qiongshi LuID

3

1 La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, United States of

America, 2 Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI,

United States of America, 3 Department of Biostatistics and Medical Informatics, University of Wisconsin-

Madison, Madison, WI, United States of America

* jason.fletcher@wisc.edu

Abstract

Researchers often claim that sibling analysis can be used to separate causal genetic effects

from the assortment of biases that contaminate most downstream genetic studies (e.g. poly-

genic score predictors). Indeed, typical results from sibling analysis show large (>50%)

attenuations in the associations between polygenic scores and phenotypes compared to

non-sibling analysis, consistent with researchers’ expectations about bias reduction. This

paper explores these expectations by using family (quad) data and simulations that include

indirect genetic effect processes and evaluates the ability of sibling analysis to uncover

direct genetic effects of polygenic scores. We find that sibling analysis, in general, fail to

uncover direct genetic effects; indeed, these models have both upward and downward

biases that are difficult to sign in typical data. When genetic nurture effects exist, sibling

analysis creates “measurement error” that attenuates associations between polygenic

scores and phenotypes. As the correlation between direct and indirect effect changes, this

bias can increase or decrease. Our findings suggest that interpreting results from sibling

analysis aimed at uncovering direct genetic effects should be treated with caution.

Introduction

Due to the high correlation in genetic measurement between offspring and parents, it is diffi-

cult to separate “direct” genetic effects of offspring genotype on phenotype with “indirect”

genetic effects of parental genotype on offspring phenotype. This issue was demonstrated

empirically by Kong et al. [1], who showed that associations between non-transmitted parental

alleles and offspring phenotype explained approximately 30% of the r-squared of the offspring

polygenic scores (PGS) on offspring phenotype in the case of educational attainment.

Researchers have since made the conjecture that sibling models can solve this and other

problems, since biological siblings share the same parents and therefore may share the same

indirect genetic effects. The more general claim of the usefulness of siblings and the associated

“genetic lottery” proceeds the results of indirect genetic effects (see Fletcher and Lehrer [2, 3]).

Indeed, many subsequent analyses have demonstrated important reductions in the estimated

associations between PGS and phenotypes after controlling for sibling fixed effects, often on
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the order of 50% (Trejo and Domingue [4], Selzam et al. [5]). This theory and evidence have

increased researchers’ confidence in interpreting sibling models as producing causal (direct)

genetic effects—both in upstream GWAS analysis (Howe et al. [6]) and in downstream PGS

analysis (Belsky et al. [7]). For example, in a recent review article, Harden and Koellinger [8]

state:

“Because genotypes are assigned randomly with respect to all other variables, an association

between sibling differences in PGS and sibling differences in phenotype is powerful evi-

dence that the PGS is tapping genetic variants with a causal influence on the phenotype.”

While intuitive, these interpretations have not been subject to theoretical and empirical

scrutiny. We use family data (quads) combined with simulation evidence to show that this

intuition relies on very simple models of genotype-to-phenotype associations, where direct

and indirect genetic effects are separable (and thus differenced out in sibling models). While

researchers have suggested that using a sibling model would purge the indirect effects, we

show that, even in our simplified cases, researchers have failed to recognize the dual role of

indirect genetic effects as a confounder that produces both positive and negative bias on the

estimated effects of offspring PGS. We build the intuition for the negative bias by considering

a scenario where all SNP effects are causal and there are no indirect genetic effects and show

that sibling analysis leads to attenuated estimates of PGS effects. Essentially, the attenuation

stems from sibling analysis’ elimination of both confounding and true genetic effects. We then

extend this scenario to allow correlation between indirect and direct genetic effects to show

that the combination of biases in general can be negative or positive and depend on: the

strength of indirect effects, the correlation between indirect and direct genetic effects, and also

the extent to which sibling’s environments are correlated. In summary, even our simple data

generating process shows that sibling analysis is unlikely to produce accurate estimates of

direct effects and, worse, does not suggest clear correctives or bounding exercises that are

effective.

Result

The detailed simulation procedures are described in the Materials and methods section.

Briefly, we draw the direct and indirect effect sizes for each SNP as well as the environmental

effect for each individual following a specific set of parameters in each scenario. Then, we

regressed the phenotype constructed by adding up the components above on the theoretical

PGS estimation that can be obtained as outputs of genome-wide association studies (GWAS).

We compared either the regression coefficient or R2 of both between- and within-family

regression to imitate real PGS analysis and investigate the impact of changes of parameters in

the data generating process on the performance of sibling PGS analysis. Table 1 provides a

summary of the inputs and analysis output across our scenarios below.

Special case of no indirect genetic effects: The influence of the correlation

of environmental effects between siblings

We performed simulations under the simple scenario where the phenotype has no indirect

genetic effect contribution (σi = 0); one example phenotype for this scenario could be height,

which has been shown to have minimal indirect genetic effects (Kong et al. [1]). In this case,

from Formulas (10, 11) in the method section, we can see that sibling PGS models are not

guaranteed to estimate the variance component of direct effects even when genetic nurture is

absent. This is because the elimination of family effects that occur in sibling models also
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eliminate true direct genetic effects. Our formulas show that the elimination of these true

genetic effects can (only) be offset in the (unlikely) case where siblings have a correlation of 0.5

in their environmental effects (ρe = 0.5); in this case, the correlation in both environmental

and genetic effects are the same. In general, when siblings have a correlation in their environ-

mental effects higher than 0.5, the R2 of sibling PGS model is overestimated; when this correla-

tion is below 0.5, the R2 of sibling PGS model is underestimated (Fig 1). Since the

environmental effect is assumed to be independent of genetic components in this study, this

component does not interact with other potential factors. Therefore, to focus on the influence

of other parameters (and not ρe), we will assume that siblings have a correlation of 0.5 in their

environmental effects throughout the rest of the simulations.

The influence of indirect genetic effects

In order to focus attention on the impacts of non-zero indirect genetic effects, we performed

simulations with the following settings: the variance of direct genetic effects normalized to 1,

the variance of the environmental effect is assumed to be three times the variance of the direct

genetic effect, and no correlation between direct and indirect genetic effects. As we increase

the contribution of indirect genetic effects, we found that sibling PGS models produce esti-

mates of the direct effect variance component that is attenuated compared to the estimates for

the population (i.e. non-sibling) PGS models. As we showed in Fig 1, with the assumption of

environmental correlations of 0.5 (ρe = 0.5) and no indirect genetic effects, the first column of

results in Fig 2 are estimated accurately (see Formulas (10, 11)). However, as indirect genetic

effects are introduced in Columns 2 and 3, the downward bias of the sibling model appears

and becomes larger. This is consistent with empirical results from other work cited above.

However, since the ratio of these estimated R2 values compared with the expected direct effect

component variance is smaller than 1, our results demonstrate that the sibling PGS model

does not accurately recover the direct genetic effects. The figure also shows that the population

(i.e. non-sibling) model cannot recover direct effects, and that the estimated effects are biased

upward (as is commonly understood).

We now further consider the regression that sibling PGS model (i.e. sibling difference model)

performs: DYj �
dDPGSj . When taking the difference in sibling phenotypes, the genetic nurture

effect cancels out since full siblings share the same parents (formula (6)). Whereas in estimated

PGS, the transmitted genetic nurture remains different between siblings (formula (7)).

To better understand the impact of indirect genetic effects on sibling PGS analysis, we plot

the ratio of sibling model R2 estimated with dDPGSj compared with the R2 estimated with the

sibling difference in the direct genetic effect component (formula (12)). This compares the reg-

ular sibling model estimated R2 with the R2 of true direct effects. Note in the third box in each

Table 1. Summary of calculations for regression estimates.

Study design Regression model Regression coefficient R2

Between family Y~PGSmix 1 s2
dirþs

2
indþ2rg

s2
dirþ2s2

indþ2rgþs
2
e

Sibling difference ΔY~ΔPGSmix s2
dirþrg

s2
dirþs

2
indþ2rg

ðs2
dirþrg Þ

2

ðs2
dirþs

2
indþ2rg Þ½s

2
dirþ2s2

e ð1� reÞ�

Sibling difference ΔY~ΔPGSdir 1 s2
dir

s2
dirþ2s2

e ð1� reÞ

PGS regression coefficients and R2 in different study designs. Different study designs can be used for PGS regression analysis. In a “between family” analysis, phenotype

Y is regressed on PGS. In a sibling difference design, the phenotype difference between siblings is regressed on their PGS difference. PGS can be calculated using either a

mixture of direct and indirect SNP effects (PGSmix) or using only the direct effect (PGSdir).

https://doi.org/10.1371/journal.pone.0282212.t001
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group, we see results below 1. Thus, the indirect genetic effect reduces the regression R2 to a

larger extent as its contribution to the phenotype increases. We might speculate, then, a

smaller reduction in regression R2 for a phenotype with moderate indirect genetic effects (e.g.

asthma) compared to a phenotype with likely larger indirect genetic effects (e.g. education)—

but both estimates would be affected.

The influence of correlation between direct and indirect effects

To add an additional element to our analysis, we considered the case of non-zero correlation

between indirect genetic effects and direct genetic effects. As above, we constructed

Fig 1. The effect of environmental correlation re between siblings on the R2 of PGS regression analyses from

different study designs. y-axis shows the ratio of R2 from between family design (red) or sibling difference design

(blue) vs. the proportion of phenotypic variance due to the direct effect in the population. Each boxplot shows the

simulation results of 200 repeats. In each repeat, we simulated the true SNP effect sizes (βdir and βind) from a bivariate

normal distribution, and the environmental effect sizes for siblings from a bivariate normal distribution. We then

calculated the phenotype, PGS, and run the linear regression analyses. In this figure, the PGS was calculated using

(βdir+βind). The variance of direct effect size and the variance of the environmental effect size were fixed at 1 and 3,

respectively. The indirect effect size and the correlation rg between direct and indirect effect were both set to 0. When

re = 1, the environmental terms for two siblings become identical, thus their phenotypic difference becomes ΔPGSdir
and their PGS difference is also ΔPGSdir since here we set βind = 0. Thus, its R2 is always 1 in each repeat whereas the

proportion of the phenotypic variance by the direct effect is ¼. Therefore, the ratio is always 4 for the last setting as

shown in the figure.

https://doi.org/10.1371/journal.pone.0282212.g001
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phenotypes with the variance of direct effect normalized to 1, the variance of indirect genetic

effect as either a half or equal to the variance of the direct genetic effect, and the variance of

environmental effect as three times the variance of the direct genetic effect. However, we now

relax the assumption from above that the correlation between indirect and direct genetic

effects is zero and instead varied the correlation between direct and indirect effects between -1

and 1. We found that sibling PGS models, in general, produce estimates of the of direct genetic

effects that are smaller than estimates from population (i.e. non-sibling) PGS models (Fig 3).

We note that previous literature viewed reductions in estimated direct effect contribution

using sibling models as evidence that these models were eliminating confounds (such as indi-

rect genetic effects), whereas our results show that sibling models actually underestimate direct

genetic effects in many scenarios.

Fig 2. The effect of indirect effect size variance on the R2 of PGS regression analyses from different study designs.

y-axis shows the ratio of R2 from between family design (red) or sibling difference design (blue) vs. the proportion of

phenotypic variance due to the direct effect in the population. The yellow box shows the ratio of R2 from the sibling

difference design based on PGSmix vs. that in a sibling difference design based on PGSdir. Each boxplot shows the

simulation results of 200 repeats. In this figure, the variance of direct effect size and the variance of the environment

effect size were fixed at 1 and 3, respectively. The correlation rg between direct and indirect effect sizes and the

correlation re between two sibling’s environments were fixed at 0 and 0.5, respectively. When the indirect effect is 0

(both s2
ind and βind are 0), the sibling difference analyses become identical regardless of whether the PGS is computed

based on (βdir+βind) or βdir, thus the yellow box is fixed at 1 when s2
ind ¼ 0 in this figure.

https://doi.org/10.1371/journal.pone.0282212.g002
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We show results for two settings that (as above) fix the variance of direct genetic effects at 1

and the variance of indirect genetic effects at 0.5 or 1. We find that increasing the correlation

between direct and indirect effects increases the ratio of sibling PGS estimates and the direct

effect component variance from below 1 (underestimate) to above 1 (overestimate). R2 can be

viewed as a function of the correlation between direct and indirect effects given specific values

of other parameters, such as the variance of indirect genetic effects. Thus, the ratio of the sib-

ling PGS estimate and the direct effect variance component (defined on the population) does

not change linearly (formula (10), Appendix 3 in S1 File). Whether we allow indirect genetic

effects to be modest (0.5) or large (1) and also allow correlations between the direct and indi-

rect genetic effects, we find that it is rare that sibling analysis will accurately estimate direct

genetic effects (i.e the horizontal line at 1, where the estimated R2 is equal to the expected R2).

We note that we fine large variations in the bias: the results suggest that the estimated R2 can

be up to twice the size of the true R2 or less than half the size of the true R2, depending on the

data generating process. We also note again that we have assumed in these analyses that the

environmental effects are correlated at 0.5 between siblings. Otherwise, these results would

“shift down”, as we show in Fig 1.

The performance of PGS regression coefficients

As another important measurement of PGS model performance, regression coefficients have

also drawn attention in past research. One study showed that between-family PGS regression

would yield coefficients that are biased upwards and within-family PGS regression would yield

coefficients that bias downwards (Trejo & Domingue [4]). To verify this in our framework, we

estimated regression coefficients in our framework on a wider value range of rg (i.e. the corre-

lation between indirect and direct genetic effects). We also noted a divergence between our

Fig 3. The effect of correlation rg between the direct and indirect effect sizes on the R2 of PGS regression analyses from different study

designs. y-axis shows the ratio of R2 from between family design (red) or sibling difference design (blue) vs. the proportion of phenotypic

variance due to the direct effect in the population. The yellow box shows the ratio of R2 from the sibling difference design based on PGSmix vs.

that in a sibling difference design based on PGSdir. Each boxplot shows the simulation results of 200 repeats. In this figure, the variance of direct

effect size and the variance of the environmental effect size were fixed at 1 and 3, respectively. The correlation between two sibling’s

environments was fixed at 0.5. The two panels correspond to the results when the variance of the indirect effect size is 0.5 and 1, respectively.

https://doi.org/10.1371/journal.pone.0282212.g003
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framework and previous results in terms of the standardization of PGS. Our framework does

not standardize the PGS variable in the estimation, so that the between-family regression will

estimate a coefficient of 1, which equals the theoretical value when the direct effect variance

component is accurately recovered (Fig 4). For the sibling PGS model, with unstandardized

PGS estimates, regression coefficients could be over- or under-estimated depending on the

ratio of indirect and direct effect variance and the value of their correlation. Overall, the larger

the ratio is, the more the sibling regression coefficients converge to a downwardly biased

value. The larger the correlation is, the more the sibling regression coefficients are biased

downwards (Fig 4). We also confirmed these with our derivation and rewrite Trejo and Dom-

ingue’s derivation without standardization of PGS (Appendix 5 in S1 File).

Discussion

To examine the performance of the estimated R2 of sibling PGS analysis in recovering the

direct genetic effect variance component from a data generating process that includes both

direct and indirect genetic effects, we performed our analysis on simulated phenotypes based

on genotypic data of quads in the SPARK cohort. Our analytical results demonstrated that sib-

ling PGS analysis generally does not yield R2 that accurately reflects the direct effect variance

component.

In our simplified scenario where a phenotype is not impacted by indirect genetic effects,

sibling PGS analysis can yield R2 estimates that are biased either upward or downward,

depending on the environmental correlation between siblings. In this study, we assumed a

genotypic correlation of 0.5 between siblings which set a scale for the variance of the difference

between their estimated PGS. More importantly, when taking the difference in sibling pheno-

types, the indirect genetic effect that is shared between siblings is eliminated, leaving only the

Fig 4. The effect of correlation rg between the direct and indirect effect sizes on PGS regression coefficients from different study designs. y-

axis shows the ratio of the PGS regression coefficients from between family design (red) or sibling difference design (blue) vs. 1, which is the

effect size of the PGSdir (see Table 1). We used the same simulation settings as those used in Fig 3. Since we set the variance of the direct effect

size s2
dir ¼ 1, when the variance of the indirect effect size is also 1 and their correlation is -1, the direct and indirect effect sizes become exactly the

opposite of each other, therefore PGSmix = 0 and the linear regression cannot be run under this scenario. Therefore, we do not include results

when s2
ind ¼ 1 and ρg = −1.

https://doi.org/10.1371/journal.pone.0282212.g004
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difference in direct genetic effects and difference in environmental effects. However, PGS con-

structed from GWAS estimates will, in most cases, contain both direct and indirect effects.

When taking a difference between siblings, the direct genetic effects and transmitted genetic

nurture effects remain in the beta weights that are used to construct the PGS in downstream

analysis. Given these issues, three aspects of the sibling PGS model are found to generate

biases.

First, based on the composition of the sibling phenotype difference, sibling PGS regressions

only retains the proportion explained by direct genetic effects and environmental effect differ-

ences. Essentially, when the phenotype is affected by indirect genetic effects, the total variance

of the phenotype is reduced when using sibling analysis compared to the variance defined in

population-based PGS regression. Even with accurate direct effect PGS, sibling PGS still fails

to fully recover the direct effect variance component for the population.

In order to examine the impact of other factors, we turned to comparing the sibling R2 esti-

mates with the theoretical sibling R2 when regressing phenotype difference on true direct PGS

difference. We found that, as the contribution of indirect genetic effects increases from 0, the

ratio of estimated sibling R2 and the theoretical sibling R2 of direct genetic effects continues to

decline from its target (unbiased) value of 1. This means the indirect genetic effect component

is similar to “measurement error” in this case, attenuating the direct effect estimates. Addition-

ally, when the contribution of direct, indirect, and environmental effects is held fixed, changes

in the correlation between direct and indirect genetic effect will also lead to bias in sibling R2.

As the correlation reduces from 1 to -1, the estimated R2 is increasingly biased downwards.

We label this as an “LD-like” relationship between direct and indirect genetic components,

which survives sibling differencing or sibling fixed effects analysis. When compared with the

direct effect variance component defined at the population level, the correlations between indi-

rect and direct genetic effects can lead to either downward or upward bias. Similarly, we make

slight adjustments on the previous results from Trejo and Domingue that focus on bias of

regression coefficients (rather than R2) obtained from sibling PGS analysis. Our conclusion

shows that sibling analysis continues to be biased upwards or downwards in a way that

depends on a combination of variances of direct genetic effects, indirect genetic effects, and

their correlation.

It is important to note that our results are from a “simple” data generating process, where

we assumed no assortative mating, no gene-environment interaction or correlation, and sib-

ling genetic correlations of exactly 0.5. Adding these other elements to the framework will fur-

ther complicate evaluating the performance of the sibling analysis, but, we suspect, will lead to

additional biases rather than fewer. Thus, our view of the results from a relatively simple

framework is that sibling analysis, coupled with conventional PGS, can rarely uncover a key

target—direct genetic effects. Solving this issue will rely on dissecting each individual variant’s

direct and indirect effects and calculating respective PGS for direct and indirect genetic com-

ponents, possibly through sibling GWAS and multi-generational analysis (Howe et al., [6]; Wu

et al., [9]).

Materials and methods

Data

We leverage family-based genetic data from quads (2 parents, 2 children) in the SPARK

(Simons Foundation Powering Autism Research for Knowledge) study (Feliciano et al [10]) in

order to seed the model with realistic genetic information. Specifically, we obtained 7,026,791

SNPs from 1813 families with two parents and two full siblings. Following previous work

(Huang et al. [11]), we filtered out single nucleotide polymorphisms (SNPs) with a minor allele
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frequency less than 1%, with an imputation quality score less than 0.8, that are duplicated, or

strand-ambiguous. Then we pruned the SNPs with linkage disequilibrium (LD) with a pair-

wise r2 higher 0.1. From the remaining 127,310 SNPs, we randomly picked 10,000 SNPs as

causal variants and simulated phenotypes based on them.

Model specifications

We assume a data generating process for the phenotype Yij that includes both direct and indi-

rect genetic effects. Our model follows Kong et al. [1] by assuming additive separable direct

(βdir,k) and indirect (βind,k) genetic effects that are drawn from a bivariate normal distribution

with a correlation parameter. The indirect genetic effect behaves as a family fixed effect that is

shared between siblings. We denote the genotype of the ith child/sibling in the jth family as Gij;

the genotype of mother and father in the jth family as Gm,j and Gp,j respectively. We can write

the model as

Yij ¼
XM

k¼1
Gijkbdir;k þ

XM

k¼1
ðGm;jk þ Gp;jkÞbind;k þ eij; ð1Þ

where eij is the environmental residual. We assume equal indirect paternal and indirect mater-

nal effect, both being βind,k. We note that this parameter can also be viewed as the average indi-

rect parental effect if maternal and paternal effects are in fact unequal (Wu et al. 2021). We

also assume that the direct and indirect effect sizes of the kth SNP on the phenotypes follow

bdir;k

bind;k

 !

� MVN
0

0

 !

;
1

M
s2
d rdisdsi

rdisdsi s2
i

 ! !

: ð2Þ

where s2
d represents the variance of the direct effect component of the phenotype; s2

i represents

the variance of the indirect effect component of the phenotype; and ρdi represents the correla-

tion between direct and indirect genetic effect sizes; M denotes the number of causal SNPs

with direct effect size βdir,k and indirect effect size βind,k. For families whose genotypes are used

in the simulation, we assume that the environmental effects for the 2 children in the jth family

also follow a bivariate normal distribution

e1j

e2j

 !

� MVN
0

0

� �

;
s2
e res

2
e

res
2
e s2

e

 ! !

; ð3Þ

where s2
e represents the variance of environmental effects shared between 2 siblings; and ρe

represents the environmental correlation between 2 siblings. We further assume all genotypes

involved are standardized.

Formula (1) can be rearranged to separate the effects of transmitted (Gij) and non-transmit-

ted (Nij) alleles as

Yij ¼
XM

k¼1

Gijkðbdir;k þ bind;kÞ þ
XM

k¼1

Nijkbind;k þ eij: ð4Þ

We assumed transmitted and non-transmitted alleles to be independent (supported by geno-

typic data, Appendix 1 in S1 File). It is clear to see from the rearrangement that a GWAS on

phenotype will capture both the true direct and indirect genetic effects. Following the conven-

tions in the literature, we constructed the downstream PGS estimation with the theoretical

GWAS estimated allelic weights bbk ¼ bdir;k þ bind;k, assuming all causal SNPs are accurately

estimated, which we denote as dPGSij ¼
PM

k¼1
Gijk

bbk (Lee et al. [12]). We obtained between-
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family PGS regression coefficients γOLS and r-squared R2
OLS by regressing the phenotype of

one sibling from each family on their estimated PGS as

Y1j ¼ gOLS
dPGS1j þ eOLS;j: ð5Þ

Derivations on the theoretical regression coefficient and r-squared for between-family analysis

are included in the Appendix 2 in S1 File. For the sibling analysis, we took the difference in the

phenotype between two siblings in a family as the within-family outcome

DYj ¼ Y1j � Y2j

�
XM

k¼1

G2jkbdir;k þ ðGm;jk þ Gp;jkÞbind;k þ e2j

 !

¼
XM

k¼1

ðG1jk � G2jkÞbdir;k þ ðe1j � e2jÞ:

ð6Þ

The shared indirect genetic effect is eliminated between siblings. We took the difference in the

estimated PGS between two siblings in a family as the within-family predictor

dDPGSj ¼ dPGS1j �
dPGS2j ¼

XM

k¼1

ðG1jk � G2jkÞðbdir;k þ bind;kÞ: ð7Þ

Then we obtained within-family PGS regression coefficients γΔ and r-squared R2
Δ by regress-

ing the difference in the phenotype on the difference in the estimated PGS as

DYj ¼ gD
dDPGS þ eD;j: ð8Þ

When we assume siblings from the same families have a correlation of 0.5 in their genotypes,

G1jk and G2jk (also supported by the genotypic data we use for simulation, details in Appendix

1 in S1 File), the within-family regression coefficients and r-squared can be derived as

gD ¼
s2
d þ rdisdsi

s2
d þ s

2
i þ 2rsdsi

ð9Þ

and

R2

D
¼

ðs2
d þ rdisdsiÞ

2

ðs2
d þ s

2
i þ 2rdisdsiÞ∗ðs2

d þ Varðe1j � e2jÞÞ
: ð10Þ

To quantify the performance of both analyses on recovering the direct effect component, we

compared the outcome regression coefficient with 1 (as direct effect component in model (2)

takes a coefficient of 1) and r-squared with the proportion of direct effect variance component

defined on population base

h2
dir;OLS ¼

sd
2

sd
2 þ 2si

2 þ 2rdisdsi þ se
2
: ð11Þ

We also compared the outcome r-squared of sibling analysis with the proportion of direct

effect variance component defined on sibling differences which allowed us to better under-

stand the impact of the change of parameters on sibling analysis alone. That is, we performed
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regression

DYj ¼ gdir;D½
XM

k¼1

ðG1jk � G2jkÞbdir;k� þ edir;D;j ð12Þ

and obtained

h2
dir;D ¼

sd
2

sd
2 þ Varðe1j � e2jÞ

: ð13Þ

(Appendix 4 in S1 File)

Simulation. We generated direct effect and indirect effect allelic weights for each off-

spring from a normal distribution from each combination of parameters and apply them to

offspring’s standardized genotypes. We also generated environmental effects for each offspring

from a normal distribution following the parameters in each setting. By adding these compo-

nents up for each offspring, we obtain their phenotypes.

Setting 1. From the derivations of our estimates above, we found that even in the simplest

scenarios with unbiased GWAS effect sizes and genetic nurture absent, sibling analysis does

not accurately estimate the variance component of direct effect. As a special case of Formula

(11), here we have the population-based direct effect variance component defined as

h2

dir;OLS ¼
s2
d

s2
d þ s

2
e

:

However, R2 from sibling analysis is expected to be

R2

D
¼

s2
d

s2
d þ Varðe1j � e2jÞ

¼
s2
d

s2
d þ 2s2

e � 2res
2
e

:

Comparing these two formulas, one can see that the difference between them depends on the corre-

lation between the environmental effect of siblings, ρe. Only when ρe = 0.5, these two quantities

equal. Therefore, we designed a setting where we kept the variance of direct genetic effect constant

and set indirect genetic effect to be 0. Then, the correlation between direct and indirect effect is also

0. We also set the variance of the environmental residual and set the correlation between siblings’

environmental residual, ρe, to 0, 0.5, or 1. Thus, a total of 3 scenarios were examined in setting 1.

Setting 2. We kept the variance of direct genetic effect constant (normalized to 1) and varied

the indirect genetic effect and the correlation between direct and indirect genetic effect to evaluate

the influence of each factor on the sibling analysis R2 when the other was held constant. Specifi-

cally, we set the variance of indirect effect to be either 0, 0.5, or 1. For each variance of indirect

effect, we varied the correlation between direct and indirect effect from -1 to 1 by a step of 0.2. We

also set the variance of environmental residual to be 3. A total of 33 scenarios (3 variance of indi-

rect effect x 11 correlation between direct and indirect effect) were examined in setting 2.
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