nature biotechnology

Article

https://doi.org/10.1038/s41587-023-01766-z

Stabilized mosaic single-cell dataintegration
using unshared features

Received: 10 February 2022

Accepted: 28 March 2023

Published online: 25 May 2023

% Check for updates

Shila Ghazanfar® 23407, Carolina Guibentif ® ° & John C. Marioni ® "¢

Currently available single-cell omics technologies capture many unique
features with different biological information content. Data integration
aims to place cells, captured with different technologies, onto acommon
embedding to facilitate downstream analytical tasks. Current horizontal
dataintegration techniques use a set of common features, thereby ignoring
non-overlapping features and losing information. Here we introduce
StabMap, amosaic data integration technique that stabilizes mapping of
single-cell data by exploiting the non-overlapping features. StabMap first
infers amosaic data topology based on shared features, then projects all
cells onto supervised or unsupervised reference coordinates by traversing
shortest paths along the topology. We show that StabMap performs well in
various simulation contexts, facilitates ‘multi-hop’ mosaic dataintegration
where some datasets do not share any features and enables the use of spatial

gene expression features for mapping dissociated single-cell dataontoa
spatial transcriptomic reference.

Large-scale efforts to build transcriptional maps of tissues at cellu-
lar resolution have revealed many biological insights and provided
reference maps that can be used to further interrogate biological
systems'2, Simultaneous technological advances have led to the gen-
eration of datasets that capture multiple distinct types of molecular
information, for example, cellular indexing of transcriptomes and
epitopes (CITE-seq) captures RNA expressionand cell surface protein
abundance’®, and 10x Genomics Multiome captures RNA expression
alongside DNA fragments associated with regions of open chroma-
tin*. Consequently, data integration has emerged as a key challenge
for consolidating and profiting from such rich resources’, with the
task of integrating diverse molecular assays being known as ‘mosaic
dataintegration®, as distinct from horizontal data integration where
multiple sets of cells are measured using the same features, and verti-
cal data integration where multiple sets of features are measured on
the same population of cells. At present, many methods for mosaic
dataintegration are typically limited to using the set of overlapping
features between modalities™®.

However, as the number and complexity of single-cell datasets
increase, there is a growing need to develop techniques specifically
designed to perform mosaic data integration®°. Some existing
approaches designed to tackle this problem include UINMF", which
introduces alatent metagene matrix in the factorization problem, and
MultiMAP*, agraph-based method that assumes a uniformdistribution
of cells across a latent manifold structure fitted using an optimiza-
tion approach. A critical limitation of both approaches, however, is
the requirement that there exist at least some core features that are
shared across all datasets, resulting in analysts needing to compro-
mise on input datasets, or making the ‘central dogma assumption’,
that is, matching features between different omics modalities based
on corresponding DNA-RNA-protein sequences. Moreover, while
MultiMAP includes a tuning parameter to prioritize certain datasets,
neither approach offers a supervised mode that takes into account
aprioricelllabels.

Additional approaches, such as Cobolt" and MultiVI*, aim
to capitalize on jointly profiled multiomics technologies, most
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Fig.1|StabMap method overview. a, Example mosaic data integration
displaying observed data matrices with varying overlap of features among the
datasets. Datasets are summarized using the MDT. Cells are then projected
onto the common StabMap embedding across all cells. b, Cells fromall datasets
are projected onto the reference space (dark red) by traversing the shortest
paths along the MDT. Blue cells are projected directly onto the reference space,
whereas yellow cells are first projected onto the space defined by the blue cells,
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followed by projection to the dark-red space. All cells are then combined to yield
the common StabMap embedding. ¢, The process described inb is performed

for various selected reference datasets (default = all), followed by L2-norm
reweighting provided by the user (default = equal weight). These reweighted
embeddings are then concatenated to form the StabMap embedding for multiple
reference datasets, and can be used for further downstream analysis tasks.

notably single-cell RNA sequencing (scRNA-seq) and single-cell assay
for transposase-accessible chromatin using sequencing (ATAC-seq),
by integrating these with existing single-modality datasets. These
approaches treat the multiomic dataset as the ‘bridge’ to enable joint
embedding of all single omic and multiomic data, thereby enabling
multi-hop mosaic dataintegration. While effective at the specific RNA +
ATAC integrationtask, these methods currently lack flexibility and gen-
eralizability toincorporate additional datasets. Other approaches, such
as SingleCellFusion®, instead rely on relationships between features,
forexample, transcriptomic and epigenomic, to jointly embed distinct
single modalities into a joint space. For spatially resolved single-cell
gene expression data, approaches such as SPaGE™ and Tangram" accu-
rately map dissociated scRNA-seq data onto spatial coordinates; how-
ever, they are unable to benefit jointly from the (1) additional features
presentinscRNA-seq dataand (2) robust neighborhood-aware spatial
features extracted from spatial omics data.

Inthis Article, weintroduce StabMap, adataintegration technique
designed specifically for mosaic dataintegration tasks. StabMap pro-
jectsall cells onto supervised or unsupervised reference coordinates

using all available features regardless of overlap with other datasets,
instead relying on traversal along the mosaic datatopology (MDT). By
using multiple simulation scenarios and by exploring spatially resolved
transcriptomic data, we show that StabMap performs well, in particu-
lar in the presence of very few overlapping features. Additionally, we
demonstrate StabMap’s ability to perform multi-hop mosaic data
integration and reveal biological insights into the role of Brachyuryin
early mouse organogenesis.

Results

StabMap: stabilized mapping for mosaic single-cell data
integration

Theinput to StabMapis a set of single-cell data matrices, one or more
of which can be identified as reference datasets (default all), and an
optional set of discrete cell labels. From this data structure StabMap
extracts the MDT, a network with nodes corresponding to each given
dataset, and edges between nodes, weighted by the absolute number
of shared features between the datasets (Fig. 1a). StabMap requires
only thatthe MDT be a connected network, that is, that there be a way
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to draw a path from each node to every other node. For the selected
reference dataset, R, asupervised (linear discriminant (LD) analysis, if
labels provided) or unsupervised (principal component (PC) analysis)
dimensionality reduction algorithmis employed, generating afeature
loading matrix for the discriminants or components. Alternatively, ifa
lower-dimensional embedding already exists for this reference data, for
example, resulting from application of a vertical integration method
such as MOFA™ or Seurat v4 (ref. 19), it can be provided by the user.
Thisis performed using all features available for the reference dataset.
Then, for each non-reference dataset, D, the shortest pathisidentified
between Rand D along the MDT. If there is a direct link between R and
D, amultivariable linear model is fitted to estimate the PC and/or LD
scores, with predictor variables corresponding to the shared features
between datasets R and D. If there is no direct link between Rand D,
StabMap will construct asequence of mappings between features tra-
versing the shortest path between Rand D along the MDT by iteratively
predicting the scores of the reference dataset (Fig. 1b and Methods).
In the case where multiple datasets are considered as reference data-
sets (by default all datasets are considered references), the process
isrepeated. All resulting embeddings are then reweighted (default
equal weights) and concatenated to form a single low-dimensional
matrix (Fig. 1c and Methods). The resulting StabMap embedding can
be employed for further downstream analysis tasks, including batch
correction, joint visualization, supervised and unsupervised machine
learning tasks, differential abundance testing, and testing for and char-
acterizing developmental trajectories.

By performing mosaic data integration using traversal along the
MDT, and not relying on the features common to all datasets, StabMap
unlocks the ability to perform multi-hop mosaic data integration,
that is, integrating data where the intersection of features measured
for all datasets is empty. Since StabMap results in a low-dimensional
embedding common to all datasets, it can be combined with further
downstream horizontal data integration tasks, such as mutual near-
est neighbors?, Seurat” and scMerge?, to adjust for any remaining
batch effects.

StabMap preserves cell-cell relationships in multiomic data
To investigate the performance of StabMap, we first constructed a
simulation scenario using multiomics single-cell data, where chro-
matin accessibility and messenger RNA expression were measured
in each of 36,000 peripheral blood mononuclear cells (PBMCs)?.
Using these data, we computationally created two single-cell data-
sets—one containing only the mRNA measurements and the other
only the chromatin accessibility measurements—and assumed that
the problem of interest was to combine these two datasets onto a
common scaffold. We used all highly variable genes (HVGs) from the
RNA modality, and all highly variable peaks from the ATAC modality,
and considered the peaks associated with promoter regions of genes
as common features (Fig. 2a).

Within this context, we compared StabMap’s performance with
(1) a naive approach where PCA was applied only to overlapping fea-
tures, (2) with UINMF and (3) with MultiMAP. In general, we observed
reasonable mixing of the RNA- and ATAC-simulated cells with each
other across all four computational approaches, as well as distinct
separationof celltypes (Fig. 2b). However, when assessing performance
using more quantitative metrics, including the accuracy with which
cell types could be predicted (when using the ATAC as the testing set
and the RNA as the training set) and the preservation of the distances
between cellsinthe common space, we noted more substantial differ-
ences (Methods and Fig. 2c-e). Specifically, we observed that, while
StabMap generally performed well, the other methods (especially the
naive PCA implementation and UINMF) had difficulty in accurately
predicting cell type (Fig. 2c) and in preserving local neighborhood
structure (Fig. 2e). Takentogether, these results suggest that StabMap
is well able to perform mosaic data integration.

StabMap has superior performance with non-optimal features
To further investigate the properties of StabMap, we used scRNA-seq
datagenerated to study mouse gastrulation across entire embryos and
atmultiple timepoints'in order to simulate amosaic data integration
task where the reference data contains an assay that captures the full
transcriptome (that is, from scRNA-seq), and the query data contain
only a subset of the available gene expression features (for example,
as would be the case for technologies such as seqFISH**, MERFISH”,
gPCRandso on). We considered the situation where the most informa-
tive features are not necessarily known a priori, and split the cells into
two datasets, for which one was assumed to contain a small number
of genes (n=50, 100, 250, 500, 1,000, 2,000 and 5,000) randomly
selected from among the HVGs in the reference data (Fig. 2f and
Methods). We compared StabMap with UINMF, MultiMAP and PCA,
and visually noted the decrease in structure apparent among the query
cells in the common embedding for these other methods compared
to StabMap (Fig. 2g and Extended Data Fig. 1). Acommon task when
mapping a query dataset to a reference dataset is to predict the cell
types of the query cells. Consequently, we assessed the quality of the
data integration task by calculating the k-nearest neighbors cell type
classification accuracy (Methods). We identified amuch higher accu-
racy for StabMap, especially when very few features were captured
in the simulated query datasets (Fig. 2h), independent of choice of
downstream horizontal dataintegration (Extended DataFig. 1e). Taken
together, our results suggest that StabMap is effective at stabilizing
mapping between datasets even when some of the datasets/modalities
contain non-optimal features.

Multi-hop mosaic dataintegration

Since StabMap relies on the MDT of the datasets, multiple data-
sets where some pairs of datasets do not share any features can be
embedded into the same StabMap space. This contrasts with existing

Fig.2|Mosaic dataintegration simulations using PBMC Multiome and Mouse
Gastrulation Atlas data. a, UpSet plot of features shared between simulated
RNA and ATAC modalities. ATAC peaks in promoter regions of genes are aligned
with the genes in the RNA modality, resulting in 318 common features, 735 and
634 features distinct to the ATAC and RNA platforms, respectively. b, UMAP
representations of RNA and ATAC modality cells for StabMap (first column),
PCA, UINMF and MultiMAP (last column), colored by simulated modality (top
row) and by cell type (bottom row). ¢, Bar plot of cell type classification accuracy
predicting ATAC-resolved cell types using RNA-resolved cells as training data.

d, Violin plots displaying Jaccard similarity among 50 neighbors for cellsin each
modality, where a higher value indicates a better preservation of neighborhood
structure. e, Bar plot displaying the cumulative number of RNA-resolved cells,
grouped by the number of unmatched ATAC-resolved cells found to be nearer
than the matched ATAC-resolved cell. Ideally all RNA-resolved cells would be
placed near their matching ATAC-resolved cells; therefore, more positive values

indicate more cells nearer to their true matching cell and better quality of
recapturing cell relationships. f, UpSet plot of features between simulated query
and reference datasets for Mouse Gastrulation Atlas data. In this example the
query dataset contains only 200 features, whereas the reference dataset contains
those features along with 9,372 additional features. g, UMAP representations of
Mouse Gastrulation Atlas data simulation scenario described in fusing StabMap,
PCA, MultiMAP and UINMF. The first row shows the query cells colored by cell
type, the second row shows reference cells colored by cell type, and the third

row shows query cells colored by cell type. h, Bar plot displaying the cell type
classification accuracy of query cells for various methods, when the query set is
restricted to different numbers of genes. Error bars represent mean + standard
error of the mean. Cell type classificationis performed for all combinations

of query and reference sample sets, totaling 12 repetitions. Def. endoderm =
definitive endoderm. EXE mesoderm = extraembryonic mesoderm.
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implementations of PCA, UINMF and MultiMAP, all of which require at
least one feature to be shared across all datasets. While this is a major
advantage of StabMap, we reasoned that its ability to perform multi-hop
mosaic data integration would depend heavily on the quality of the
input datasets. Consequently, we established how reliably StabMap
was able to perform multi-hop mosaic data integration with differing
levels of information content. Using the 10x Genomics PBMC Multiome
data, werandomly split the cells equally into three simulated data types,
RNA only, ATAC only and Multiome (Methods). We intentionally opted

a b
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tonot assign ATAC promoter peak IDs to gene names (thatis, opting to
not make the ‘central dogma assumption’), to replicate the multi-hop
mosaic data integration task, such that there are no explicitly shared
features between the RNA only and ATAC only datasets (Fig. 3a). We
observed that StabMap successfully integrated these three datasets,
with cells evenly distributed by data modality, and distinct cell type
identities being clearly visible (Fig. 3b). We compared our multi-hop
mosaicintegration withtwo approaches specifically designed for multi-
omic dataintegration, Cobolt and MultiVI, and visually observed similar
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high-quality joint integration. We observed that Cobolt, amethod labels (Fig. 3b,c). Since the most connected node in the MDT is the
designed specifically for integration of scRNA-seq and single-cell Multiome dataset, we next queried whether the quality of the Stab-
ATAC-seqdata, performed consistently betterinrecapturing celltype  Map embedding would deteriorate when fewer cells were present in
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Fig. 3| Multi-hop mosaic dataintegration simulation and real data analyses.
a, Summary of mosaic data integration for PBMC Multiome simulation. Nodes
presentinthe top shaded region are selected as reference datasets in the
simulation. b, Joint two-dimensional embeddings generated using StabMap
(first row, UMAP) and Cobolt (second row, UMAP), colored by simulated data
type (left), and by cell type (right). ¢, Scatter plot displaying cell type accuracy
(yaxis) predicting ATAC-seq resolved cells using sScRNA-seq-resolved cells as
the training data, as the number of cells in the Multiome (x axis) increases. Each
point corresponds to a simulation scenario and choice of multi-hop mosaic data
integration method, including Cobolt, MultiVI, StabMap (default parameters)
and StabMap_RNA (only RNA modality selected as reference). d, MDT of PBMC
multiomics integration. Features are shared among the ECCITE-seq and CYTOF
and Multiome datasets, respectively, but there are no shared features between
the CYTOF and Multiome datasets. e, Joint UMAP embedding of multi-hop
StabMap with CYTOF as the reference dataset, colored by data modality (left)

and broad cell type (right). f, MDT of breast cancer spatial omics and multiomics
integration. IMC and Xenium datasets are retained as reference datasets in this
analysis. g,Joint UMAP embedding of StabMap colored by the data modality
(left) and broad cell type (right). h, Spatial plot of Xenium-resolved cells in
physical coordinates that are predicted to be epithelial using the IMC-resolved
cells as training data. i, Spatial plot of Xenium-resolved cells in physical
coordinates colored by imputed protein signal as measured from IMC-resolved
data, for proteins PDGFRB (cyan) and FOXP3 (purple).j, Spatial plot of Xenium-
resolved cells colored by predicted broad cell type using IMC-resolved cells as
training data. Color legend is the same as in panel g. Two regions of interest are
identified inred (region1) and yellow (region 2) boxes, corresponding to a triple-
positive receptor region and aninvasive region, respectively. k, Cell-cell contact
maps generated for the two regions according to broad cell type predicted value,
indicating the degree of mixing of cells than expected by chance.

this Multiome dataset. Indeed, we found that when fewer than -1,000
cells were allocated to the Multiome dataset, the quality of the Stab-
Map embedding was compromised, with poor local inverse Simpson’s
index (LISI)* values relative to modality and cell type (Extended Data
Fig. 2a-k). In addition, we found the choice of reference dataset did
notaffect performance of StabMap (Extended Data Fig. 2I) such as the
choice of RNA modality only as reference. When the ‘bridge’ datasets
contained more than 1,000 cells we observed highly consistent perfor-
mance, suggesting that multi-hop mosaicintegration with StabMap s
robust as long as a moderately sized bridge dataset is present.

To further examine the capabilities of StabMap, we performed
ajoint mapping spanning proteomics, transcriptomics and chroma-
tin accessibility in PBMCs. We collected CyTOF”, ECCITE-seq* and
previously mentioned 10x Genomics Multiome data, and performed
multi-hop mosaic integration using CyTOF and 10x Multiome as ref-
erence datasets (Fig. 3d,e, Extended Data Fig. 3a-d and Methods).
We observe slightly better mixing when the CYTOF data are retained
as the reference dataset (Extended Data Fig. 3e), which may be due
to more comprehensive representation of cell type diversity, or the
biological information retained in the protein features measured. In
addition, we performed ajoint mapping between spatial proteomics,
single-cellmultiomics and spatial transcriptomics. We collected imag-
ing mass cytometry (IMC)*, CITE-seq*® and 10x Genomics Xenium®
data from breast tumor samples with positive HER2 status, and per-
formed multi-hop mosaicintegration using IMC and Xenium datasets
asreferences (Fig. 3f,g). Indoing so, we were able to extend the quality
of the Xenium data by predicting the annotation of epithelial cells as
curated in the IMC data (Fig. 3h) and impute the protein signal onto
the Xenium-resolved tissue (Fig. 3i). In addition, our prediction of
broad cell types as curated by the IMC-resolved data allowed us to
predict cell types for the Xenium-resolved data, and use our previous
statistical approach’to build local cell-cell contact maps of distinct cell
types (Fig. 3j,k). Focusing on a triple-positive receptor region (region
1) and aninvasive region (region 2), we noted separation of epithelial
cellsfromall other cell types, and observed aslightly higher degree of
mixing of T cells with other non-epithelial cellsin the invasive region 2
thanexpected by chance. Together, this mosaic data analysis shows the

ability to harness the strengths of distinct datasets to lead to further
understanding and hypothesis generation.

To further assess the capabilities of StabMap in multi-hop mosaic
integration, we performed a simulation where we randomly selected
cellsfromthe Mouse Gastrulation Dataset, and splitinto eight distinct
datasets that shared features sequentially, that is, Dataset i shared
features only with Datasets i-1or i+1 (Methods). As we varied the num-
ber of cells and HVGs per dataset, we observed better preservation
of biological signal between Dataset 8 and Dataset 1 (Extended Data
Fig. 3f) with inclusion of more informative features, and to a lesser
extent with more cells per dataset. More generally, this suggests that
multi-hop mosaicintegrationisrobust to several datasets while feature
quality remains high.

Spatial mapping of mouse chimeraidentifies differences
along major anatomical axis

A distinct advantage of mosaic data integration is the ability to
integrate datasets where distinct features have been probed. An
additional advantage is that the joint embedding can be used to
facilitate downstream analyses, including differential abundance
testing across experimental groups. To demonstrate this, we explored
embryonic day (E)8.5 single-cell RNA-seq data from the mouse’,
together with perturbation experiment data in the form of Brachy-
ury (T) knockout T7"/wild-type (WT) chimeras and control WT/WT
chimeras collected at the same timepoint®. Chimeric embryos con-
tain a mix of host (WT) cells and injected cells that are labeled with
td-Tomato; the injected cells in the control chimera are WT, while
the injected cells in the T”"/WT chimeras lack a functional copy of
Brachyury (T)*. We also considered single-cell resolution spatially
resolved seqFISH data from a similar developmental timepoint’.
Forthe scRNA-seq datasets we considered the union of HVGs, while
for the seqFISH data we considered all 351 genes that were probed
in the experiment. Additionally, for the seqFISH data, we extracted
new features, corresponding to the mean expression of each gene
among the immediate neighbors of each cell, thus providing infor-
mation about each cell’slocal, spatially resolved context (Fig. 4a and
Methods). We used StabMap to jointly embed these data into the

Fig. 4 |Integration of T-chimera and seqFISH data using StabMap with

spatial neighbor feature extraction. a, Summary of mosaic dataintegration task
and features used. Cells captured using scRNA-seq belonging to the E8.5 mouse
gastrulationatlas', WT/WT chimera' and T""/WT chimera®. seqFISH

cells are obtained from sagittal sections of three E8.5 embryos’. Features used

for the scRNA-seq data are the union of the HVGs for each dataset. Features

used for the seqFISH data are the gene expression of each cell, as well as the mean
gene expression of the most proximal cells in space. b, UMAP plots displaying all
cells after performing StabMap. Cells are colored by cell type (left) and by platform
(right). c, UMAP plot of all seqFISH cells colored by local enrichment coefficient
value of T”" enrichment test for statistically significant tests.

d, Violin plots of T~ enrichment coefficients per embryo split by cell type.

e, Spatial graphs of seqFISH embryos, with cells colored by T”" coefficients

for cells assigned a splanchnic mesodermidentity. Curved lines are fitted principal
curves associated with the AP axis along each embryo. Scale bar, 150 um.

f, Volcano plot showing value of largest magnitude spline coefficient (x axis) and
-log(FDR-adjusted Pvalue) for likelihood ratio test of splines model for splanchnic
mesoderm (Methods). Top 30 highly ranked genes with large spline coefficients
above amagnitude of 1are labeled. g, Scatter plots and local mean expression
ribbons of clustered genes showing distinct patterns of expression along the AP
axisinsplanchnic mesoderm. Bands represent 95% confidence for loess smoothed
fit. EXE endoderm = extraembryonic endoderm, PGC = primordial germ cells.
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same latent space, using both datasets as reference datasets, and
used fastMNN? to correct for any batch effects among the individual
poolsforeach experimental platform. We observed that all cell types
separated well, with good mixing between data collected from each
modality (Fig. 4b).

Giventhisjointembedding, we next performed spatially resolved
enrichment testing of the relative abundance of T”" cells across the
common space, to discover whether there are regions within the

embryowhere the T” cellsare enriched or depleted—an analysis that
is possible only with the StabMap embedding. To do this, we firstiden-
tified, for each seqFISH cell in the joint embedding, the 1,000 near-
est neighbor cells from the T'/WT and the control WT/WT chimera
samples. Among these 1,000 nearest neighbor cells, we calculated
the relative fraction of cells contributing to the td-tomato* popula-
tion for each biological replicate of the T/WT and WT/WT samples.
Subsequently, for each seqFISH cell, we used logistic regression to
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statistically assess whether there was alocal enrichment or depletion
of T cells (Methods), identifying 16,677 significant seqFISH cells (false
discovery rate (FDR)-adjusted P values <0.05 out of a total of 57,536
seqFISH cells) (Fig. 4c and Extended Data Fig. 4a).

Upon examining the annotation of these cells, we found, consist-
ent with previous analysis®?, broad depletion of T”" cells among the
presomitic mesoderm, dermomyotome and sclerotome alongside
broad enrichment in neuromesodermal progenitors (NMPs) (Fig. 4d
and Extended Data Fig. 4b). Intriguingly, we observed a heterogene-
ousdistribution of local T/~ enrichment in the splanchnic/pharyngeal
mesoderm (42 cells displaying significant positive enrichment and
543 cells displaying significant negative enrichment (FDR-adjusted
Pvalue <0.05)), a cell type associated with tissues surrounding the
forming gut. When we examined the physical locations of these cells,
we observed an extremely strong concordance between the local
T~ enrichment coefficient and the relative positioning of the cells
alongthe anterior-to-posterior (AP) axis, as quantified using principal
curves® (Spearman correlation ranging between -0.26 and —0.68;
Fig. 4e and Methods).

We then used nonparametric cubic splines to identify imputed
gene expression patterns that varied along the principal curve
(Fig. 4f and Methods), and identified ThxI and Fgf8, key genes regu-
lating the development of anterior splanchnic mesoderm** in the
domain enriched for T cells. Conversely, markers of gut-associated
splanchnic mesoderm FoxfI and Wnt2 (Fig. 4g)**° and of posterior
mesoderm homeobox genes Hoxb2 and Hoxb4 (Extended Data Fig. 5)
were enriched in the more posterior regions depleted in T/~ cells.

Together, these observations suggest abroader role of Brachyury
onregulating formation of posterior mesodermal tissues well beyond
somitogenesis. In particular, this suggests that distinct domains of
splanchnic mesoderm may also have distinct levels of dependency
onBrachyury.

Our spatial mapping of the relative enrichment of T”" cells using
StabMap provides a basis for mapping complex experimental data
onto aspatial reference, thereby allowing us to draw these inferences
without the need to perform spatial perturbation experiments.

Discussion

In this paper, we have introduced StabMap, an approach to perform
mosaic data integration for single cell data. StabMap accurately
embeds single-cell data from multiple technology sources into the
same low-dimensional coordinate space, using labeled or unlabeled
single-cell data, and performs well even when some dataset pairs do
not share any features. StabMap allows the use of one or more input
datasets to be considered as references, and in general we suggest that
datasets capturing potentially novel features, or alarge amount of bio-
logical variation, be treated as reference datasets. In this vein, StabMap
could be used to perform explicit mapping of query data onto arefer-
ence dataset, resulting in a joint embedding in the low-dimensional
space as defined by the reference dataset alone.

Acurrent limitation of StabMap is that all features from an experi-
ment are considered together. However, for single-cell multiomics
dataanalternative would be to consider the different omics layers as
individual data matrices, rather thanto concatenate themintoalarge
matrix®. This concatenation step corresponds to a naive example of
verticalintegration, where techniques such as feature standardization
are employed to ensure comparability across different modalities
measured in the same cell. StabMap could be extended to employ
more sophisticated vertical integration techniques, for example,
incorporating factors that describe variability across multiple layers,
asimplemented within MOFA'® or sharing information across multiple
layers, asimplemented within the weighted-nearest-neighbors frame-
work™. In addition, more sophisticated modeling could be incorpo-
rated to extend StabMap beyond linear modeling. Such approaches
would need to enable predictive mapping of new data through

iterated projections, for example, support vector machines or elastic
netregression.

Akey advantage of StabMapis the ability toincorporate analytical
features, which may exist for only asubset of datasets, in the datainte-
gration step. We have demonstrated this using the spatial seqFISH data
integration by using the expression of each gene in the most proximal
cellsin physical space as afeature (something that cannot be captured
in dissociated scRNA-seq data). Additionally, other bespoke features
canbe considered, such aslocal variance or local correlation values on
spatial or trajectory-based data”, or cell-specificinformation such as
lineage or clonal tracking information®®. The ability to integrate data
from such diverse sources offers the potential to extract biological
insights by taking full advantage of diverse input datasets.

Weenvisage StabMap being used inavariety of contexts, especially
aslarge-scale analysis of publicly available (and typically inconsistently
processed datasets) becomes more widespread. Matching features
between various datasets and ensuringacommon data preprocessing
pipelineis a serious hindrance for standard integration tools and can
hinder the ability to draw biological insight. Consequently, StabMap
could be employed to ensure that informative features are not lost
purely due to practical challenges in preprocessing, enabling more
comprehensive and complete downstream analysis.
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maries, source data, extended data, supplementary information,
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Methods

MDT

Theinputto StabMapisaset of sappropriately scaled and normalized
data matrices, 2={D;, D, ..., D;}, not necessarily containing the same
features, and optional discrete cell labels for any of the datasets. Asan
initial step, StabMap generates the corresponding MDT. The MDT is an
undirected weighted network that contains snodes, one corresponding
to each data matrix, with edges being drawn between pairs of nodes
for which the corresponding data matrices share at least one feature.
Theedgesinthe MDT are weighted according to the absolute number
of common features between the two datasets. StabMap requires that
the MDT be a connected network, that is, that there exists a path
between any two nodes. Weighted shortest paths are calculated
between any two given nodes in the MDT.

The StabMap algorithm
Atleast one dataset must be considered as areference dataset, withthe
optionfor multiple datasets to be considered as reference datasets. The
outputof StabMapisacommon low-dimensional embedding with rows
correspondingtoall cellsacross all datasets, and columns correspond-
ing to the sum of lower dimensions across the reference dataset(s). For
areference dataset D,, two matrices are extracted, first ascores matrix
S, (a cells x low-dimensions matrix) and a loadings matrix A, (a fea-
tures x low-dimensions matrix) such that S, = D! x A,. If no cell labels
are provided, principal components analysis (default 50 PCs) is used
forestimation of S, (asthe PCscores) and A, (the components loadings).
Alternatively, if discrete cell labels are provided, linear discriminant
analysisis used for estimation of S, (as the linear discriminants for each
class) and A, (the feature discriminant loadings).

Then, for each of the s datamatrices, score matrices 7,8, ..., Stare
calculated in one of the following ways for data matrix i:

+ Ifi=r,thenthescores matrix S, is returned, thatis, S| = S,.

« Ifiandrshareanedgeinthe MDT, and all featuresinA,are present
inD,, then 7 is directly calculated as the projected scores, that is
ST = XT x A, where X; is the appropriate submatrix of D; to match
the features in A,. If not all of the features in A, are presentin D;,
then $ is estimated using multivariate linear regression on each
column of S, for dataset D,. Specifically, for columnj of S, we fit the
model S, [j] = X.,is [J]1 B<ri> [j] + € Where X, ;. is the submatrix of
D, for features that are shared among D;and D,, and € is assumed
tobenormally distributed noise. B., ;. therefore is amatrix of fitted
coefficients (B.yss 1, .-, B<ris > ---) With rows corresponding to the
shared features between D;and D,and columns corresponding to
the columns of S,. The estimated score matrix for i is taken to be
the predicted values of the multivariable linear model for dataset
D, andiscalculatedas S| = X; B, Where X_; . is the submatrix
of D,for features that are shared among D;and D,.

+ Ifiandrdonotshareanedgeinthe MDT, then S/ is estimated using
aniterative approach that exploits the shortest weighted path in
the MDT. Starting fromnoder, for the next node along the path p,
we calculate S, as described above. If the nextnode along the path
isi,thenwefitthe model S, [j] = X, i [/1B<p.i> [/1 + ewhere X, ;. is
the submatrix of D, for features that are shared among D, and D,
and B_,, ;. is the matrix of fitted coefficients (B, .1, ..., Bepis o - )-
The estimated score matrix for i is then taken as the predicted
values of this multivariable linear model for dataset D, and is
calculated as S} = X_;,, B, ;>- If instead, the next node along the
pathfromrtopand eventually toiis some other node g, then this
process of fitting a multivariable linear model and predicting on
the new datais repeated until we calculate S = X_; ;. B 45, Where
wisthenode previous to galongthe path between rand.i.

The estimated score matrices for each of the s datasets are then
concatenated across rows to form the joint low-dimensional score

where reference ris employed: §" = (87,55, ..., 57), where §"is a matrix
with number of rows equal to the total number of cells across all s
datasets and number of columns equal to the number of columns
(selected features)in S'.

We believe StabMap’s improved performance over naive
approaches can be explained by noting that the features that drive
biological variation may either not be captured, or represent the domi-
nant signal, in the shared feature space, and are therefore not prior-
itized when reducing dimensionality using PCA on the shared features.
StabMap’s linear regression strategy estimates the linear combination
ofthe shared features that best captures the (assumed to be) biological
variation thatis dominant in the full feature data.

StabMap with multiple reference datasets
Forthesetofreference datasetsR = {D;s.t.jisin reference indices} C D,
we calculate the corresponding set of joint low-dimensional scores as
described above, S = {S’s.t.jisin reference indices}. We reweight each
scores matrix S/ according to the overall L1 norm of the matrix and a
user-set weighting parameter w; € [0,1] (by defaultsetto1l),

Sj* = I,UIL
3,157

The user-set weighting parameter w; controls the magnitude of
the score vectors for each reference dataset, and thus corresponds to
therelativeinfluence of the reference dataset on any magnitude-based
downstream analysis (for example, calculation of Euclidean distances
between cells). To generate common low-dimensional scores across
all reference datasets, we concatenate the reweighted scores across
columns to form the StabMap low-dimensional scores, S = (§/1;97; ...)
for reference data indices ,, j,,.... S is a matrix with number of rows
equal to the total number of cells across all s datasets, and number of
columns equal to thetotal number of columns across the scores matrix
for eachreference dataset.

StabMap computational speed

StabMap takes on the order of seconds to less than a minute for tens
of thousands of cells on a standard MacBook. We observed StabMap
taking on the order of 5-10 min running for 300,000 cellsin our breast
cancer analysis. We believe this speed can be attributed to several
aspects of the softwareimplementation. PCAis performed via the fast
irlbaalgorithm, linear model fits are performed using the underlying
R machinery via Im.fit, therefore reducing time and memory costs,
and finally we retain the use of sparse matrix representation of data
at every opportunity we can. While we use R’s native vectorization to
speed up computation, one memory limitation at present is the need
to convert to dense matrix representations for imputeEmbedding,
this is due to the dependency of ‘abind’ package in R that works only
for dense matrices. Future work could incorporate some sparse 3D
array representation, thereby circumventing the need to convert data
into dense matrices, or potentially to harness the capability of delayed
matrix operations without needing to load datainto memory. We find
that runtime increases with the number of input datasets, as well as
the proportion of datasets to be considered as references, asmapping
across the MDT is repeated for each selected reference dataset.

Downstream analysis with StabMap

Batch correction. While StabMap jointly embeds cells across multiple
datasets into acommon low-dimensional space, batch effects both
within and among datasets can remain. Any existing batch correc-
tion algorithm that works on a low-dimensional matrix (for example,
fastMNN?°, scMerge*? and BBKNN*’) can be employed to obtain
batch-corrected StabMap embeddings. In the analyses presented
in this manuscript we use fastMNN as downstream horizontal data
integration. For the simulation presented in Fig. 2, we perform two
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additional horizontal data integrations using Harmony* and Seurat?.
For the latter case we treat the StabMap low-dimensional features as
input features to Seurat, with parameters adjusted to not performany
feature selection or further dimensionality reduction.

Supervised and unsupervised learning. The batch-corrected StabMap
embedding facilitates supervised learning tasks such as classification
of discrete cell labels using any suitable method such as k-nearest neigh-
bors, random forestand support vector machines, and regression using
traditional linear models or support vector regression. Unsupervised
learning tasks can be performed by clustering directly on the embed-
ding (forexample, k-means clustering) or by first estimating a cell-cell
graph (for example, shared nearest neighbor or k-nearest neighbor
graph) followed by graph-based clustering (for example, Louvain or
Leiden graph clustering). Since one can use the embedding to estimate
the cell-cell graph, additional bespoke single-cell analyses such as local
differential abundance testing between experimental groups, such as
thatimplemented in Milo*°, can be employed.

Imputation of original features. We include an imputation imple-
mentation based on the StabMap low-dimensional embeddings to
predict the full-feature matrices for all data, by extracting the set of
kneighbors using Euclidean distance within the StabMap-projected
space and returning the mean among the nearest neighbors. This is
especially useful for projecting query data onto areference space or
foridentifying informative features downstream of the data integra-
tion step.

Mosaic dataintegration simulations
We used publicly available data to investigate the performance of
StabMap and other methods, as described below.

PBMC 10x Multiome data. We used the SingleCellMultiModal R/Bio-
conductor package* to download the ‘pbmc_10x’ dataset, containing
gene expression counts matrix and read counts associated with chro-
matin peaks capturedin the same set of cells. We normalized the gene
expression values using logNormCounts* in the scuttle package, and
restricted further analysis to HVGs selected using the ModelGeneVar
function in scran*’. For the chromatin data modality we performed
term frequency—inverse document frequency (TF-IDF) normaliza-
tion according to the method described in ref. 10. We extracted peak
annotation information using the MOFA2 R package tutorial®®, includ-
inginformation on which genes’ promoters the chromatin peaks were
associated with, if any. These promoter peaks were annotated as the
associated gene name, so that the promoter peak features would match
the RNA genes features.

To perform the mosaic dataintegration simulation with the PBMC
10x Multiome data, weignored the matched structure between the RNA
and chromatin modalities, and treated this data as if they belonged
to two distinct datasets. We performed StabMap using both RNA and
chromatin modalities as the reference datasets, and reweighted the
embedding to give equal contribution for the two modalities. For
assessing the cell type accuracy we used the RNA modality cells as
labeled data, and predicted the cell types of the chromatin modality
cells using k-nearest neighbors classification with k= 5.

Mouse Gastrulation Atlas scRNA-seq. We downloaded the counts
data from Pijuan Sala et al. (2019) using the MouseGastrulationData
R/Bioconductor package** corresponding to E8.5, and normalized
in the same way as the 10x Multiome PBMC data. Then, we split the
dataset into four groups according to the four sequencing samples.
Foreachrandomly selected pair of sequencing samples, we artificially
assigned one sequencing sample as the query dataset and kept one
other sequencing sample intact as the reference dataset. Within each
simulation round, we performed HVG selection from the reference

dataset, and randomly selected 50, 100, 250, 500, 1,000, 2,000 and
5,000 genesto be kept for the query dataset.

We used StabMap to jointly embed the reference and query data-
sets into a common low-dimensional space by selecting the refer-
ence dataset as the sole reference, followed by batch correction using
fastMNN. We also performed naive PCA, UINMF and MultiMAP for
comparison. To assess performance, we calculated the meanaccuracy
of celltype classification of query cells using k-nearest neighbors with
k=5foreachmethod.

To assess the effect of downstream horizontal integration on
embeddings using StabMap and naive PCA, we performed additional
batch correction algorithms Harmony, fastMNN, and Seurat on the
embeddings, as well as retaining uncorrected embeddings. We then
calculated the difference in cell type accuracy between StabMap and
naive PCA for each of the simulation scenarios and batch correction
algorithms.

PBMC CyTOF data. We downloaded the PBMC CyTOF” data using
the HDCytoData* package in Bioconductor. This dataset included
two conditions of stimulated and unstimulated PBMCs from healthy
individuals, of which we selected only unstimulated control cells
for further analysis. From this data we extracted 24 protein features
corresponding to biologically relevant signal.

PBMC ECCITE-seq data. We downloaded the PBMC ECCITE-seq data®
using the SingleCellMultiModal* package in Bioconductor. This data-
setincluded control and treated samples, from which we selected only
control samples for further analysis. For these data, we extracted the
single-cell RNA component and the cell surface ADT protein data.

Breast cancer IMC data. We downloaded the processed breast can-
cer IMC data® using the Zenodo link provided in the publication. We
selected only samples that corresponded to patients with positive
estrogenreceptor (ER) statusand PAMS5O0 classification of HER2, result-
inginasetof 32,400 IMC-resolved cells, for which 37 protein features
were profiled.

Breast cancer CITE-seq data. We downloaded the processed breast
cancer CITE-seq data®® via GEO and the Broad Institute single-cell
portal links provided in the publication. We selected a single patient
sample, corresponding to an HER2-positive case. Then we combined
the RNA and ADT modalities into a single data object using CiteFuse
preprocessing tool*.

Breast cancer spatial transcriptomic data. We downloaded the
processed breast cancer Xenium data® on 3 November 2022 from the
10x Genomics website provided in the publication. We retained cells
that captured at least 30 transcripts, and performed standardization
using logNormCounts, resulting in a genes by cell expression matrix.

Comparison with other methods. UINMF. We used software version
0.5.0 of LIGER, which includes the UINMF implementation, and per-
formed integration using defaults as suggested in the LIGER vignette.
We used the counts matrix for input, as suggested in the vignette. We
used the resulting 50-dimensional embedding for subsequent down-
stream analysis, and uniform manifold approximation and projection
(UMAP) implemented in scater** for visualization.

MultiMAP. We used the Python (version 3.8.10) package MultiMAP
(version 0.0.1), and performed dataintegration using defaults as sug-
gested by the MultiMAP tutorial website with equal weights for each
dataset. The output of MultiMAP is a corrected graph representation,
as well as a two-dimensional representation of the data. We used this
two-dimensional representation for visualization and to perform
downstream analysis tasks.
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Naive PCA. To implement naive PCA, we first extracted the subma-
trices of datasets containing features that were common across all
datasets. We then performed PCA using scran’simplementation with
50 principal components, followed by batch correction using MNN.
We used the 50-dimensional representation for downstream analysis
tasks, and UMAP to perform further dimensionality reduction to two
dimensions for visualization.

Cobolt. We used the Python (version 3.8.10) package Cobolt (version
0.0.1), and performed dataintegration using defaults as suggested by
the tutorial, with input data corresponding to the original counts for
scRNA-seq gene expression and for ATAC detected open chromatin
fragments. The output of Coboltis alow-dimensional representation,
which we further summarized using UMAP for visualization.

MultiVI. We used the Python (version 3.8.10) package scvi (version
0.16.4) and performed data integration using defaults as suggested
by the package tutorial, with input datasets corresponding to original
counts from scRNA-seq and ATAC seq multiomics, scRNA-seq and
scATAC-seq. We extracted MultiVllatent space representation values,
and performed UMAP for further visualization.

Evaluation. To evaluate the mosaic data integration simulations, we
used three quantitative metrics.

Cell type classification accuracy. Given a joint embedding, we per-
formasimulation such that discrete class labels corresponding to cell
typesareartificially removed for asubset of the data. We then perform
k-nearest neighbors classification (k = 5) to obtain the predicted class
label for the artificially unlabeled data. The cell type classification
accuracy is thus the proportion of cells for which the classification is
correct compared to the true cell type label,

4= Sy
R

Jaccard similarity. For cell iinembedding S we have [ positions for the
[omics levels (for example, RNA and chromatin). We extract the sets
of size k (default 100) containing the nearest cells of the same omics
layer, thatis, N;={set of neighbors of omicslayer Is.t.rank (D(Sy, ;) < k
where D(a,b) is the Euclidean distance of vectors a and b. The Jaccard
similarity is thus

_ : .y — INaONp|
Ji =Jaccard (N, Np) = NaoNa”
Larger values of J; correspond to larger overlap of neighbors
between the two omics layers and are thus desired.

Number of nearest cells metric. Similar to the metric employed
by Kriebel et al. and Jain et al."*?, for cell i belonging to omics layer 1
(for example, RNA) in embedding S, we calculate the number of cells
among omics layer 2 (for example, chromatin) that are nearer than cell
ibelonging to omicslayer2, N, = 2D (51:572) < D(Si» Si)}-

We then extract the empirical cumulative distribution of nearest
cells by calculating, for each integer x, the number of cells for which
their number of nearest cells metric is at most this value,
M (x) = 3N, < x}.Higher values of M(x) across all values of xare more
desired.

Multi-hop mosaic data integration simulation. We used the PBMC 10x
Multiome data to evaluate StabMap under the situation of multi-hop
mosaic data integration. We downloaded and processed the data as
described in the subsection above, with the exception that promoter
peaks corresponding to specific genes were not matched to the associ-
ated genes. Thisresultedinacomplete lack of overlap between features
between the RNA and chromatin modalities.

To perform the simulation, we randomly allocated each cell into
oneof three classes: (1) RNA only, (2) chromatinonly and (3) Multiome,
with varying relative proportions of cells associated with the Multi-
ome class. Cells within the RNA class had their chromatin information
ignored, and cells within the chromatin class had their RNAinformation
ignored, while cells within the Multiome class were left unchanged. We
then used StabMap to integrate these three simulated datasets and
generate a low-dimensional embedding for each simulation setting.
Comparison with other methodsis not possible since PCA, UINMF and
MultiMAP require at least some overlapping features across all datasets.

To evaluate the multi-hop mosaic dataintegration simulation, we
calculated the LISI*® using both modality and cell type as the grouping
variables. Higher LISI values correspond to more local mixing of cells,
and so relatively high values for modality and low values for cell type
aredesirable.

Multi-hop mosaic data integration of CyTOF, ECCITE-seq and 10x
Multiome data. We used three data sources to examine StabMap’s
capability of performing multi-hop mosaic data integration. We per-
formed matching of protein IDs between the CyTOF and ECCITE-seq
datasets, resulting in an overlap of seven proteins captured by each
technology. For each dataset, we reassigned cell type labels to broad
common cell typesincluding B, CD4 T, CD8 T, dendritic cell (DC), MAIT
T, monocyte, natural killer (NK) and surface cells. Then, we performed
StabMap using three configurations. First, using the CyTOF dataset as
the reference, with the underlying number of principal components
setto 10 due tothelimited number of proteins captured; second, using
the 10x Multiome data as the reference; and third using both as refer-
ences with equal weighting. In each case we performed downstream
horizontal data integration using FastMNN. We visualized the result-
ing StabMap embeddings using UMAP. To assess the quality of each
embedding, we used the LISI metric and examined the distribution of
such values among the CyTOF and Multiome cells.

Multi-hop mosaic data integration of IMC, CITE-seq and 10x
Genomics Xenium data. We used three data sources to examine
StabMap’s ability to perform dataintegration, especially over multiple
spatial omics technologies. We performed matching of protein ADT
IDs between the IMC and CITE-seq datasets, resulting in 19 shared
features. For the IMC and CITE-seq datasets, we reassigned cell type
labels to broad common cell types including B cells, endothelial cells,
epithelial cells, fibroblasts, myeloid cells, NK cells, plasmablasts,
Panton-Valentine Leukocidin (PVL), T cells and tumor microenviron-
ment (TME) cycling cells. Then we performed StabMap, selecting IMC
and Xenium datasets as references, with 10 and 50 principal compo-
nentsrespectively. Giventhejointembeddingextracted using StabMap,
we then predicted epithelial cell class on the Xenium data, using the
IMC-resolved cells astraining data. Additionally, we performed feature
imputation on the Xenium data, using the IMC-resolved data as train-
ing, using the imputeEmbedding function in the StabMap software.
Finally, we predicted broad cell types on the Xenium data using the
IMC-resolved cells as training data, and generated cell-cell contact
maps (as previously described’) on two selected regions, correspond-
ing to triple-positive receptor region, and an invasive region.

Simulation of multi-hop mosaic data integration using Mouse Gas-
trulation Data. To examine the capability of StabMap, we randomly
selected cells from the Mouse Gastrulation Dataset described above,
and split them into eight distinct datasets with varying numbers of
total cells per dataset, n =500, 1,000 and 2,000. Then, we retained
varying numbers of features, n =100,200,500 and 1,000 from among
the HVGs such that there was approximately 50% overlap of features
between datasets1and2,2and3,and soon. Asaresult, any one dataset
only shared features with its neighboring dataset, representing an
extreme task for multi-hop mosaic dataintegration. For the simulated
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datasets, we performed StabMap with dataset 1 selected as the refer-
ence dataset. To assess quality, we performed cell type classification
(K-nearest neighbors (KNN) with k = 5) using dataset 1 as the training
data and dataset 8 as the testing data, reporting the overall cell type
classification accuracy asameasure of integration quality. We repeated
the above simulation five times to obtain an overall mean accuracy
with varying levels of number of cells and number of shared features.

Spatial mapping of mouse chimera data using StabMap. scRNA-seq
data. We used the MouseGastrulationData R/Bioconductor package
(Griffiths and Lun 2020)** to download gene expression counts for the
Mouse Gastrulation Atlas dataset, WT/WT control chimeradataset’, and
T7/WT chimeradataset™, corresponding to E8.5. We combined the gene
expression countsinto asingle dataset, then normalized and extracted
HVGs using the same approach applied to the 10x Multiome PBMC data.

seqFISH data. We downloaded seqFISH-resolved gene expression log
counts’ for spatially resolved cells of mouse embryos profiled at a
similar developmental stage along with their corresponding spatial
coordinates. We extracted novel features for each gene gand each cell
iby calculating the mean expression value among the nearest cells in

space, x;. = Eklfv”f"‘xkj, where N;={ks.t. D(i, k) <2, i # k} is the set of cells

thatareat most two steps away from celliin the spatial nearest neighbor
network’. We then concatenated these novel features with the meas-
ured gene expression, before downstreamintegration with the dissoci-
ated scRNA-seq data.

Mosaic data integration and local enrichment testing. We used
StabMap, parametrized with multiple reference datasets, tointegrate
the scRNA-seqand seqFISH data. We used PCA (default 50 PCs) to gen-
erate thelow-dimensional scores for the scRNA-seq and seqFISH refer-
ences, and reweighted each scores matrix using the default weighting
parameter of 1. As a result, we obtained a 100-dimensional StabMap
low-dimensional scores matrix. We then corrected for any remaining
batch differences using fastMNN, where batches reflect technical
groups from each dataset.

To calculate whether T cells were enriched in a neighborhood
around each seqFISH cell, we performed logistic regression. Specifi-
cally, for each spatially resolved (seqFISH) cell, in the joint embedding
we extracted its 1,000 nearest neighbors from each chimera dataset
(4 T/"/WT samples and 3 WT/WT samples), and fit the model
logﬁ = Bo + Bixy + Baxsz,

Inthis model, pis the vector of observed proportions of td-tomato*
cellsforeach chimera, x;isa vector containing the total proportion of
td-tomato’ cells belonging to a biological replicate, and x, is a vector
indicating whether a chimerais T/WT or WT/WT. We extracted the
estimated coefficient of interest, §,, and associated P value for each
spatially resolved cell using a likelihood ratio test, resulting in alocal
measure of enrichment or depletion of T cells for each
seqFISH-profiled cell. We then used the method of Benjamini-Hoch-
bergto calculate FDR-adjusted Pvalues.

Mixed T enrichment in pharyngeal/splanchnic mesoderm.
To examine the relationship between the estimated T7~ enrichment
coefficient and AP axis position in the splanchnic mesoderm, we fit-
ted principal curve models, with four degrees of freedom, for each
individual spatially resolved embryo with the spatial coordinates asthe
underlying data®. We used the principal curve fitted values to extract
the AP ranking of cells along this axis, and then used this ranking to esti-
matealocally smoothed T enrichment coefficient along the AP axis.

To assess gene expression changes along the AP axis as T cells
move from beingenriched tobeing depleted, we selected anequal num-
ber of cells anterior and posterior to the position where the smoothed
T/ enrichment coefficient is zero, and performed differential gene
expression analysis using imputed gene expression values. Imputed

gene expression was quantified for each spatially resolved cell using
the mean gene expression value of the nearest five Mouse Gastrulation
Atlas cells in the StabMap low-dimensional space. Gene expression
changes alongthe AP axis were assessed using anonparametric cubic
splinesmodel with three degrees of freedom along with grouping vari-
ables for theindividual embryos. Statistical significance was estimated
using an F-test, with a null model of no splines effects, with empirical
Bayes shrinkage using the limma framework, followed by adjustment
for multiple testing. For statistically significant genes, we visualized
gene expression along the AP axis using local loess smoothing and
ribbon plotting for the local standard error.

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

This study used publicly available data. The PBMC 10x Multiome,
CyTOF, ECCITE-seq and mouse embryo scRNA-seq data were accessed
viaBioconductor (version 3.13) ExperimentHub packages MouseGas-
trulationData (version1.6.0), SingleCellMultiModal (version1.4.0) and
HDCytoData (version1.14.0). The breast cancer IMC data were accessed
viaZenodo (https://zenodo.org/record/6036188#.Y2Cu8exBxqs), the
breast cancer CITE-seq accessed via GEO (accession GSE176078) and
Broad Institute single-cell portal for protein ADT information (https://
singlecell.broadinstitute.org/single_cell/study/SCP1039), and the
breast cancer 10x Genomics Xenium data accessed viathe 10x Genom-
ics website (https://www.10xgenomics.com/products/xenium-in-situ/
preview-dataset-human-breast) on 3 November 2022. The processed
mouse embryo seqFISH data were accessed online via the web portal
https://marionilab.cruk.cam.ac.uk/SpatialMouseAtlas/.

Code availability

All analyses were performed in R (version 4.2.1). The StabMap soft-
ware is available as an R package at https://github.com/MarioniLab/
StabMap. Scripts for analysis and figure panels in this manuscript are
available at https://github.com/MarioniLab/StabMap2021.
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Extended Data Fig. 1| Comparison of StabMap using Mouse Gastrulation
Atlas data. a. UpSet plot and UMAP representations of Mouse Gastrulation

Atlas data simulation with 100 randomly selected features using StabMap, PCA,
MultiMAP, and UINMF. First row shows the query cells coloured by simulated
dataset, the second row shows reference cells coloured by cell type, and the

third row shows query cells coloured by cell type. b-d. As in panel (a.) for 500,
1,000, randomly selected and all features respectively. e. Barplot displaying the
difference in cell type prediction accuracy (y-axis) in the Mouse Gastrulation Data

simulation, where datais integrated using StabMap or the naive PCA approach.
StabMap displays a higher cell type accuracy for many choices of the number

of genes (x-axis) for all choices of downstream horizontal integration (none,
Harmony, Mutual Nearest Neighbours (MNN) and Seurat), and as the number of
genes increases, this difference reduces closer to zero, indicating that the gain
inaccuracy is much more pronounced for smaller numbers of genes. Cell type
classification is performed for all combinations of query and reference sample
sets totalling 12 repetitions. Data are presented as mean values + /- SEM.
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Extended Data Fig. 2| StabMap performance in 10X PBMC Multiome
simulation. a. Number of 10X PBMC Multiome cells assigned to each simulated
datatype (left), joint UMAP generated using StabMap coloured by simulated
datatype (middle), and by cell type (right). b-j. As in panel (a.) for decreasing
proportions of simulated Multiome cells. k. Local inverse Simpson indices (LISI)
for simulated data type (top row) and for cell type (bottom row). LISl values are
extracted for allintegrated cells (n =10,032). Each boxplot (median bar and

whiskers to quartiles) corresponds to different choices of number of cellsin the
multiome dataset. The dotted line indicates approximately 1,000 cells in the
multiome dataset, where LISI values appear to markedly shift from unfavourable
to favourable integration. . Joint UMAP embedding generated using StabMap
insimulation as described in Fig. 3, with RNA dataset selected as reference,
indicating a ‘multi-hop’ data integration.
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Extended Data Fig. 3| See next page for caption.
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Extended Data Fig. 3 | Multi-hop integration of PBMCs using StabMap.
a.Number of cells presentin CYTOF, ECCITE-Seq and Multiome PBMC datasets.
b. UpSet plot of features shared among datasets, for example 7 proteins are
measured in the CYTOF and ECCITESeq datasets, gene expression is measured
for154 genes in the Multiome and ECCITESeq datasets, while all other protein,
RNA and chromatin accessibility features are distinct. c. Mosaic data topology

of these datasets. Features are shared among the ECCITESeq and CYTOF and
Multiome datasets respectively, but there are no shared features between the
CYTOF and Multiome datasets. d. Joint UMAP embeddings of multi-hop Stabmap
performed with reference dataset Multiome (left column) and both CYTOF and
Multiome (right column), coloured by the data modality (top row) and broad cell
type (bottom row). e. Violin plots of LISI values among CYTOF and Multiome cells
for the three embeddings as in panel d. LISI values are calculated with reference
to broad cell type (left), where low values are more desirable, and with reference
to modality (right), where high values are considered more desirable. Overall

we observe more desirable mixing of cells when using the CYTOF dataset as the
reference for this scenario. f. Line plots indicating the preservation of biological
signal across several steps of multi-hop mosaic data integration. Cells were
randomly selected from the Mouse Gastrulation Dataset, and split into 8 distinct
datasets (x-axis) with varying numbers of total cells per dataset n = 500,1,000,
2,000 (panels). Then, varying numbers of features n =100, 200, 500,1,000
(linesin each plot) were retained from among the HVGs such that there was
approximately 50% overlap of features between datasets 1and 2,2 and 3, and so
on.Asaresult, any one dataset only shares features with its neighbouring dataset,
representing an extreme task for multi-hop mosaic data integration. To assess
quality, cell type accuracy was calculated with dataset 1as the reference (y-axis),
and we observe some decrease in mapping quality as the number of intermediate
datasets increased, especially as fewer features were used. Ribbons represent 95%
confidence intervals on generalised additive model smoothed curve.
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Extended DataFig. 4 | Local enrichment testing of seqFISH cells. a. Spatial coordinates plot of all seqFISH cells coloured by local coefficient value of T~ enrichment
test. b. Spatial coordinates plots of all seqFISH cells, split by cell type (columns) and embryos (rows), where selected cells are coloured by local coefficient value of T7

enrichment test.
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