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Abstract 

Kidney diseases result from various causes, which can generally be divided into neoplastic and non-neoplastic dis-
eases. Deep learning based on medical imaging is an established methodology for further data mining and an evolv-
ing field of expertise, which provides the possibility for precise management of kidney diseases. Recently, imag-
ing-based deep learning has been widely applied to many clinical scenarios of kidney diseases including organ 
segmentation, lesion detection, differential diagnosis, surgical planning, and prognosis prediction, which can provide 
support for disease diagnosis and management. In this review, we will introduce the basic methodology of imaging-
based deep learning and its recent clinical applications in neoplastic and non-neoplastic kidney diseases. Additionally, 
we further discuss its current challenges and future prospects and conclude that achieving data balance, addressing 
heterogeneity, and managing data size remain challenges for imaging-based deep learning. Meanwhile, the interpret-
ability of algorithms, ethical risks, and barriers of bias assessment are also issues that require consideration in future 
development. We hope to provide urologists, nephrologists, and radiologists with clear ideas about imaging-based 
deep learning and reveal its great potential in clinical practice.

Critical relevance statement The wide clinical applications of imaging-based deep learning in kidney diseases can 
help doctors to diagnose, treat, and manage patients with neoplastic or non-neoplastic renal diseases.

Key points
• Imaging-based deep learning is widely applied to neoplastic and non-neoplastic renal diseases.

• Imaging-based deep learning improves the accuracy of the delineation, diagnosis, and evaluation of kidney diseases.

• The small dataset, various lesion sizes, and so on are still challenges for deep learning.
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Introduction
The kidneys are essential organs responsible for filtering 
waste products from the blood, regulating electrolytes 
and fluid balance, and producing hormones to balance 
blood pressure and red blood cell production [1–5]. Kid-
ney diseases can result from various causes, including 
diabetes, hypertension, autoimmune diseases, infections, 
and genetic disorders [1, 4, 6], which can generally be 
divided into neoplastic and non-neoplastic renal diseases. 
It is worth noting that renal cell carcinoma accounts for 
a large proportion of neoplastic kidney diseases, and its 
incidence is on the rise [7], posing great harm to human 
health. In addition, the non-neoplastic kidney diseases, 
such as chronic kidney diseases and end-stage kidney 
failure, can be problematic health burdens for patients 
and even life-threatening.

Medical imaging as a non-invasive method, including 
ultrasound (US), computed tomography (CT), magnetic 
resonance imaging (MRI), and nuclear medicine, plays 
a critical role in the diagnosis and management of kid-
ney diseases. These imaging methods provide clinicians 
with valuable information about the renal structure 
and function, including details about renal blood flow 
and tissue characteristics, which can help in accurate 
diagnosis and guide the treatment of kidney diseases 

[8–11]. However, the conventional interpretation of 
medical images can be time-consuming and prone 
to errors, especially in complex cases such as kidney 
cancer or chronic kidney disease [9, 12, 13]. In recent 
years, deep learning algorithms have been proposed to 
mine data and combine information to perform more 
detailed analysis [14, 15], showing great potential in 
improving diagnostic accuracy and efficiency of medi-
cal image analysis in kidney diseases.

Deep learning is an evolving field of artificial intel-
ligence that uses artificial neural networks to model 
complex relationships between input data and output 
predictions. The convolutional neural network (CNN) 
allows deep learning models to automatically learn 
discriminative features and patterns that are difficult 
to detect using traditional image analysis methods 
[16]. Moreover, deep learning models can be trained 
on large datasets of labeled medical images to achieve 
high accuracy and robustness in various clinical sce-
narios. In kidney diseases, imaging-based deep learning 
methods have been applied to various medical imaging 
modalities, such as CT, MRI, US, and single-photon 
emission computed tomography (SPECT). These meth-
ods have been used for a wide range of tasks, includ-
ing renal tumor applications (e.g., tumor segmentation, 

Graphical Abstract



Page 3 of 13Zhang et al. Insights into Imaging           (2024) 15:50 	

differential diagnosis, tumor staging, and grading) and 
non-neoplastic renal diseases [17–24].

Most of the previous reviews in this field focused on 
the methodology of deep learning or the discussions 
on kidney cancer rather than kidney diseases in general 
[25–29]. Therefore, we hope to summarize the clinical 
applications of imaging-based deep learning in kidney 
diseases as comprehensively as possible, so as to pro-
vide urologists, nephrologists, and radiologists with clear 
ideas about this approach and reveal its great poten-
tial in clinical settings. This review will firstly introduce 
the methodology of imaging-based deep learning, sum-
marize its recent clinical applications in neoplastic and 
non-neoplastic kidney diseases, and finally discuss its 
challenges and possibilities in future development.

Methodology of deep learning
The methodology of deep learning in kidney disease 
involves a series of steps that are critical to the devel-
opment, training, and deployment of deep learning 
models for clinical practice (Fig.  1). These steps include 
data acquisition, preprocessing, model selection, train-
ing, validation, and testing, as well as the evaluation and 

interpretation of the model results. In this section, we 
will provide a detailed overview of each step.

Data acquisition
The first step in deep learning for kidney diseases is data 
acquisition. In order to develop a deep learning model, 
a large dataset of medical images is usually needed. The 
quality of the data used for training is also crucial to the 
accuracy and generality of the algorithm [30, 31]. Multi-
source data (e.g., different modalities, different machines, 
and different imaging parameters) can decrease the bias 
introduced by the data collection but may also increase 
the model’s inability to converge [32–35]. The model 
developers should have a clear understanding of where 
the model is intended to work and collect data in this 
domain as much as possible. This step lays the foundation 
for the subsequent steps in the deep learning process.

Data preprocessing
The second step is data preprocessing, which involves 
cleaning and preparing the dataset for use in deep learn-
ing models. This step is essential to improve the quality 
of the data and avoid the effect on the accuracy of the 

Fig. 1  Deep learning flowchart. The methodology of deep learning consists of the following steps, data acquisition, data preprocessing, 
establishment of deep learning model, and model performance evaluation
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algorithm. There are several techniques used in data pre-
processing, including noise reduction, image normaliza-
tion, and image registration [22, 36–38].

Another important aspect of data preprocessing is 
data augmentation. Data augmentation generates sev-
eral slightly modified copies of existing data, by means 
like rotation, scaling, and cropping, to reduce overfit-
ting when training models [39]. It is worth mentioning 
that generative adversarial networks can utilize different 
contrasts and modalities of existing imaging protocols 
to generate new synthetic images with high authen-
ticity [40–44], demonstrating great potential in data 
augmentation.

What is more, data preprocessing also involves data 
labeling. The labels are what we expect the model to out-
put, and they come in different forms depending on the 
type of learning task. For instance, in renal tumor clas-
sification [12, 19, 20, 45], data labeling requires assigning 
a class or category to each image in the dataset. In addi-
tion, matrices or tensors denoting the target area are usu-
ally used as labels in renal tumor segmentation [17, 46]. 
However, for the generative model, no additional label is 
needed, which belongs to self-supervised learning.

Establishment of deep learning model
The next step is to establish the deep learning model, 
including model architecture selection, model training, 
and hyperparameter adjustment by model validation. 
There are different kinds of deep learning architectures 
that can be used for medical image analysis, and most 
of them are built from the CNN. The CNN, initially 
designed to process images, is an important adaptation 
of the Multilayer perceptron which is the simplest deep 
neural network [47]. Besides, model architecture selec-
tion is the process of choosing the appropriate deep 
learning architecture according to the different learning 
tasks. For example, U-Net and its 3D variants are often 
used for the segmentation task [35–37, 46], while resid-
ual network (ResNet) and its variants are usually used for 
the classification task [20].

Once the model architecture is selected, it needs to 
be trained. This involves feeding preprocessed training 
data into the deep learning algorithm and adjusting the 
weights of the model to minimize the difference between 
the predicted output and actual output. Meanwhile, 
hyperparameters, which are variables that control the 
behavior of the model, are also the key components in the 
algorithm, such as learning rate, epoch, batch size, and 
number of layers. After model training, the hyperparam-
eters need to be adjusted by model validation to optimize 
the performance of the training model [48]. Through con-
tinuous model training and hyperparameters adjustment, 

the optimal model, including the optimal weights and the 
optimal hyperparameters, is established by comparison.

Evaluation of model performance
Evaluation is an important step in the deep learning pro-
cess to assess the performance of the developed model 
on a separate testing set. The evaluation of deep learning 
models in kidney diseases includes several metrics, such 
as accuracy, precision, F1-score [49, 50], area under the 
receiver operating characteristic curve (AUROC) [51], 
Dice similarity coefficient, and Jaccard similarity coeffi-
cient [52].

The choice of these metrics depends on the specific 
problem being addressed. For instance, in classification 
tasks, accuracy, sensitivity, and specificity are commonly 
used metrics. While the Dice similarity coefficient and 
Jaccard similarity coefficient are often used as the evalu-
ation metrics in segmentation tasks. The model perfor-
mance evaluation helps to ensure that the model has not 
simply memorized the training data and can accurately 
generalize to new data.

Applications of deep learning in kidney diseases
Imaging-based deep learning has been widely applied to 
kidney diseases, including renal tumors and non-neo-
plastic renal diseases. We have reviewed the relevant 
studies and summarized their clinical applications as 
follows.

Renal tumor
Segmentation
Accurate segmentation of regions of interest is the 
basis of quantitative image analysis and essential in the 
research of imaging-based deep learning. Manual seg-
mentation is time-consuming and labor-intensive. In 
addition, the accuracy and reproducibility of manual or 
semi-automatic segmentation heavily depends on the 
experience of the annotator and the complexity of the 
images. Therefore, much research is devoted to develop-
ing automatic segmentation algorithms, aiming to pro-
vide end-to-end segmentation methods to greatly save 
the cost of the process.

Yang et  al. [53] proposed a 3D Multi-Scale Residual 
Fully Convolutional Neural Network for segmenting 
kidney tumors larger than 7  cm. The method employed 
a multi-scale approach to capture global contextual fea-
tures, demonstrating greater accuracy than the state-
of-the-art method, with a Dice score of 0.9390 for the 
Kidney and Kidney Tumor Segmentation Challenge 
dataset and 0.8575 for the in-house hospital dataset 
(Fig.  2). The study suggests that the proposed network 
can be useful in the field of medical image analysis for 
accurately segmenting and analyzing large-sized kidney 
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tumors. However, the segmentation performance of 
small and medium-sized tumors still needs to be further 
improved, and more efficient deep learning models need 
to be used to provide more focal information to avoid 
over-segmentation.

In addition to the simple segmentation of tumor 
boundaries, the accurate segmentation of renal tumors 
and renal structures is also crucial. The Meta Greyscale 
Adaptive Network was proposed for 3D integrated renal 
structure segmentation in CT angiography (CTA) images 
[17]. The proposed model segmented the kidneys, renal 
tumors, arteries, and veins in one inference, addressing 
challenges such as low contrast and network represen-
tation preferences caused by grayscale distribution vari-
ation inter-images. The study enrolled 123 patients and 
achieved an average Dice coefficient of 87.9% for renal 
structures, showing promising results for renal cancer 
treatment.

Differential diagnosis
Deep learning provides a feasible approach to precisely 
identify the imaging features of renal mass, so as to differ-
entiate and diagnose them. Zabihollahy et al. [12] recently 
employed a deep learning model developed on contrast-
enhanced computed tomography (CECT) images from 
155 patients to differentiate renal cell carcinoma (RCC) 
from benign solid renal masses (renal oncocytomas and 
fat-poor renal angiomyolipoma) and validated the model 
on CECT images from 160 patients. The proposed CNN 
algorithm adopted the semi-automated method and the 

accuracy, precision, and recall rate obtained were 83.75%, 
89.05%, and 91.73%, respectively.

The oncocytoma and chromophobe RCC (ChRCC) are 
similar radiologically and immunohistochemically, mak-
ing it difficult to distinguish between them. Baghdadi 
et  al. [54] developed a semi-automated CT-based deep 
learning system to compute the tumor-to-cortex peak 
early-phase enhancement ratio which was then used to 
identify benign renal oncocytoma and ChRCC. The accu-
racy, sensitivity, and specificity obtained in the internal 
validation were 95%, 100%, and 89%, respectively, which 
outperformed manual diagnosis. Pedersen et al. [20] also 
proposed a deep learning approach, which uses more 
than 20,000 2D CT images, to classify the two types of 
tumors. And the model was tested on three independent 
datasets with 90.0–97.7% accuracy when evaluated image 
by image, and up to 100% accuracy when evaluated by 
51% majority vote of individual image classifications for 
each patient.

These renal tumor identification studies further sug-
gest that deep learning has the potential to solve a simi-
lar problem from multiple dimensions, and its possibility 
in clinical application needs to be explored. Meanwhile, 
it is of great reference value that the classification results 
at the patient level are determined by those at the two-
dimensional level in the differential diagnosis.

Tumor staging/grading
For renal tumors, especially malignancies, identifica-
tion of tumor stage and grade is crucial for monitoring 
the patient’s condition and developing individualized 

Fig. 2  Examples of representative results of kidney tumor segmentation on internal (KiTS) and external (in-house) validation datasets: 
Images in the first row are examples of an extremely large tumor from the internal validation dataset. Images in the second row are examples 
of an extremely large tumor from the external validation dataset. The green color indicates the kidney, and the red color indicates the tumor. Image 
reproduced with permission from "Yang E, et al. (2022) 3D multi-scale residual fully convolutional neural network for segmentation of extremely 
large-sized kidney tumor. Comput Methods Programs Biomed 215:106,616."
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treatment strategies. In a recent retrospective study, Xu 
et  al. developed four different types of deep learning 
models to grade clear cell renal cell carcinoma (ccRCC) 
by learning CT images [55], and all achieved satisfactory 
performance in external validation (Fig.  3). Meanwhile, 
Xu et al. further proposed an innovative weight calcula-
tion method to weigh the outputs of the four models and 
subsequently combine them to obtain the final grading 
decision. This behavior was like the expert consultation 
that multiple experts analyzed the patient’s condition and 
combined the opinions with each other so as to make the 
judgment more precise and reliable. Finally, the ensem-
ble model enhanced the network generalization ability 
and further improved the predictive performance with an 
AUROC of 0.882. The study avoids the problem of a small 
correlation of image contents between the pre-training 
and developing process in deep learning research and is 
meaningful for the research with label noise and category 
imbalance.

In addition, Zhao et al. aimed to evaluate the efficacy 
of a ResNet in differentiating low-grade (grade I–II) 
from high-grade (grade III–IV) in stage I and II RCC 
using routine MRI [56]. The study included 376 patients 
with 430 RCC lesions, of which 353 were classified by 
Fuhrman grading for model training, validating, and 
testing, and 77 by WHO/ISUP grading as a separate 
test set. The final deep learning model achieved a test 
accuracy of 0.88, sensitivity of 0.89, and specificity of 

0.88 in the Fuhrman test set, and a test accuracy of 0.83, 
sensitivity of 0.92, and specificity of 0.78 in the WHO/
ISUP test set. However, the heterogeneity of the differ-
ent data acquisition parameters at different institutions 
is still a barrier to expanding research dataset. And the 
automatic segmentation for small-size kidney tumor is 
still challenging even though automatic segmentation 
has shown great performance in other organs.

Moreover, Hussain et al. proposed a deep neural net-
work based on learnable image histogram, which can 
learn the complex and subtle task-specific textural fea-
tures from original CT images, focusing not only on 
RCC grading but also on RCC staging [21]. For RCC 
Fuhrman grading, the method which was developing 
on the CT dataset from 159 patients obtained the esti-
mated accuracy of 80%. What is more, Hussain et  al. 
have also tried to compare the RCC grading perfor-
mance of their approach with a wide range of methods 
including the traditional machine learning approaches. 
The performances of these conventional machine learn-
ing are lower than that of the proposed method. As for 
TNM staging, the researchers divided the data into 
stage low (I–II) and stage high (III–IV) for RCC stag-
ing, and the estimated accuracy was 83%. These results 
suggest that deep learning has great potential in pre-
dicting RCC aggressiveness and malignant degree, 
showing that deep learning is non-invasive and efficient 

Fig. 3  Network output probabilities for low-grade and high-grade patients. The left subplot is the network output probability distribution 
of low-grade and high-grade patients. The right subplot is the CT images of low-grade and high-grade patients with different network output 
probabilities. "Xu L, et al. (2022) Deep Learning Using CT Images to Grade Clear Cell Renal Cell Carcinoma: Development and Validation 
of a Prediction Model. Cancers 14: 2574."
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in tumor grading and staging, and the future applica-
tion of this method in clinical scenario is foreseeable.

Surgical planning
At present, fine segmentation of renal arteries on abdom-
inal CTA images and accurate assessment of vascular 
structure especially small vessels are critical to the diag-
nosis and treatment of renal tumors, and they are the 
essential steps of preoperative planning in both open sur-
gery and minimal-invasive surgery.

In a recent study, Wang et al. proposed a new approach 
for precisely estimating the renal vascular dominant 
region using a Voronoi diagram, combining a neural 
network and tensor-based graph-cut methods for kid-
ney and renal artery segmentation [57]. The accuracy of 
kidney segmentation in 27 cases reached a Dice score of 
95% and the accuracy of renal artery segmentation in 8 
cases obtained a centerline overlap ratio of 80%. The final 
dominant-region estimation accuracy achieved a Dice 
coefficient of 80%. However, even though the results of 

kidney segmentation are optimistic, the different renal 
pathology patterns and image slice thickness still have 
negative effects on the performance. Moreover, a novel 
3D semi-supervised framework developed by He et  al. 
for fine renal artery segmentation also achieved similar 
results with the Dice coefficient of 88.4% [58]. Figure  4 
illustrated the visual advantages of this model, the frame-
work was capable to achieve the good performance for 
the 3D fine renal artery segmentation and the high qual-
ity for the singular structure segmentation so as to help 
the clinicians locate the blood supply area precisely, and 
consequently improved the efficiency of renal preop-
erative planning and reduced the cost of individualized 
treatment in clinical practice.

Deep learning frameworks show the great potential in 
the real clinical surgical environment, which can meet 
the demand of fine renal arteries and thin structures seg-
mentation and obtain relatively high quality, and help 
doctors accurately and directly locate and evaluate vas-
cular structures, formulate precise surgical plan, create 

Fig. 4  The visual superiority of the proposed framework. The blue boxes indicate the high segmentation quality of artery endings 
via the framework and the yellow boxes indicate the high segmentation quality of the singular regions brought by the author’s deep priori anatomy 
(DPA) strategy (For interpretation of the references to color in this figure legend). Image reproduced with permission from "He Y, et al. (2020) Dense 
biased networks with deep priori anatomy and hard region adaptation: Semi-supervised learning for fine renal artery segmentation. Med Image 
Anal 63:101,722."
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greater survival opportunities and higher quality of life 
for patients.

Prognosis prediction
Prognosis prediction is also crucial for the management 
of kidney tumor patients during treatment. Prognosis 
is related to complex medical data, such as clinical risk 
factors, histopathological patterns, and image manifes-
tations. Integrating these heterogenous multi-modal 
data poses challenges in data analysis. The development 
of deep learning models provides ideas for multi-modal 
data analysis and can further mine the data to make more 
accurate judgments.

For instance, there is a study that aimed to develop and 
evaluate a multimodal deep learning model (MMDLM) 
for prognosis prediction in ccRCC patients [59]. The 
MMDLM was trained on multiscale histopathological 
images, CT/MRI scans, and genomic data from whole 
exome sequencing of 230 patients in The Cancer Genome 
Atlas cohort and 18 patients in the Mainz cohort. The 
MMDLM showed great performance in predicting the 
5-year survival state of ccRCC patients, with a mean Har-
rell’s concordance index of 0.7791 and a mean accuracy 
of 83.43%. The findings suggest that MMDLM can con-
tribute to prognosis prediction and potentially improve 
the clinical management of ccRCC. However, missing the 
comparison with other clinical tools which include more 
comprehensive clinical data makes the superiority of 
MMDLM hardly ascertainable. And because of the small 
external validation dataset, its generalizability also needs 
additional studies to prove.

Non‑neoplastic renal diseases
In addition to the wide application of imaging-based 
deep learning in renal tumors, several recent studies have 
reported that deep learning also focuses on the clini-
cal application of non-neoplastic renal diseases, includ-
ing the distinction of healthy kidneys from kidneys with 
chronic kidney disease (CKD), the evaluation of kidney 
function, and the detection of renal calculi.

Chronic kidney diseases
With the application of deep learning in kidney dis-
eases, the mining of kidney image data is deepened, 
and the characteristic changes are also used to further 
improve the accuracy of CKD diagnosis. Recently, Lee 
et al. conducted a multi-task study using deep learning, 
which included 909 patients (385 with CKD and 524 
without CKD), and their kidney US images were used 
for analysis to detect CKD [51]. The Mask regional con-
volutional neural network model was used in the kidney 
and liver segmentation, from which measurable features 
such as kidney length and kidney-to-liver echogenicity 

ratio were extracted. Concomitantly, the ResNet-18 was 
used for CKD diagnosis. It was worth noting that three 
models were proposed. The average AUROC of the first 
model achieved a level of 0.81 (sensitivity 78.2%, specific-
ity 71.5%, and accuracy 74.4%), which only used the US 
image information for analysis. The second model added 
the extracted measurable features on the basis of the first 
model, and the average AUROC improved to 0.88 (sensi-
tivity 86.1%, specificity 77.5%, and accuracy 81.2%). The 
last model, which further incorporated clinical infor-
mation (e.g., diabetes history), resulted in the average 
AUROC of 0.91 (sensitivity 89.4%, specificity 82.9%, and 
accuracy 85.9%).

Many studies applying deep learning to US images have 
shown lower accuracy than other imaging modalities. 
However, the AUROC of CKD classification in the above 
research was significantly improved, indicating that the 
image measurable features extracted through the deep 
learning process can be used as supplementary data to 
refine the model and improve the accuracy. Meanwhile, 
the developed joint model further took advantage of the 
clinical information and achieved better results than the 
single imaging model, demonstrating that relevant clini-
cal features can be appropriately fused to construct mul-
tivariate models. Furthermore, the model performance 
probably be further improved by bringing more com-
prehensive and actual-clinical data into study, includ-
ing the patients whose estimated glomerular filtration 
rate (eGFR) is between 60 mL/min/1.73 m2 and 90 mL/
min/1.73 m2, and the US images with large cysts, solid 
masses, and hydronephrosis. This suggests that taking 
the real-world clinical situation into consideration poten-
tially enhances the model practicability.

Evaluation of kidney volume and function
In addition, autosomal dominant polycystic kidney dis-
ease (ADPKD) results in an increase in total kidney 
volume (TKV) due to the progressive growth of cysts. 
Therefore, assessment of TKV is essential for evaluat-
ing disease severity, disease progression, and therapeutic 
response in ADPKD, and the advances in deep learning 
provide the process more assistance.

Kline et  al. [52] established a reference standard 
TKV based on their previous study and developed a 
fully automated approach that randomly selected 2000 
cases with their MRI data for the training and valida-
tion using 400 cases not involved in the training for 
testing. The model achieved good results on the test 
dataset with a Jaccard coefficient of 0.94 ± 0.03 and a 
Dice coefficient of 0.97 ± 0.01 (sensitivity = 0.97 ± 0.02, 
specificity = 0.99 ± 0.01, and precision = 0.98 ± 0.02). 
Moreover, van Gastel et al. [60] extended the structure 
of the network based on the research of Kline et al. and 
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also achieved good results in TKV measurement com-
pared with the conventional manual measurement. 
These studies revealed the potential of deep learning 
in TKV measurement, which provided a more time-
saving method for disease assessment in patients with 
ADPKD.

Kuo et  al. proposed a deep learning approach for 
automatically determining the eGFR and CKD status 
using kidney US images [61]. They used transfer learn-
ing and kidney length annotations to develop a neural 
network that predicts kidney function based on 4505 
kidney US images. The model achieved a Pearson cor-
relation coefficient of 0.741 and an overall CKD status 
classification accuracy of 85.6%. Besides, Pieters et  al. 
[62] also provided a fully automatic method, which was 
connecting the body-composition parameters extracted 
from the abdominal CT scans with clinical features to 
develop the equations estimating creatinine produc-
tion and obtained the ideal results. These studies above 
have proved that deep learning can achieve good per-
formance in both renal volume evaluation and kidney 
function assessment. Meanwhile, the deep learning 
methods are being improved constantly in routine clin-
ical scenarios and gradually becoming the reliable tool 
for CKD monitoring and management.

Detection of renal calculus
Renal calculi are a common kidney disease and a world-
wide health problem, which can be induced by risk fac-
tors including obesity, diabetes, hypertension, and 
metabolic syndrome. The formation of renal calculi can 
lead to urinary system obstruction, kidney failure, hyper-
tension, CKD, and end-stage renal disease [6, 63]. In clin-
ical practice, the diagnosis of renal calculi generally needs 
the assistance of imaging techniques, including US and 
non-contrast-enhanced computed tomography (NCCT). 
Nowadays, imaging-based deep learning is developing 
rapidly and is already being used in these techniques to 
further improve the ability to detect renal calculi.

Yildirim et  al. [63] developed a coronal CT image-
based deep learning model to detect renal calculi on a 
dataset of 1453 NCCT images and validated the model 
on an internal cohort of 346 NCCT images (Fig. 5). The 
proposed cross-residual network model shows excellent 
performance in detecting renal calculi, and the accuracy, 
sensitivity, and specificity obtained are 96.82%, 95.76%, 
and 97%, respectively. At the same time, the study also 
put forward the proposals to detect kidney stones on 
axial and sagittal CT images, and the relation between 
stone size and detection performance could be further 
explored. However, Caglayan et  al. [64] filled the gap, 

Fig. 5  Sample test images showing the areas on which the Deep learning model has concentrated for diagnosis. Red arrows were regions used 
by experts to show the stones in the images. Image reproduced with permission from "Yildirim K, et al. (2021) Deep learning model for automated 
kidney stone detection using coronal CT images. Comput Biol Med 135:104,569."
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dividing the dataset into three groups based on kidney 
stone size to evaluate the kidney stone detection perfor-
mance of the deep learning-assisted model in three imag-
ing axes respectively.

Elton et al. proposed an approach to automatic detec-
tion and volumetric segmentation of renal calculi on 
a dataset of 180 computed tomography colonography 
scans [65]. The first step of the method was to segment 
the kidneys, then to combine with the gradient aniso-
tropic diffusion denoising, thresholding, and region 
growing, and finally classify the detected results as true 
or false positive, obtaining a sensitivity of 0.86 at 0.5 false 
positives for each scan and achieving an AUROC of 0.95 
on an external validation set for patient-level classifica-
tion. Meanwhile, there was a good correlation between 
the model and manual measurements of stone volume. 
Recently, on the basis of their previous work, Mukher-
jee et  al. proposed a slightly modified pipeline which 
updated the segmentation method and volume threshold, 
obtaining a per-scan sensitivity of 97.8% [66]. The renal 
stone volume and its interval changes on serial CT scans 
were assessed by the deep learning-based automated 
measurements and manual measurements respectively, 
and it also showed good agreement between two kinds of 
measurements. In these studies, the application of deep 
learning in the detection and volume measurement of 
renal calculi is significantly important for the assessment 
of renal calculus. In addition, future studies that take into 
account the influence of kidney stone composition may 
further improve the performance of stone detection and 
evaluation.

Current challenges and future prospects
In recent years, numerous studies have demonstrated 
that medical imaging-based deep learning has become 
a promising tool to improve the diagnosis and manage-
ment of kidney diseases, including renal tumor diseases 
and non-neoplastic renal diseases. However, to maximize 
its potential, several challenges must be addressed.

One of the main challenges in medical imaging-
based deep learning in kidney diseases is the lack of 
large, diverse datasets [12, 20, 57]. Deep learning algo-
rithms require a significant amount of data to learn and 
make accurate predictions. However, obtaining large, 
high-quality datasets of medical images can be chal-
lenging, as it requires a collaborative effort from multi-
ple institutions and healthcare providers [67]. This not 
only involves the intricacies of data collection, but also 
underscores the ethical need to safeguard patient privacy 
when sharing data [68]. Meanwhile, dataset balance also 
needs to be considered, so as to avoid potential bias from 
data collection. For instance, in renal tumor segmenta-
tion tasks [53, 56], the tumor size ranges from small to 

large, and possibly because of the imbalanced dataset, 
the model often achieves better segmentation results on 
some tumors with large size than those with small and 
medium size. However, the sample reweighting method 
proposed by Xu et al. may be useful for future study on 
category imbalance, which effectively balances the con-
tribution of categories with different quantity propor-
tions to the loss function.

Besides, the variability in medical images due to dif-
ferent imaging modalities and protocols is another chal-
lenge. For example, medical images of the kidney can be 
acquired using various imaging modalities [32], including 
CT, MRI, and US, each with its own strengths and limita-
tions. Moreover, it is mentioned in several studies above 
that the variation in acquisition parameters and the 
operators could lead to the data inhomogeneity to affect 
the performance of the model, emphasizing the impor-
tance of data preprocessing and data augmentation [20, 
56, 57]. In addition, transfer learning to use the param-
eters of existing models to initialize new models and train 
them on new data, and ensemble learning to combine the 
learning results of multiple independent models may also 
be the solutions to this problem [69].

Additionally, while deep learning models have shown 
excellent performance in many clinical applications, 
understanding how they arrived at a particular prediction 
is still challenging in clinical practice [67]. This is due to 
the opacity of deep learning process, which makes it diffi-
cult to elucidate the causal relationship between the input 
and output, consequently giving rise to ethical risks. 
When doctors employ deep learning algorithms for clini-
cal decisions, if there are mistakes, the lack of algorithm 
interpretability and relevant regulations makes it difficult 
to clearly identify the accountable party [70]. Simulta-
neously, achieving a clear definition of the predictors in 
decision-making becomes unattainable when evaluating 
the risk of bias, creating an impediment in bias assess-
ment [71]. Therefore, many researchers now attempt to 
validate the established model on a larger scale in exter-
nal centers [63–65]. If the same satisfactory results can 
be obtained as the internal validation, the impact of poor 
interpretability on clinicians can be reduced to a cer-
tain extent. Moreover, some advanced techniques are 
also attempting to simulate the mathematical relation-
ships between adjacent pixels to provide an interpretable 
framework for deep learning. Topological data analysis 
(TDA) is a newer paradigm that can extract information 
on the shape of data and can be combined with a tech-
nique known as persistent homology to transform data 
into visually meaningful representations, breaking the 
black-box process of traditional deep learning model 
to some extent [72]. With the use of TDA, researchers 
have made remarkable progress in the understanding 
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(pathophysiological features, etiology, prognosis) of 
several diseases, including cancer, asthma, and chronic 
lung disorders. However, further research is needed to 
contribute to the interpretability of deep learning and 
to develop normative reporting guidelines and powerful 
risk of bias tool on this basis.

Despite the current challenges of medical imaging-
based deep learning in kidney disease, its future is still 
greatly promising. From the above research, it can be 
seen that medical imaging-based deep learning has the 
potential to improve the accuracy and efficiency of the 
diagnosis of renal tumor diseases, including RCC, the 
most common type of renal tumor. Additionally, medi-
cal imaging-based deep learning also has the potential 
to detect or predict non-neoplastic renal diseases, such 
as CKD, at an earlier stage, allowing for earlier interven-
tion and better patient outcomes [51]. These models can 
analyze medical images and identify subtle changes in the 
renal structure and function that may indicate the pres-
ence of non-neoplastic renal diseases, leading to better 
patient outcomes and reduced healthcare costs. Predict-
ably, deep learning based on medical imaging has the 
potential to provide personalized medicine for patients 
with kidney diseases. Medical imaging-based deep learn-
ing models can provide a more accurate diagnosis based 
on the individual unique characteristics, such as tumor/
lesion size, location, and histological subtype, to help 
predict the progression of kidney diseases and develop 
personalized treatment plans for patients.

Conclusion
Recent research provides evidence that imaging-based 
deep learning has great potential in data mining and anal-
ysis and has been widely applied in the field of kidney dis-
eases. Both in the clinical scenarios of renal tumors and 
non-tumor diseases, promising performance has been 
demonstrated. However, the promotion of deep learn-
ing in clinical practice is still facing challenges due to the 
poor interpretability and repeatability of deep learning, 
which is also related to the fact that current studies on 
deep learning tend to focus on specific clinical situations. 
Therefore, there are still many areas to be improved 
before deep learning can effectively serve clinical work.
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