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proposed to define families with a strong CRC family his-
tory that meet the Amsterdam I criteria [3] where the tumors 
are DNA mismatch repair (MMR)-proficient/microsatellite 
stable and do not carry a germline pathogenic variant in one 
of the MMR genes (Lynch syndrome) [4, 5]. The genetic 
factors underlying FCCTX are poorly understood and are 
likely to be heterogeneous involving multiple susceptibility 
genes [6].

Serrated polyposis syndrome (SPS) is characterized by 
the presence of multiple serrated colorectal polyps (hyper-
plastic polyp, sessile serrated lesion (SSL) and traditional 
serrated adenoma) resulting in an increased risk of devel-
oping CRC [7–9]. The diagnostic criteria for SPS was 

Introduction

Colorectal cancer (CRC) has one of the highest rates of 
aggregation within families (familial CRC), with up to 
35% of CRC thought to be caused by inherited genetic risk 
factors [1]. However, the underlying cause of CRC can be 
assigned to one of the inherited CRC and polyposis syn-
dromes in only 5–10% of cases [2], therefore, the genetic 
cause of the majority of familial CRC remains unknown. 
The term Familial Colorectal Cancer Type X (FCCTX) was 
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Abstract
Genetic susceptibility to familial colorectal cancer (CRC), including for individuals classified as Familial Colorectal 
Cancer Type X (FCCTX), remains poorly understood. We describe a multi-generation CRC-affected family segregating 
pathogenic variants in both BRCA1, a gene associated with breast and ovarian cancer and RNF43, a gene associated with 
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determine tumor mutational signatures and loss of heterozygosity (LOH) events. Ten carriers of a germline pathogenic vari-
ant BRCA1:c.2681_2682delAA p.Lys894ThrfsTer8 and eight carriers of a germline pathogenic variant RNF43:c.988 C > T 
p.Arg330Ter were identified in this family. Seven members carried both variants, four of which developed CRC. A single 
carrier of the RNF43 variant met the 2019 World Health Organization (WHO2019) criteria for SPS, developing a BRAF 
p.V600 wildtype CRC. Loss of the wildtype allele for both BRCA1 and RNF43 variants was observed in three CRC tumors 
while a LOH event across chromosome 17q encompassing both genes was observed in a CRC. Tumor mutational signature 
analysis identified the homologous recombination deficiency (HRD)-associated COSMIC signatures SBS3 and ID6 in a 
CRC for a carrier of both variants. Our findings show digenic inheritance of pathogenic variants in BRCA1 and RNF43 
segregating with CRC in a FCCTX family. LOH and evidence of BRCA1-associated HRD supports the importance of 
both these tumor suppressor genes in CRC tumorigenesis.
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re-defined by the World Health Organization (WHO) in 
2019 [10] to include (i) 5 or more serrated polyps proxi-
mal to the rectum, all 5  mm or greater in size, with 2 or 
more 10 mm or greater in size or (ii) more than 20 serrated 
polyps of any size in the large bowel, with 5 or more proxi-
mal to the rectum. The progression from serrated polyp to 
carcinoma, referred to as the serrated neoplasia pathway of 
tumorigenesis, is characterized by distinct molecular fea-
tures, including the presence of microsatellite instability 
(MSI), high levels of the CpG island methylator phenotype 
(CIMP) and somatic mutations in the oncogenes BRAF or 
KRAS [11]. However, the genetic etiology of SPS remains 
poorly understood [12, 13]. Recently, germline pathogenic 
variants in RNF43 have been proposed to underlie SPS [14–
18], but they account for only a small proportion of cases 
[19]. As such, expert groups are yet to recommend the inclu-
sion of RNF43 in multi-gene testing panels for patients with 
SPS [12].

The BRCA1 gene acts as a tumor suppressor through its 
role in DNA repair [20]. Germline pathogenic variants in 
BRCA1 confer high risks of breast and ovarian cancers [21]. 
The association between BRCA1 pathogenic variants and 
CRC development is more uncertain [22]. Multiple stud-
ies have investigated whether carriers of germline BRCA1 
pathogenic variants have an increased risk of developing 
CRC, with mixed results [23, 24].

It has been suggested that digenic inheritance may account 
for some cases of familial CRC and polyposis syndromes, 
however there are few reports in the literature [25–27]. In 
this study, we describe a family meeting FCCTX criteria 
where multiple cancer-affected individuals carried germline 
pathogenic variants in both the BRCA1 and RNF43 genes on 
chromosome 17q. The tumor characteristics from carriers 
were assessed to characterize the drivers of tumorigenesis. 
Our findings demonstrate a possible role for digenic inheri-
tance in the predisposition to familial CRC.

Methods

Study cohort

The family presented was identified from the Austral-
asian Colorectal Cancer Family Registry (ACCFR) 
(HREC:13,094) [28–30]. The ACCFR recruited multiple-
member CRC-affected families from Family Cancer Clinics 
across Australia and New Zealand between 1998 and 2008. 
Participants provided written consent to access their tumor 
tissue and provided a blood sample [30]. Methodology for 
germline MMR and MUTYH gene testing and tumor charac-
terization have been described previously [28].

Germline sequencing and variant detection

CRC-affected individuals 009 and 014 had germline whole 
exome sequencing (WES) performed. Briefly, 50ng of 
genomic DNA was fragmented to an average size of 180 bp 
in length using a Covaris focused-ultrasonicator (Covaris, 
Woburn, MA, USA). An Illumina sequencing technology 
compatible whole genome library was created using Kapa 
Biosystems Hyper Prep Kits (Kapa Biosystems Inc., Wilm-
ington, MA, USA). These libraries were then subjected to 
whole exome target enrichment using Agilent SureSelect 
hybrid capture version 4 kits (Agilent Technologies, Santa 
Clara, CA, USA). Parallel sequencing of libraries was per-
formed on Illumina HiSeq2000/2500 system using version 
1.5 or version 3 chemistry using paired-end 2 × 100 bp reads 
(Illumina, San Diego, CA, USA). All sequencing reads 
were converted to industry standard FASTQ files using 
BCL2FASTQ v1.8.4. FASTQ files were processed using a 
pipeline based on industry standard software packages and 
programs. Sequencing reads were aligned to the GRCh37 
human genome reference using v0.7.8 BWA-MEM aligner 
[31] to generate BAM files. SAMtools v0.1.19 [32] was 
used to sort BAM files and Picard v1.111 (http://broadin-
stitute.github.io/picard/) to mark duplicate read pairs. Post 
alignment joint insertion/deletion (indel) realignment and 
base quality scores recalibration was performed on the 
BAM files using GATK v3.1-1 [33]. Variants were called 
from germline BAM files individually using GATK Haplo-
type Caller v3.1-1 [34] and SAMtools v0.1.19 [35].

Germline variant annotation

Germline variants were annotated with the Ensembl Variant 
Effect Predictor release 105 (December 2021) for the human 
genome reference GRCh37 including the CADD predicted 
pathogenicity scores for each variant [36, 37]. The RefSeq 
transcript NM_007300.4 was used for BRCA1. The Ref-
Seq transcript NM_017763.5 was used for RNF43. Sanger 
sequencing of the BRCA1 and RNF43 pathogenic variants 
was used for confirmation of the variants in persons 009 and 
014 and to segregate the variants in 19 other family mem-
bers with available DNA.

Tumor tissue sample processing and nucleic acid 
preparation

Where available, formalin-fixed paraffin-embedded (FFPE) 
tumor tissue blocks were obtained. MMR status was deter-
mined with immunohistochemistry as previously described 
[28]. Sections were stained with haematoxylin and eosin 
and prepared for pathological review. Tumor, polyp and 
histologically normal mucosa were macrodissected and 
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processed independently. DNA was extracted with the 
QIAamp DNA FFPE Tissue kit following standard proto-
cols (Qiagen, Hilden, Germany).

Tumor tissue sequencing and variant detection

CRC tumor tissue and matched blood-derived DNA from 
person 009 were prepared according to the procedure for 
Hybridization Capture using the Agilent SureSelectXT Low 
Input Clinical Research Exome v2 kit. The prepared librar-
ies were sequenced with Illumina sequencing technology 
comprising 150  bp paired. Raw FASTQ files underwent 
adapter sequence trimming using trimmomatic v.0.38 [38] 
and alignment to the human genome reference GRCh37 
using BWA v.0.7.12 [31]. Duplicate reads were identified 
with Picard v2.8.2. Mean on target coverage for the tumor 
and buffy coat samples was 499.3 and 79.5 respectively. 
Germline variants were called with HaplotypeCaller from 
GATK 4.0.0 [39] using GATK’s recommended workflow. 
Somatic single-nucleotide variants (SNVs) and short inser-
tions and deletions (indels) were called with Mutect2 [40] 
with the recommended GATK practices and Strelka v.2.9.2 
[41] with Illumina’s recommended workflow. Mutations 
reported by both callers were filtered to PASS variants with 
a minimum variant allele frequency of 0.1 and minimum 
depth of 50 reads.

Tumor loss of heterozygosity analysis

Two CRC and two polyp tissue DNA samples from two 
carriers of both variants were assessed for loss of hetero-
zygosity (LOH) of the wildtype alleles of the BRCA1 and 
RNF43 variants using standard Sanger sequencing pro-
tocols. Short (179  bp) BRCA1 amplicons were gener-
ated using GCAGAAGAGGAATGTGCAACATTCT and 
TTATCTTTCTGACCAACCACAGGAA with sequenc-
ing occurring in the reverse direction. Short (182  bp) 
RNF43 amplicons were generated using ACAGGC-
TACTCAGGGTCAAATAGAT and CGAATGAGGTG-
GAGTCTTCGA with sequencing occurring in the forward 
direction. Tumor tissue DNA was available for a single 
CRC from person 009 for extended LOH assessment using 
WES tumor data. The captured regions of the genome were 
assessed for evidence of LOH by interrogating heterozygous 
germline variants in the tumor for their presence as homo-
zygous reference or homozygous alternative in the tumor 
tissue. A tumor cellularity estimate of 80% was used. Germ-
line variants with an allele frequency of between 0.4 and 0.6 
were considered heterozygous. An allele frequency differ-
ence of 0.3 or greater in the somatic tissue, limited to vari-
ants with a germline depth ≥ 10 and tumor depth ≥ 30, was 
considered evidence of LOH. Individual variants suggesting 

the presence of LOH were aggregated to determine likely 
genomic regions of LOH. The algorithm used is available at 
https://github.com/supernifty/LOHdeTerminator.

Tumor mutational signature analysis

SNVs and indels were filtered to those in the capture region. 
These filtered SNVs and indels were used to calculate tumor 
mutational signatures according to the method given by Sig-
natureEstimation [42] from the set of COSMIC version 3.2 
signatures [43] limited to signatures observed in CRC tis-
sue comprising 15 single base substitution (SBS) signatures 
and 5 indel (ID) signatures [44] as commonly recommended 
[45], including SBS3 and ID6 given their association with 
BRCA1 mutations. SBS3 or ID6 present at > 10% or > 20% 
proportion in the tumor signature profile, respectively, was 
considered positive for defective homologous recombina-
tion-based DNA damage repair (HRD).

Results

Two germline pathogenic variants were identified; one in 
BRCA1:c.2681_2682delAA, a frameshift pathogenic vari-
ant located in exon 10 encoding p.Lys894ThrfsTer8, and 
another in RNF43:c.988 C>T, a nonsense pathogenic vari-
ant located in exon 9 encoding p.Arg330Ter, in one family 
meeting the FCCTX criteria. The family pedigree with can-
cer-affected and carrier status is shown in Fig. 1. No other 
loss of function or predicted pathogenic variants were iden-
tified in established hereditary CRC and polyposis genes. 
Ten individuals carried the BRCA1:c.2681_2682delAA 
variant and eight individuals carried the RNF43:c.988 C>T 
variant. Seven individuals carried both pathogenic variants 
of whom six were cancer-affected (4 CRC, 1 breast/ovarian 
cancer, 1 metastatic cancer of unknown primary). All four 
of the CRC-affected relatives tested carried both pathogenic 
variants. Only a single carrier of both variants was cancer-
unaffected at age 58 (person 026). Where both variants were 
tested, two individuals were found to carry only a single 
variant, person 018 carried only the BRCA1 variant and per-
son 028 carried only the RNF43 variant, where each likely 
represents a separate homologous recombination event on 
chromosome arm 17q. Details of carrier status and their 
tumors are provided in Table 1.

The proband (person 001), a carrier of both the BRCA1 
and RNF43 variants, was diagnosed with an adenocarci-
noma of the caecum at age 53, a peritoneal cancer at age 62 
and an ovarian cancer at age 63. MMR immunohistochem-
istry (IHC) of the metastatic lymph nodes indicated the 
CRC tumor was MMR-proficient. Three colonoscopies per-
formed between the ages of 52 and 62 identified “numerous 
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pharyngeal squamous cell carcinoma at age 57 and pros-
tate adenocarcinoma at age 58. Two of the BRCA1 carri-
ers developed breast cancer (persons 025 and 056), one of 
whom was diagnosed at 34 years of age; the subtype was 
unavailable.

Tumor analysis

The CRCs from persons 009 and 014 were both MMR-pro-
ficient by IHC, wildtype for BRAF p.V600 and KRAS codon 
12 and 13 somatic mutations and were CIMP-negative 
(Table 2) suggesting they had not developed via the serrated 
pathway of tumorigenesis. The MMR-proficient CRC and 
contiguous SSL from person 010 were both BRAF p.V600E 
mutation positive and CIMP-high, consistent with develop-
ment via the serrated pathway (Table 2). Sanger sequencing 
of the BRCA1 and RNF43 variants in the tubular adenoma, 
SSL and CRC from person 010 showed evidence of LOH of 
the wildtype allele for both variants in the SSL and adeno-
carcinoma but not the tubular adenoma (Table 2; Fig. 2).

To further investigate tumor etiology, the CRC from per-
son 009 underwent WES. No somatic mutations in BRCA1 
and RNF43 were observed, however, loss of the wildtype 
allele was evident for both variants. LOH of a larger region 
across chromosome arm 17q was detected that included the 
BRCA1 and RNF43 genes (Fig.  3). Analysis of COSMIC 
tumor mutational signature profiles revealed SBS3 (61.8%), 
SBS1 (11.3%) and SBS30 (8.9%) as the SNV-derived 

small metaplastic polyps” although the number and specific 
pathology were not reported, and, therefore, unclear if this 
person met the criteria for SPS. She died at age 67.

Two of the proband’s daughters (009 and 010) carried 
both the BRCA1 and RNF43 variants and both were CRC-
affected. Person 009 was diagnosed with an MMR-pro-
ficient adenocarcinoma of the transverse colon at age 44. 
There was no report of synchronous polyps. Person 010 was 
diagnosed with a 15 mm moderately differentiated adeno-
carcinoma of the sigmoid colon at age 56, which appeared 
to have arisen from an SSL. Nine colonoscopy procedures 
between the ages of 40 and 63 revealed multiple serrated 
and adenomatous polyps. At the age of 56, a colonoscopy 
revealed a 10 mm hyperplastic polyp in the transverse colon 
in addition to the CRC. At the age of 59, a repeat colonos-
copy showed a 6–8 mm adenomatous polyp and a 6–8 mm 
SSL in the ascending colon and two 6–8 mm hyperplastic 
polyps in the left colon. At the age of 62, a further colo-
noscopy showed a 5–8 mm hyperplastic polyp in the rec-
tum. Including the SSL from which the adenocarcinoma 
had arisen from, person 010 met the 2019 WHO diagnostic 
criterion 1 for SPS [10].

Person 014 (a brother of the proband) was a carrier of 
the BRCA1 and RNF43 variants. He was diagnosed with an 
MMR-proficient adenocarcinoma of the transverse colon at 
age 56 and a prostate cancer at age 71. Person 018 (another 
brother of the proband) was a carrier of the BRCA1 vari-
ant but not the RNF43 variant. He was diagnosed with 

Fig. 1  Pedigree diagram for a family with colorectal cancer, serrated polyposis syndrome and BRCA1:c.2681_2682delAA and RNF43:c.988 C>T 
germline pathogenic variants. The indicated carriers include obligate carriers
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Table 1  Cancer and colonic polyp history together with the carrier status of the BRCA1:c.2681_2682delAA and RNF43:c.988 C>T germline 
pathogenic variants in people from a family meeting FCCTX criteria
Person Sex BRCA1:c.2681_2682delAA RNF43:c.988 C>T Age at 

diagnosis
Tumor type Tumor location Tumor histologic type

001 F Carrier Carrier 53 CRC Caecum Adenocarcinoma
62 Peritoneal NA NA
63 Ovarian NA NA

002 F unknown unknown 58 CRC Colon Adenocarcinoma
005 F unknown unknown 67 Intestinal NA NA
006 M unknown unknown 80 Laryngeal Larynx NA
009 F Carrier Carrier 44 CRC Transverse colon Adenocarcinoma
010a F Carrier Carrier 44 Colonic polyp Ascending colon Tubular adenoma

56 CRC Sigmoid colon Adenocarcinoma 
(15 mm) (background of 
SSL on histology)

56 Colonic polyp Transverse colon Hyperplastic polyp 
(10 mm)

59 Colonic polyp Ascending colon Adenomatous polyp 
(6–8 mm)

59 Colonic polyp Ascending colon SSL (6–8 mm)
59 Colonic polyp Sigmoid colon 2 hyperplastic polyps 

(6–8 mm)
62 Colonic polyp Rectum Hyperplastic polyp 

(5–8 mm)
011 F Wildtype Wildtype 61b unaffected
012 M Wildtype Wildtype 60b unaffected
013 F unknown unknown NA Uterine NA NA
014 M Carrier Carrier 56 CRC Transverse colon Adenocarcinoma

71 Prostate Prostate NA
016 M Wildtype Wildtype 46 Lymphoma Right neck lymph 

node
Follicular lymphoma

017 F Wildtype Wildtype 50b unaffected
018 M Carrier Wildtype 57 Laryngeal Larynx Squamous cell carcinoma

58 Prostate Prostate (Right 
lobe)

Adenocarcinoma

021 F Wildtype Wildtype 34 Cervical Uterus cervix NA
023 M Wildtype Wildtype 54b unaffected
024 F Wildtype Wildtype 84b unaffected
025 F Obligate carrier Obligate carrier 34 Breast NA NA
026 M Carrier Carrier 58b unaffected
027 M Carrier Carrier 57 Metastatic 

cancer of liver 
with unknown 
primary

Liver NA

028 F Wildtype Carrier 54b unaffected
030 M Wildtype Wildtype 82b unaffected
034 F unknown unknown NA Intestinal NA NA
036 F Wildtype Wildtype 50 Endometrial Uterus Adenocarcinoma
042 F Wildtype Wildtype 44b unaffected
045 M unknown unknown NA Lung NA NA
047 F unknown unknown NA Kidney NA NA
055 M Wildtype NA c 35b unaffected
056 F Carrier NA c NA Breast NA NA
100 F Carrier NA 28b unaffected
101 F Wildtype NA 26b unaffected
a cumulative serrated polyp history fulfils criteria for Serrated Polyposis Syndrome
b age at last contact
c clinical testing for the BRCA1 variant only was undertaken
Abbreviations: NA, not available; CRC, colorectal cancer; F, female; M, male; SSL, sessile serrated lesion
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suppressor genes (Fig. 3) confirms that both BRCA1 and 
RNF43 had biallelic inactivation. The presence of both 
the tumor mutational signatures SBS3 and ID6 at high 
levels (> 50%), which is associated with HRD, and the 
absence of serrated pathway molecular characteristics, 
namely the BRAF p.V600E mutation and CIMP-high, 
suggests that tumorigenesis for the CRC from person 009 
was driven by HRD deficiency related to BRCA1 inacti-
vation. In contrast, biallelic inactivation of BRCA1 and 
RNF43 was also present in the CRC from person 010 
with the tumor demonstrating characteristics of the ser-
rated pathway (BRAF p.V600E mutation and high levels 
of CIMP), suggesting that for this tumour tumorigenesis 
may have been driven by RNF43 deficiency.

Germline pathogenic variants in BRCA1 predispose 
carriers to significantly elevated risks of breast and ovar-
ian cancers [46], but the relationship between BRCA1 
and CRC susceptibility is less clear [22]. A recent meta-
analysis and systematic review showed BRCA1 and/or 
BRCA2 pathogenic variant carriers did not have a higher 
risk of developing CRC [47]. Past studies have suggested 
BRCA2 may underlie CRC development in FCCTX fami-
lies, however, there is little evidence implicating BRCA1 
[48, 49]. In the current study, ten family members carried 

signatures with the highest proportion. The observed indels 
in this tumor were decomposed into the signatures ID6 
(65.2%), ID5 (30.5%) and ID1 (4.3%), with the predomi-
nance of both SBS3 and ID6 indicative of defective homol-
ogous recombination-based DNA damage repair (HRD); the 
contexts of SBS3 and ID6 are compared to those observed 
in 009 in Fig. 4.

The top plot covers the whole of chromosome 17. The 
middle plot covers a region around BRCA1. The bottom plot 
covers a region around RNF43.

Discussion

This study identifies a family meeting the criteria for 
FCCTX where a germline BRCA1:c.2681_2682delAA 
p.Lys894ThrfsTer8 pathogenic variant and a germline 
RNF43:c.988  C>T p.Arg330Ter pathogenic variant co-
segregated with CRC in four carriers, one of whom was 
confirmed to meet the WHO2019 diagnostic criteria 1 for 
SPS. Tumor analysis demonstrated loss of the wildtype 
allele for both variants in the two CRCs tested. As both 
BRCA1 and RNF43 reside on chromosome 17q, the LOH 
observed across the region encompassing both these tumor 

Fig. 2  Sanger sequencing of the BRCA1:c.2681_2682delAA (left col-
umn) and RNF43:c.988 C>T (right column) pathogenic variants in a 
tubular adenoma, sessile serrated lesion (SSL), and colorectal cancer 

(CRC) for person 010 showing loss of heterozygosity (LOH) of the 
wildtype allele for both variants in the sessile serrated lesion and CRC 
but not the tubular adenoma
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Fig. 3  Allele frequency plot for a colorectal tumor of a person (person 009) with BRCA1:c.2681_2682delAA and RNF43:c.988 C>T germline 
pathogenic variants showing loss of heterozygosity across chromosome 17, including BRCA1 and RNF43
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high proportion of HRD-related SBS3 and ID6 muta-
tional signatures. Despite this, it is possible that RNF43 
deficiency has also contributed to the initiation and/or 
progression of tumorigenesis in this person together with 
HRD.

the BRCA1 variant, four developing CRC with only 
three developing a breast or ovarian cancer. Tumor WES 
derived analysis from the single CRC from person 009 
demonstrated that tumorigenesis was dominated by the 
BRCA1 variant-related HRD process, evidenced by the 

Fig. 4  Comparing SNV-derived 
mutational contexts of a person 
with BRCA1:c.2681_2682delAA 
and RNF43:c.988 C > T germline 
pathogenic variants (person 009) 
(A) with defective homologous 
recombination-based DNA dam-
age repair associated signature 
SBS3 (B), and similarly, indel-
derived contexts of person 009 
(C) with ID6 (D)
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Conclusion

In summary, we have identified coinheritance of patho-
genic germline variants in BRCA1 and RNF43 segregating 
with CRC in a family previously characterized as FCCTX. 
One individual satisfied the diagnostic criteria for SPS, and 
there was evidence for a somatic second-hit in BRCA1 and 
RNF43 in the form of LOH. Bioinformatic analysis showed 
that the tumorigenesis was predominantly driven by the 
BRCA1 variant with LOH, as indicated by the HRD-related 
mutational signatures in the tumor. Our study highlights a 
possible role of digenic inheritance underlying FCCTX.
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Somatic mutations in RNF43 play a role in colorectal 
tumorigenesis including in the serrated pathway [50–54]. 
Furthermore, although rare in SPS [19], several studies 
have now provided evidence that germline RNF43 vari-
ants are associated with SPS [14–19, 53]. Only a few 
of these studies have investigated segregation of the 
RNF43 variant with SPS in the family. Of note, a study 
by Taupin et al. [15] identified a germline nonsense vari-
ant in RNF43 (c.394 C>T p.Arg132Ter) in two siblings 
affected with SPS, one developed CRC and a study by 
Yan et al. [17] identified a germline splice site variant 
(c.953-1 G>A) in RNF43 carried by six people from the 
family. Five of the six carriers met the WHO2010 criteria 
for SPS with a second somatic hit in RNF43 (predomi-
nantly LOH) identified in all 22 cancers/polyps analyzed 
[17]. There were eight carriers of the RNF43:c.988 C>T 
p.Arg330Ter variant in the family from this study, four 
were CRC-affected and a single carrier was confirmed to 
meet the WHO2019 criteria for SPS. Furthermore, LOH 
was observed as the second somatic hit in both CRCs 
tested and in an SSL polyp. [16, 17] Our findings add fur-
ther support for the association between germline RNF43 
variants and susceptibility to SPS and CRC.

Tumor mutational signature analysis is an important 
tool for understanding tumor etiology and for predicting 
response to cancer therapies, including the use of PARP 
inhibitors for cancers with HRD [55]. Of the current 
COSMIC mutational signatures, SBS3 and ID6 are asso-
ciated with HRD, which are associated with defects in 
BRCA1, BRCA2 or other genes involved in the homolo-
gous recombination pathway [55, 56], although HRD in 
CRC is not commonly observed [57]. In the CRC from 
person 009, both SBS3 and ID6 were the dominant muta-
tional signatures, supporting HRD related to the germline 
BRCA1 variant.

This study has several limitations. Phenotype data was 
not available from all family members including incom-
plete or historic colonoscopy and/or pathology reports 
that meant some of the colonic polyp number and mor-
phological classification was not definitive or equivalent 
to contemporary polyp classification. Little data was 
obtained from earlier generations as those generations 
were deceased prior to commencing a detailed investiga-
tion. Furthermore, the tumor tissue for molecular testing 
was limited with only a single CRC with sufficient DNA 
for WES and therefore, confirmation that HRD associ-
ated mutational signatures were the dominant mutational 
process in the other CRCs from BRCA1 carriers could 
not be determined. Further investigation of HRD in CRC 
tumorigenesis is needed.
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