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Abstract
Purpose  Salivary gland tumors are histologically diverse. Ionocytes and tuft cells, rare epithelial cells found in normal 
salivary glands, might be associated with salivary tumors. Here, we explored the expression of FOXI1 and POU2F3, master 
regulators of ionocytes and tuft cells, respectively, for common salivary neoplasms using immunohistochemistry.
Methods  We analyzed normal salivary tissues and nine salivary gland tumors; Warthin tumors (WT), pleomorphic adeno-
mas (PA), basal cell adenomas, and oncocytomas were benign, whereas mucoepidermoid, adenoid cystic, acinic cell, 
salivary duct carcinomas, and polymorphous adenocarcinomas were malignant.
Results  Normal salivary glands contained a few FOXI1- and POU2F3-positive cells in the ducts instead of the acini, consist-
ent with ionocytes and tuft cells, respectively. Among the benign tumors, only WTs and PAs consistently expressed FOXI1 
(10/10 and 9/10, respectively). The median H-score of WTs was significantly higher than that of PAs (17.5 vs. 4, P = 0.01). 
While WTs and PAs harbored POU2F3-positive cells (10/10 and 9/10, respectively), the median H-score was higher in 
WTs than in PAs (10.5 vs 4, respectively). Furthermore, WTs exhibited a unique staining pattern of FOXI1- and POU2F3-
positive cells, which were present in luminal and abluminal locations, respectively. Whereas none of the malignant tumors 
expressed FOXI1, only adenoid cystic carcinoma consistently expressed POU2F3 (5/5), with a median H-score of 4.
Conclusion  The expression patterns of the characteristic transcription factors found in ionocytes and tuft cells vary 
among salivary gland tumor types and are higher in WT, which might be relevant for understanding and diagnosing 
salivary gland neoplasms.
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1  Introduction

Salivary gland tumors, which occur in both major and minor salivary glands, display remarkable histological variety 
and are divided into many subtypes. Several subtype can be associated with tumor-specific rearrangements, such as 
CRTC1::MAML2 in mucoepidermoid carcinoma, MYB::NFIB or MYBL1::NFIB in adenoid cystic carcinoma, and ETV6::NTRK3 
in secretary carcinoma. These features facilitate pathological diagnoses and clinical management [1]. However, even 
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genetically defined tumors can be morphologically diverse within a single subtype, and not all subtypes have specific 
genetic abnormalities. Thus, the (immuno-)phenotypes associated with subtypes or cytomorphology can provide 
a better understanding of salivary gland tumors. Further, tumors typical of salivary glands, or salivary gland-type 
tumors, also occur in other organs [2], suggesting the importance of studying these neoplasms. This can advance 
our comprehensive knowledge of human neoplasia.

Single-cell RNA sequencing studies and subsequent functional assays have revealed the presence and significance 
of rare and previously under-recognized cell types, such as ionocytes and tuft cells. Human ionocytes were first 
reported in the lung [3, 4], where they regulate airway surface physiology by expressing characteristic functional 
molecules, such as cystic fibrosis transmembrane conductance regulator (CFTR) [5], governed by the master regulator 
Forkhead Box I1 (FOXI1) [3, 4]. Tuft cells, which are epithelial cells characterized by unique microvilli (tufts) on their 
apical side, are present in many organs [6–9]. These cells are involved in type 2 immunity and initiate antiparasitic 
immune responses in the intestines [10–12].

Ionocytes and tuft cells are physiologically present in salivary glands. Among several studies on salivary gland 
ionocytes [13–15], Mauduit et al. revealed that these cells not only maintain the specific ion composition in the saliva 
but also function as niche cells that support other epithelial cells by providing growth factors, especially fibroblast 
growth factor (FGF) 10 [15]. This “niche” function of ionocytes expands its biological significance. Further, Tavares dos 
Santos et al. demonstrated the presence of tuft cells in submandibular glands across species [6]. To our knowledge, 
the comprehensive function of salivary gland tuft cells has not been addressed yet.

These two epithelial cell types, particularly tuft cells, have recently attracted attention in cancer research, espe-
cially after the discovery of a tuft cell-like variant of small cell lung cancer (SCLC). This variant exhibits a signature tuft 
cell-like gene expression pattern, including POU class 2 homeobox 3 (POU2F3), a tuft cell master regulator [7, 16]. 
Subsequently, carcinomas with tuft cell-like expression profiles were discovered in extrapulmonary organs [17–21]. 
Interestingly, these tuft cell-like carcinomas shared ionocyte-like phenotypes, including the expression of FOXI1 [19, 
22]. They often exhibit high-grade histology and significantly express well-known oncogenes, including receptor 
tyrosine kinase (KIT) and B-cell lymphoma 2 (BCL2). Moreover, tuft cell-like carcinomas have been shown to exhibit 
unique sensitivity toward drugs, such as poly (ADP-ribose) polymerases (PARP) inhibitors [19, 22, 23].

We speculated that tumors with ionocyte- or tuft cell-like phenotypes might be present in previously unexamined 
organs and tumor types. In this study, we tested this hypothesis for salivary gland tumors using immunohistochem-
istry (IHC) for FOXI1 and POU2F3 because, as mentioned, both ionocytes and tuft cells are found in salivary glands. 
These glands also display histologically diverse tumors, and we hypothesized that some might exhibit the phenotypes 
of rare epithelial cell subsets.

2 � Materials and methods

2.1 � Case selection

We selected 53 cases of nine types of common salivary gland tumors from the archives of Kyoto University Hospital 
between 1992 and 2021. Among these, Warthin tumors (WT), pleomorphic adenomas (PA), basal cell adenomas, and 
oncocytomas were benign, while mucoepidermoid, adenoid cystic, acinic cell, and salivary duct carcinomas, and 
polymorphous adenocarcinomas were malignant. We first retrieved the five most recently archived cases of each 
tumor type, except oncocytoma, as our archives had only three cases. All cases were reviewed by two pathologists 
(M.H. and Y.Y.). The already available histological slides (stained using hematoxylin and eosin and IHC) were used and 
the original pathological diagnoses were reconfirmed. Because only WTs and PAs consistently or frequently expressed 
both FOXI1 and POU2F3, we expanded the numbers of samples of these two types from five to ten in the same man-
ner. Clinical findings of patients were obtained from medical records. We also evaluated the non-neoplastic salivary 
glands, including parotid (N = 27), submandibular (N = 5), sublingual (N = 1), and minor (N = 11) around the tumors 
(when available) or within the biopsy specimens.

Aside from these cases, we enrolled all PAs (N = 2) and mucoepidermoid carcinomas (N = 1) with prominent oncocytic 
changes from the above archive. However, as these three cases were not statistically analyzed, they were not included 
in Tables 1, 2.
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2.2 � Immunohistochemistry

IHC was performed on formalin-fixed, paraffin-embedded specimens using an automated immunostainer (Benchmark 
Ultra, Ventana Medical Systems, Oro Valley, AZ, USA). One representative slide per case was examined. The primary 
antibodies were against FOXI1 (rabbit polyclonal, Atlas Antibodies, Bromma, Sweden) and POU2F3 (E5N2D, Cell Sign-
aling Technology, Danvers, MA, USA). Renal tubules and skin keratinocytes were used as positive controls for FOXI1 
and POU2F3, respectively [24, 25]. Only nuclear staining was considered positive because both proteins are nuclear 
transcription factors [24, 25]. The results were evaluated using H-scores, a common method for immunohistochemical 
semi-quantification [26, 27]. The value is determined by multiplying the estimated percentage of immunoreactive cells 
(0–100%) by the labeling intensity (1, weak; 2, moderate; 3, strong), thus ranging from 0 to 300; it is reported to be cor-
related with scores obtained by biological assays [26, 27].

For particular cases of WTs, we also performed IHC for BCL2 (SP66, Roche diagnostics, Basel, Switzerland), KIT (poly-
clonal, Agilent Technologies, Santa Clara, CA, USA), p63 (7JUL, Leica Biosystems, Wetzlar, Germany), p40 (BC28, Roche 
diagnostics), alpha smooth muscle actin (aSMA) (1A4, Sigma-Aldrich, St. Louis, MO, USA), and calponin (CALP, Agilent 

Table 1   Clinical findings of nine types of salivary gland tumors in patients

a Current or past smokers
b P parotid gland, Sm submandibular gland, Sl sublingual gland, M minor salivary gland, O other sites

Tumor type No Age Female Smokera Pack Year Pack-Year Tumor siteb

(median) (no.) (no.) (median) (median) (median) P (no.) Sm Sl M O

Benign tumors
 Warthin tumor 10 67.5 2 9 0.68 42.5 25.8 10 0 0 0 0
 Pleomorphic adenoma 10 49.5 9 4 0 0 0 6 1 0 2 1
 Basal cell adenoma 5 73 2 3 0.25 6 1.5 5 0 0 0 0
 Oncocytoma 3 58 2 0 0 0 0 3 0 0 0 0

Malignant tumors
 Mucoepidermoid carcinoma 5 35 3 1 0 0 0 1 0 0 4 0
 Adenoid cystic carcinoma 5 59 4 2 0 0 0 0 3 1 1 0
 Acinic cell carcinoma 5 69 2 2 0 0 0 4 0 0 1 0
 Polymorphous adenocarcinoma 5 66 3 2 0 0 0 0 0 0 5 0
 Salivary duct carcinoma 5 69 1 4 0.5 6 6 4 1 0 0 0

Table 2   Results of FOXI1- and POU2F3-immunohistochemistry for nine salivary gland tumor types

a Difference of frequency vs. Warthin tumor (Chi-square test or Fisher’s exact test)
b Median H-score (the percentage of immunoreactive cells (0%–100%) x the intensity of labeling [1, weak; 2, moderate; 3, strong])
c Difference of H-score vs. Warthin tumor (Wilcoxon test)

Tumor type N FOXI1-positive cells POU2F3-positive cells

Present Absent P-valuea H-scoreb P-valuec Present Absent P-value H-score P-value

Benign tumors 28 20 8 22 6
 Warthin tumor 10 10 0 – 17.5 – 10 0 – 10.5 –
 Pleomorphic adenoma 10 9 1 0.30 4 0.01 9 1 0.30 4 0.42
 Basal cell adenoma 5 1 4 0.004 0 0.004 2 3 0.02 0 0.04
 Oncocytoma 3 0 3 0.004 0 0.01 1 2 0.04 0 0.06

Malignant tumors 25 0 25 9 16
 Mucoepidermoid carcinoma 5 0 5  < 0.001 0 0.002 1 4 0.004 0 0.004
 Adenoid cystic carcinoma 5 0 5  < 0.001 0 0.002 5 0 1.00 4 0.38
 Acinic cell carcinoma 5 0 5  < 0.001 0 0.002 0 5  < 0.001 0 0.002
 Polymorphous adenocarcinoma 5 0 5  < 0.001 0 0.002 0 5  < 0.001 0 0.002
 Salivary duct carcinoma 5 0 5  < 0.001 0 0.002 3 2 0.10 4 0.29
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Technologies), to address whether POU2F3-positive cells within the WTs co-expressed BCL2 and KIT as typical tuft cell-
like carcinomas [19] and/or p63, p40, aSMA, and calponin, which are abluminal markers.

2.3 � Statistical analysis

Differences in the categorical variables were evaluated using the Chi-square or Fisher’s exact test (the latter was used 
when cells with the expected values of < 5 exceeded 20%), while those in the continuous variables were compared by 
the Wilcoxon test. Differences at P < 0.05 were considered significant. All statistical analyses were performed using the 
JMP17 software (Statistical Analysis System, Cary, NC, USA).

3 � Results

3.1 � Clinical findings

The number of male and female patients was 25 and 28, respectively. The patients’ ages ranged from 21 to 84 years 
(median age = 59 years). In addition to sex and age, Table 1 shows the smoking status and tumor site according to each 
histological subtype. As expected, nine out of ten patients with Warthin tumor had a smoking history, with a median of 
25.8 pack-years.

3.2 � Presence of FOXI1‑ and POU2F3‑positive cells in normal salivary glands

Initially, we evaluated the expression of FOXI1 and POU2F3 in normal salivary glands (parotid, submandibular, sublin-
gual, and minor) around tumors or within biopsy specimens. We found that all these glands contained a few FOXI1- and 
POU2F3-positive cells. The FOXI1-positive cells constituted < 5% of all epithelial cells and were located mainly in inter-
lobular and striated ducts, rarely in intercalated ducts, but never in acini (Fig. 1a–d). FOXI1-positive cells were always 
located on the luminal side, not the abluminal side, when two layers were discernible (Fig. 1a–d). POU2F3-positive cells 
were very rare (< < 1% of the epithelial cells) and were primarily observed in striated ducts and never in acini. They were 
observed mainly on the luminal side but rarely on the abluminal side (Fig. 1e, f ).

3.3 � FOXI1 and POU2F3 expression in benign salivary tumors: the uniqueness of Warthin tumor

Next, we examined FOXI1 and POU2F3 expression in common benign salivary gland tumors: WTs, PAs, basal cell adeno-
mas, and oncocytomas. FOXI1-IHC showed that while all the WTs (10/10) and most of the PAs (9/10) contained FOXI1-pos-
itive cells, these cells were never observed in basal cell adenomas and oncocytomas, except for one basal cell adenoma 
that had a few FOXI1-positive cells (Table 2).

WTs and PAs had distinct staining patterns. In WTs, FOXI1-positive cells were relatively broadly distributed, and the 
staining intensity was generally strong (Fig. 2a, b). The FOXI1-positive cells in the WTs appeared to have slightly less 
cytoplasm than the surrounding tumor cells and were located on the luminal side when the tumor formed cystic or 
glandular structures (Fig. 2c, d). In PAs, FOXI1-positive cells generally occurred focally among luminal cells in duct-forming 
areas, and the staining intensity was often weak to moderate (Fig. 2e, f ). As WTs are characterized by their oncocytic 
morphology, we performed IHC for three salivary gland tumors with oncocytic changes (pleomorphic adenoma [N = 2] 
and mucoepidermoid carcinoma [N = 1]). Similar to oncocytoma, they were negative for FOXI1 (Fig. 3a–f ).

Further, all or most WTs and PAs harbored POU2F3-positive cells (10/10 and 9/10, respectively). In addition, two basal 
cell adenomas (2/5) and one oncocytoma (1/3) also contained POU2F3-positive cells (Table 2). Although even WTs were 
not diffusely positive for POU2F3, each subtype exhibited different staining patterns. In WTs, POU2F3-positive cells 
tended to be on the abluminal side when two layers were recognizable and, at least partly, co-expressed p63 and p40, 
common abluminal markers, along with KIT and BCL2 (Figs. 4a, b and 5a–f ), which are often expressed in carcinomas 
with tuft cell-like phenotype [17, 19, 22]. The POU2F3-positive cells were negative for aSMA and calponin, representative 
myoepithelial markers (Fig. 6a–d). Collectively, WTs exhibited a unique differential expression pattern of luminal FOXI1- 
and abluminal POU2F3-positive cells (Fig. 7). In PAs, POU2F3-positive cells were associated mostly with the luminal side 
of epithelial components but not with mesenchymal components (Fig. 4c, d).
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3.4 � FOXI1 and POU2F3 expression in malignant salivary tumors

None of the cases of the five most common malignant salivary gland neoplasms, including mucoepidermoid, adenoid 
cystic, acinic cell, and salivary duct carcinomas, and polymorphous adenocarcinomas, contained FOXI1-positive cells 
(Table 2). The results of POU2F3-IHC varied. Only adenoid cystic carcinoma consistently expressed POU2F3 (5/5), 
however tumor cells were overall sparse and rarely formed homogeneously POU2F3-positive cell nests (Fig. 4e, f ).

Fig. 1   FOXI1- and POU2F3-positive cells in non-neoplastic parotid and submandibular glands. a–e Parotid and (f) minor salivary glands. 
FOXI1-positive cells were observed in interlobular (b), striated (c), and intercalated (d) ducts. While POU2F3-positive cells were primarily 
seen in the striated duct (e) and the luminal layer (e, f), some were found in the abluminal layer (arrow) (f) (a, c: hematoxylin and eosin stain-
ing; b, d-f: immunohistochemistry [b, d: FOXI1, e, f: POU2F3])
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3.5 � Comparisons of FOXI1 and POU2F3 expression among different salivary gland tumors

Finally, we statistically compared the expression status of FOXI1 and POU2F3 among different salivary gland tumors. 
The expression of FOXI1, which were only seen in WTs and PAs, were significantly different between WTs and the other 
seven tumor types (P < 0.01) and between PAs and the other seven tumor types (P < 0.05; Table 2). As both WTs and PAs 
are benign, the frequency of FOXI1 expression differed significantly between benign and malignant tumors (20/28 
and 0/25, respectively, P < 0.001; Table 2). In addition, the H-scores for the WTs were significantly higher than that of 

Fig. 2   FOXI1 expression in Warthin tumor and pleomorphic adenoma. a–d Warthin tumor, (e, f) pleomorphic adenoma. Warthin tumor 
contained many strongly FOXI1-positive cells (a, b), which had slightly smaller cytoplasms than surrounding tumor cells and were located 
between/among the inner lining cells when the tumor formed cystic structures (c, d). Focal and weak expression of FOXI1 was observed in 
the duct-forming areas of pleomorphic adenoma (a, c, e: hematoxylin and eosin staining; b, d, f: immunohistochemistry)
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any other subtypes, ranging from 2 to 60 for WTs (median = 17.5), 0 to 15 for PAs (median = 4) (P = 0.01), and zero in 
the other seven subtypes (P < 0.01) (Table 2). The frequencies of POU2F3 expression also differed among subtypes 
and were significantly higher in benign than malignant tumors (22/28 vs. 9/25, P = 0.001; Table 2). The H-score of WT 
(median = 10.5) was the highest among the nine subtypes (Table 2).

Fig. 3   FOXI1 immunohistochemistry in oncocytoma, oncocytic pleomorphic adenoma, and oncocytic mucoepidermoid carcinoma. All 
cases of (a, b) oncocytoma, (c, d) oncocytic pleomorphic adenoma, and (e, f) oncocytic mucoepidermoid carcinoma were negative for 
FOXI1 (a, c, e: hematoxylin and eosin staining; b, d, f: immunohistochemistry)
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4 � Discussion

We examined the expression status of transcription factors related to two rare epithelial cell types, ionocytes and 
tuft cells, in several commonly occurring salivary gland tumors. First, we observed minor populations of FOXI1- and 

Fig. 4   POU2F3 expression in Warthin tumor, pleomorphic adenoma, and adenoid cystic carcinoma. a, b Warthin tumors, (c, d) pleomorphic 
adenoma, (e, f) adenoid cystic carcinoma. Warthin tumors contained many POU2F3-positive cells, which tended to be between/among the 
cells of the outer lining (when the two layers are visible as in a, b; see also Fig. 4). POU2F3-positive cells in pleomorphic adenomas were 
observed consistently in duct-forming epithelial components but not mesenchymal components. POU2F3-positive cells in adenoid cystic 
carcinomas were observed as small aggregates in a few nests (a, c, e: hematoxylin and eosin staining; b, d, f: immunohistochemistry)
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POU2F3- positive cells in all normal major salivary glands, consistent with previous studies [6, 13, 14]. Based on this 
data, we assumed that the FOXI1- and POU2F3-positive cells in normal salivary glands correspond to ionocytes and 
tuft cells, respectively, and that IHC using FOXI1 and POU2F3 can be used to screen these rare cell types.

Among tumoral lesions, we found that FOXI1 and POU2F3 expression patterns were associated with different his-
totypes. The results in WTs were noteworthy as these tumors always harbored FOXI1 and POU2F3-positive cells with 
unique staining patterns: FOXI1 and POU2F3 were seen in the luminal and abluminal cells, respectively. Because the 
proportion of immunoreactive cells and the H-scores for FOXI1 and POU2F3 were generally low, even in WTs, we can-
not state that the tumor cells in WTs diffusely express FOXI1 and POU2F3. Instead, we believe that WTs characteristi-
cally have the strongest capacity to produce FOXI1- and POU2F3-positive cells among common salivary gland tumors.

Fig. 5   Coexpression of POU2F3, p63, and p40 in Warthin tumor. POU2F3-positive cells in Warthin tumors were found in abluminal layers and 
can coexpress p63 and p40, both common myoepithelial and basal markers, along with BCL2 and KIT. (a: hematoxylin and eosin staining; 
b–f: immunohistochemistry for POU2F3 [b], p63 [c], p40 [d], BCL2 [e], and KIT [f])
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The reason behind this unique staining pattern of WTs is a fundamental question. WTs are benign and the second 
most common salivary gland tumor. The clinicopathological features are almost exclusive to the parotid gland and are 
associated with smoking [1]. These features were consistent with our WT patients, as all tumors occurred in the parotid 
gland, and nine out of ten patients had a long smoking history. Regarding pathogenesis, WTs probably arise from salivary 
duct inclusions in parotid lymph nodes through a reactive rather than a neoplastic process [1, 28–31].

Because smoking can be associated with phenotypic changes in the epithelial cells of WTs, such as damage to the mito-
chondrial genome [32, 33], we speculate that prolonged smoking might induce the peculiar differentiation propensity of 
WT cells. This hypothesis might be supported by studies on the lungs, which suggest that smoking can change cellular 
components, including rare cell types [34, 35]. In addition, a recent study demonstrated that lung injury can induce tuft 
cells with the basal phenotype (i.e., POU2F3+/p63+ cells) [36], which is similar to the POU2F3-positive cells in the ablu-
minal, p63-positive layer in WTs. Our results that the number of physiological POU2F3-positive cells in normal salivary 
glands was minimal and mostly present among the luminal cells may suggest that POU2F3/p63/p40-positive cells in WTs 
are aberrantly induced. Despite the abluminal location and p63/p40-positivity, these cells are unlikely to exhibit myoepi-
thelial differentiation [37], considering they are negative for aSMA and calponin, representative myoepithelial markers.

Although studies on FOXI1 expression in tumors have not yet addressed the relationship with cellular damage, renal 
intercalated cells, and renal oncocytic neoplasms are often implicated. Renal intercalated cells are similar to ionocytes 
in that they are involved in ion exchange and are regulated by FOXI1. Renal oncocytic neoplasms have been found to 
express FOXI1, possibly associated with intercalated cells [25, 38–40]. These reports imply that FOXI1 expression and 
oncocytic features of neoplasms in different organs might be correlated. However, this hypothetical relationship might 
not always be true because oncocytic neoplasms other than WTs in our study did not express FOXI1. Instead, we speculate 
that FOXI1 is a marker limited to ionocytes and renal intercalated cells.

The observed mutually exclusive expression of two master regulators, FOXI1 and POU2F3, in different cell types in WTs 
seems unusual for a true (i.e., clonal) neoplasm and is consistent with the idea that WT is a reactive lesion. Indeed, the 

Fig. 6   Lack of expression of aSMA and calponin in POU2F3-positive cells in Warthin tumor. POU2F3-positive cells in Warthin tumor did not 
express aSMA and calponin, common myoepithelial markers. (a: hematoxylin and eosin staining; b–d: immunohistochemistry for POU2F3 
[b], aSMA [c], and calponin [d])
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other salivary tumors, including those consisting of two (luminal and abluminal) cell types, did not exhibit this unique 
staining pattern. Interestingly, at least partly, the POU2F3-positive cells in WTs coexpressed BCL2 and KIT. To our knowl-
edge, only one study pointed out BCL2 expression of WT cells with basal cell differentiation [41], and only one cytological 
study reported KIT expression in 75% of WTs [42]. Because KIT and BCL2 are often highly expressed in POU2F3-positive 
tuft cell-like carcinomas [17, 19, 22], the same feature in WTs could suggest that non-neoplastic POU2F3-positive cells 
might express BCL2 and KIT via non-mutational, possibly epigenetic mechanisms that, in turn, might be smoking-related 
[43, 44]. There were no POU2F3-positive cells coexpressing BCL2 and KIT in non-neoplastic salivary glands in our IHC 
with limited samples.

Fig. 7   Differential FOXI and 
POU2F3 expression in Warthin 
tumor. Warthin tumor exhib-
ited a unique biphasic pattern 
consisting of luminal FOXI1- 
and abluminal POU2F3-posi-
tive cells (a: hematoxylin and 
eosin staining; b, c: immuno-
histochemistry for FOXI1 [b], 
and POU2F3 [c])
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Future studies should investigate the expression profiles of WTs at a single-cell level to clearly understand the proper-
ties of FOXI1-positive and POU2F3-positive cells. Other tumors that contain these cells, such as PAs and adenoid cystic car-
cinomas, will also be investigated further. We can speculate that the histological diversity of PAs might have qualitatively 
different populations of ionocytes and tuft cells. The result that POU2F3-positive cells were observed in the luminal side 
of neoplastic ducts in PA, unlike their preferential distribution in the abluminal side in WTs, suggests that the precursors 
of POU2F3-positive cells in PAs maintain the capacity for an orthotopic tuft cell differentiation.

Because WTs and PAs are benign and consistently harbored FOX1- and POU2F3-positive cells, the frequencies of FOXI1 
and POU2F3 expression were significantly higher in benign tumors than malignant ones, although our cases were not 
chronologically selected in this study. Thus, the presence of FOXI1-positive cells may suggest benign tumors in salivary 
glands and be of differential diagnostic value. This finding may be beneficial for diagnosing epithelial-rich PAs, which are 
sometimes difficult to diagnose based on small biopsies. Although POU2F3-positivity might also indicate benign tumors, 
considering the significantly higher frequency in benign tumors, the facts that even aggressive salivary gland tumors 
can harbor POU2F3-positive, possibly tuft cells, and that tumor-associated tuft cells can influence cancer aggressiveness 
through paracrine mechanisms [45], POU2F3-positivity may provide new translational perspectives on the role of tuft 
cells in malignant salivary and nonsalivary tumors, rather than diagnostic aid.

Our study has several limitations, such as the relatively small number of cases and the lack of comprehensive expres-
sion profile analysis. Thus, future studies should be conducted using more cases and subtypes and/or comprehensive 
expression profiling to confirm these results. Nonetheless, we believe the present results can potentially advance our 
understanding of salivary gland neoplasms, especially WT, and will lay the foundation for future research.
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