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Assessing emergence risk of double-resistant
and triple-resistant genotypes of
Plasmodium falciparum

Eric Zhewen Li 1, Tran Dang Nguyen 1, Thu Nguyen-Anh Tran 1,
Robert J. Zupko 1 & Maciej F. Boni 1,2

Delaying and slowing antimalarial drug resistance evolution is a priority for
malaria-endemic countries. Until novel therapies become available, the
mainstay of antimalarial treatment will continue to be artemisinin-based
combination therapy (ACT). Deployment of different ACTs can be optimized
to minimize evolutionary pressure for drug resistance by deploying them as a
set of co-equal multiple first-line therapies (MFT) rather than rotating thera-
pies in and out of use. Here, we consider one potential detriment of MFT
policies, namely, that the simultaneous deployment of multiple ACTs could
drive the evolution of different resistance alleles concurrently and that these
resistance alleles could then be brought together by recombination into
double-resistant or triple-resistant parasites. Using an individual-basedmodel,
we compare MFT and cycling policies in malaria transmission settings ranging
from 0.1% to 50% prevalence. We define a total risk measure for multi-drug
resistance (MDR) by summing the area under the genotype-frequency curves
(AUC) of double- and triple-resistant genotypes. When prevalence ≥ 1%, total
MDR risk ranges from statistically similar to 80% lower under MFT policies
than under cycling policies, irrespective of whether resistance is imported or
emerges de novo. At 0.1% prevalence, there is little statistical difference in
MDR risk between MFT and cycling.

Malaria eradication efforts have accelerated over the past twenty years
with increased global funding, lower malaria transmission in many
regions, and 23 previously endemic countries achieving zero indi-
genous malaria cases for three consecutive years1. One major reason
for theseprevalence reductions and accelerated paths to elimination is
the widespread adoption over the past two decades of artemisinin
combination therapies (ACTs) which have maintained ~95% treatment
efficacy in uncomplicated Plasmodium falciparum infections in most
countries for much of this time period2,3. However, as artemisinin-
resistant genotypes have now emerged at least six times on three
continents4–12, a number of countries—Cambodia, Myanmar, Vietnam,
Laos, Papua-New Guinea, Rwanda, Uganda—face the prospect of lower

ACT cure rates for the foreseeable future and continually increasing
drug-resistance trends. Historically, the spread of drug-resistance is
not a self-limiting process13,14. Artemisinin-resistant genotypes are
likely to spread geographically and undermine malaria elimination
efforts worldwide.

One straightforward approach to slowing down drug-resistance
evolution is to force malaria parasites into a constantly changing
treatment environment with multiple simultaneous or near-
simultaneous therapeutic challenges15. Combination therapy achieves
this goal, and triple therapies are currently being trialed16,17. In the
absence of triple or quadruple therapies, simultaneous deployment of
multiple first-line therapies (MFT) is the next best option as this forces
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the parasite population to encounter a different ACT every several
weeks18. A third option is drug cycling or rotation policies, but MFT
tends to outperform cycling policies19,20 as it creates higher environ-
mental variability (more drugs seenper unit time) thus slowing the pace
of parasite adaptation. One potential concernwithMFT strategies is the
potential risk of generating multi-drug resistant (MDR) genotypes ear-
lier than expected, as the concurrent deployment of multiple therapies
puts selection pressure on different alleles at the same time21. These
different resistance alleles could be brought together into MDR geno-
types via recombination or successive de novo mutation. Population-
genetic theory predicts that increased rates of recombination may
speed up the time of appearance of these MDR genotypes22,23, but nei-
ther the current risk nor the relative risks under different drug
deployment strategies are known.

In this study, we quantify the risk of double-resistant and triple-
resistant genotypes emerging under an MFT deployment, and com-
pare this to the risk under two different cycling policies—a five-year
cycling policy and the status quo policy of rotating out a therapy after
10% treatment failure is observed. We assume that the three most
commonly used ACTs—artemether-lumefantrine (AL), artesunate-
amodiaquine (ASAQ), and dihydroartemisinin-piperaquine (DHA-
PPQ)—are available for use. And, we define MDR risk as the area under
the genotype-frequency curve for a particularMDRgenotype or across
all MDR genotypes. Evaluations are performed with a previously cali-
brated individual-based simulation of Plasmodium falciparum trans-
mission and drug-resistance evolution20,24. Our starting hypothesis is
that because MFT selects for multiple resistant genotypes simulta-
neously, we will see earlier emergence of double- and triple-resistant
genotypes under MFT due to the action of recombination. The major
scientific advance in the following analysis is the characterization of
rare evolutionary events through a large-scale simulation approach.

Results
National malaria control programs (NMCP) have several choices for
the deployment of different artemisinin combination therapies. The
adopted status quo management of the last two decades of ACT use
has been an ‘adaptive cycling’ policy where therapies are rotated out
when a 10% treatment failure threshold is reached per WHO
recommendation;25 this drug switch typically takes one to three years
to implement, and we model this as a one-year delay in the present
analysis. A second approach, adoptedofficially by thirteen countries, is
an MFT deployment where multiple ACTs are recommended as co-
equal therapies1. A third commonly discussed approach is ACT cycling
on a pre-set schedule of five years (or similar) something that has not
yet been adopted by any NMCP. We model these three drug-
deployment approaches on a 20-year time scale in five different pre-
valence scenarios (PfPR2-10 = 0.1%, 1%, 5%, 25%, 50%) and three drug
coverage settings (20%, 40%, 60%) in order to determine which
approaches are associated with the lowest or highest risk of emer-
gence of multi-drug resistant genotypes.

Emergence of double- and triple-resistance in specific scenarios
As expected from standard evolutionary theory, when multiple types
of antimalarial therapies are deployed, multi-drug resistance does
emerge and its onset comes at a delay from the arrival of single-
resistant genotypes. In the present analysis, double-resistants refer to
genotypes that are resistant to one artemisinin derivative and one
partner drug while triple-resistants refer to genotypes that carry
resistance to artemisinin and two partner drugs. Table 1 shows the five
‘maximally resistant’ double-resistants and triple-resistants that we
track in this analysis. These genotypes are maximally resistant only in
the framework of the four loci and two copy-number variants that we
consider here. Themodeled trajectories of drug resistance in Fig. 1A, B
show that the time to 0.01 genotype frequency of an artemisinin-
piperaquine-resistant double-mutant is 7.1 years (95% range:

5.3y–13.3 y) when DHA-PPQ is deployed as first-line therapy in a status-
quo adaptive cycling framework (and under a particular para-
meterization of the mutation rate26); treatment coverage is 40% in this
scenario and PfPR2-10 = 5%. The 0.01 frequency threshold was chosen
as this is a high enough level that drug-resistance is not susceptible to
random extinction, and low enough that the major contributory dri-
vers in getting to this point are the genetic processes (mutation,
recombination) responsible for the appearance of this mutant. When
ASAQ is used asfirst-line therapy, themedian time to0.01 frequencyof
the maximally-resistant ASAQ double-resistant (Table 1) is 8.2 years
(95% range: 5.7y–11.1 y). While the double-resistants emerge on a time
scale of 5 to 13 years, single-resistant genotypes (blue lines, Fig. 1A, C)
rise to high frequencies in several years or may already be present in
settings with high levels of pre-existing partner-drug resistance. These
two scenarios show typical patterns of MDR evolution and provide
useful outcome measures to track when attempting to optimize a
policy to delay or minimize the negative clinical and public health
effects of MDRmalaria. Onemeasure we use here is the time until 0.01
MDR genotype frequency (T.01, black dots and triangles, Fig. 1) and the
second measure is the total area under the MDR frequency curve
(AUC) which corresponds to the total number of risk-days of MDR
circulation.

When artemether-lumefantrine (AL) is deployed, maximum dou-
ble resistance (Table 1, row 5) appears much more slowly than under
ASAQ or DHA-PPQ for three reasons: (1) AL resistance involves more
mutational steps, with some pathways disallowed since a genotype
with two copies of the pfmdr1 gene is not allowed to acquire two
independent mutations to change both copies simultaneously, (2)
DHA-PPQ efficacy drops to lower levels than the lowest efficacies for
AL andASAQ,makingDHA-PPQ resistance evolution faster, and (3) the
simulations are started with some AQ resistance (for historical accu-
racy). A previous analysis showed that slower lumefantrine resistance
evolution is likely a general property of falciparum resistance evolu-
tion and that AL is the most likely among the ACTs to select for arte-
misinin resistance first and partner-drug resistance second
(Supplementary Fig. 19 in Watson et al.26). Figures 1F and 1H show no
trajectories (out of 100 runs) of the AL maximal double-resistant
reaching 0.01 genotype frequency after 20 years. Nevertheless,weaker
double resistance to AL does emerge in 7.6 years (95% range:
5.5y–16.7 y) (Fig. 1E) and 8.2 years (IQR: 5.5y–16.4 y) (Fig. 1G).

A comparison at 5% PfPR2-10 and 40% drug coverage shows that
emergence of double- and triple-resistance tends to occur later under
MFT than under cycling policies, despite the possibility of recombi-
nation (hypothesized to be higher under MFT) bringing together two
or three different resistance alleles into a singleMDR genotype (Fig. 2).
Specifically, the triple-resistant toDHA-PPQ and amodiaquine emerges
later under MFT (median time 17.1 years) than under either cycling
policy (median times 16.5 years and 8.4 years; both Mann-Whitney
p <0.01). Likewise, the double-resistant to ASAQ emerges later under
MFT (median time 12.6 years, versus median times of 9.4 and 8.3 years
for cycling policies; both p < 10−9). The double-resistant to DHA-PPQ
emerges slightly earlier under MFT (14.9 years) than under 5-year
cycling (15.5 years; p =0.152) but much later than under adaptive
cycling (7.2 years; p < 10−33). The full 20-year outlook is still worse for
5-year cycling than MFT because the slightly delayed emergence of
double resistance is followed by rapid exponential growth of this
genotype. The slower spread of drug resistance is characteristic of
MFT policies19,20,27–29, and this is the reason that the earlier emergence
of double resistance under MFT in this scenario poses a lower com-
parative threat, because the fixation of the double-resistant genotype
is slower post-emergence. Full double-resistance to AL and triple-
resistance to AL and PPQ do not emerge in this epidemiological sce-
nario, but the second and fifth rows of Fig. 2 showgraphically thatMFT
is associated with equal or lower MDR risk for these two genotypes
when compared to cycling policies.
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The overall MDR risk in these 20-year scenarios can be summed
up by an AUCmeasure that counts up the total number MDR risk-days
for each maximally-resistant MDR genotype. For multiple first-line
therapies, median AUC values are between 22% and 90% lower than
AUC values associated with cycling policies (Fig. 2). When looking at
the AL double-resistant genotype (Fig. 2, bottom row) and the triple
resistant to AL and piperaquine (Fig. 2, second row), these genotypes
have median emergence times that are longer than 20 years (with our
parameterization of mutation rate) and the median AUC values are
zero for all three policies.

In a low transmission scenario with PfPR2-10 = 0.1% (Fig. 3) emer-
gence times are long, and risk can be evaluated by determining what
percentage of runs carry any MDR risk at all. The maximally-resistant
genotypes in this transmission setting do not reach frequencies above
0.01 because the speed of emergence (which is driven mainly by the
mutation rate) depends on the absolute number of treated parasite-
positive individuals in the population. At low prevalence, there are
fewer infections, fewer parasites, and fewer opportunities formutation.
Note that low-transmission regions are generally viewed as exerting
stronger selection pressure for drug resistance (due to several different
immunity and treatment factors, summarized previously30–33), but low-
transmission regions also have a low rate of mutant appearance due to
low absolute parasite population sizes. Visually, the inter-quartile ran-
ges of all simulation outputs show that the adaptive cycling policy has
the highest probability of generating early emergence and non-zero
frequencies ofmulti-drug resistance. Total MDR risk during the 20-year
period (measured by AUC) is zero or near-zero for most scenarios, but
note that the total risk generated by the ASAQ double-resistant is
slightly higher underMFT thanunder either cyclingpolicy (Fig. 3, fourth
row). In this specific case, because (1) the scenarios start with the
amodiaquine-resistant pfcrt 76T and pfmdr1 Y184 alleles fixed in the
population, and (2) the deployment of MFT is non-adaptive, MFT
underperforms the cycling policies at managing emergence risk of this
particular genotype. Under MFT, ASAQ is deployed for 33% of treat-
ments despite the presence of high levels of AQ-resistance, but under
the 5-year cycling policy ASAQ is used for only 25% of the policy period
and the adaptive cycling strategy uses ASAQ for only 10.8% (IQR: 1.62% ‒
26.6%)of treatments. Ifwe replace the traditional 3-therapyMFTwith an
MFT deployment of only AL and DHA-PPQ, the total risk generated by
the ASAQ double-resistant (median AUC=0.88, IQR: 0.40‒3.28) is
lowest under MFT. In general, if partner-drug resistance is pre-existing,
a drug deployment policy should account for this and be readily
adapted to a versiondeployingmainly therapies/drugs towhich there is
currently little resistance (see Supplementary Section 1). An off-the-
shelf MFT or cycling policy is not guaranteed to be best in all situations
if it is not adapted to current partner-drug resistance conditions.

Total multi-drug resistance risk across all scenarios
Summing across all five MDR genotypes (Table 1), we can compare
total multi-drug resistance risk in different epidemiological scenarios
(Fig. 4). Across scenarios with PfPR2-10 ≥ 1%, MFT is associated with
equal or lower total MDR risk, withMFT’smedian number ofMDR risk-
days (AUC) ranging from statistically similar to 79% lower when

compared to cycling policies. Under low transmission (PfPR2-10 = 0.1%),
the total number of malaria cases and the probability of mutation
generating a new resistant genotype are both low. Here, MDR risk is
generally low for both MFT and cycling policies, with little statistical
difference among the approaches. One notable exception occurs at
PfPR2-10 = 0.1% and 60% coverage where the median AUC values for
MFT (0.23), adaptive cycling (0.10; Mann-Whitney p = 0.036), and
5-year cycling (0.13; p =0.068) show that MFT is associated with the
highestMDR risk in this scenario. However, all three of these scenarios
show less than one full day of MDR risk over a 20-year period. To
remove the effect that transmission setting has on the number of
mutations that can be generated, these scenarios were re-evaluated
with immigration as the primary sourceof newmutants,with a Poisson
process importing one newmutant per year regardless of transmission
setting (Fig. 5). Across all 15 scenariosMFThadequal or lowerMDR risk
with the number of absolute MDR risk-days under MFT ranging from
statistically similar to 80% lower when compared to cycling strategies.
Again, at low prevalence (PfPR2-10 = 0.1%), there were few statistical
differences among the drug deployment strategies.

Note that althoughMFTminimizes totalMDR risk across the three
double-resistants and two triple-resistants tracked here, this does not
guarantee that MFT minimizes the AUC for each individual genotype.
Supplementary Figs. 7 to 34 present the MDR risk profiles for each
genotype in each epidemiological scenario, showing that MFT mini-
mizes MDR risk for 86% (but not 100%) of genotype-scenario combi-
nations. Supplementary Table 1 shows a re-evaluation of some of these
comparisons if initial MFT deployment is allowed to adapt to current
partner-drug conditions.

Characterization of selection pressure
The major difference between MFT and cycling approaches lies in the
types of selection pressures they exert on the diversity of resistant
genotypes circulating in the population. Cycling strategies provide a
more constant environment with unidirectional selection19,28 while the
MFT environment is more variable and results in more diversifying
selection. Figure 6 shows a typical pattern—from the median simula-
tion of a 5-year cycling approach—of unidirectional selection for
piperaquine resistance and artemisinin resistance, with each step in
the mutational flow clearly showing the acquisition (left to right) of
additionalmutations conferring resistance to these two drugs. In years
16 to 20, when DHA-PPQ is deployed a second time in a 5-year cycling
policy,mutational inflow into theDHA-PPQ-AQ triple-resistant consists
of 372 totalmutations. Under amedianMFT simulation, 318mutations
are observed to this triple-resistant genotype during the same time
period. Over the entire 20-year period cycling produces 581mutations
to the triple resistant but MFT produces only 498. This discrepancy in
emergence patterns is the likely reason that MDR emerges earlier
under cycling policies than under MFT. Supplementary Table 2 shows
thenumber ofmaximally resistantmutants generatedduring eachfive-
year time period.

A full characterizationofmutation and selectionpatterns is shown
in Fig. 7, over twenty years, for MFT and two variants of 5-year cycling;
the order of therapy deployment was reversed in the second cycling

Table 1 | List of five maximally-resistant genotypes tracked in this analysis

Name Genotype Treatment Failure

DHA-PPQ, AQ triple-resistant 580Y, 76T, 86Y, Y184, PPQ-resistance present in pfcrt 58.5% for DHA-PPQ 26.5% for ASAQ 9.2% to 20.5% for AL

DHA-PPQ, LUM triple-resistant 580Y, K76, N86, 184F, PPQ-resistance present in pfcrt 58.5% for DHA-PPQ 5.2% for ASAQ 27.7% to 43.0% for AL

DHA-PPQ double-resistant 580Y, PPQ-resistance present in pfcrt 58.5% for DHA-PPQ

ASAQ double-resistant 580Y, 76T, 86Y, Y184 26.5% for ASAQ

AL double-resistant 580Y, K76, N86, 184F 27.7% to 43.0% for AL

For all five genotypes, pfmdr1 copy number can be single or multiple.
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approach so that therapies were deployed as shortest half-life first and
longest half-life last. Visually, the mutation flow diagrams show that
MFT, unlike cycling policies, does not produce large ‘block flows’ of
mutation to a single destination genotype. In each 5-year period, the
selection regime imposed by MFT produces between 31 and 38 dif-
ferent types of mutants, generating more genotypic diversity than
cycling approaches for the majority of each 20-year period. This dif-
ference is most pronounced in the first ten years when the diversity of
mutants produced by MFT is 1.4 to 3.3 times higher than under either

cycling policy, showing that cycling policies do indeed exert more
unidirectional selection thanMFT. The absolute numbers ofmutations
produced by MFT and cycling are approximately equal: 26,930 for
MFT, 28,414 for cycling, and 28,616 for reverse cycling.

Sensitivity analyses
The greatest uncertainty in projecting the future of multi-drug resis-
tance to artemisinin combination therapies comes from the uncer-
tainty in the fitness changes and epistatic interactions among loci

wrt to AL, but
starting with 
KNY/KYY genotypes

wrt to AL

wrt to ASAQ

wrt to DHA-PPQ

Fig. 1 | Emergence and evolution of single-resistant and double-resistant P.
falciparumgenotypes under anadaptive cycling (statusquo)drugdistribution
strategy,whereDHA-PPQ isusedfirst,ASAQ isusedsecond, andAL is used last.
Epidemiological scenario shown is 5% PfPR2-10 and 40% treatment coverage.
Single resistance (blue lines) and double resistance (red lines) are always defined
with respect to (wrt) a particular artemisinin combination therapy due to the
pleiotropic effects of loci inpfcrt andpfmdr1. Top row shows the evolution of single
and double resistance to DHA-PPQ. Second row shows the evolution of single and
double resistance to ASAQ. And third and fourth rows show the evolution of single
anddouble resistance toAL. Thefirst three rows show simulations thatwere started
with “TNY” genotypes (76T, N86, Y184) which have some resistance to amodia-
quine, while the fourth row shows simulations started with “KNY” genotypes which

showmore resistance to lumefantrine. For blue and red lines, the darker the shade
the more resistance alleles are present for that resistant genotype. Green lines
correspond to genotypes that have no resistance mutations with respect to each
ACT. Shaded areas show interquartile ranges from 100 simulations, and light-
shaded areas show 90% ranges from 100 simulations. Black circles show the 1% and
10% points for full double-resistants, indicating that full double resistance to DHA-
PPQ and ASAQ reaches 0.10 genotype frequency after a median time of approxi-
mately 15 years. Black triangles show the 1% and 10% points for any double-mutant
double-resistant genotypes to AL, i.e. genotypes with one artemisinin resistance
mutation and exactly one lumefantrine resistance mutation. Right-hand panels
show the 100 individual trajectories for the full double-resistants, showing that
there is substantial variation in the time of emergence for these genotypes.
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known to be associated with reduced drug susceptibility. For lume-
fantrine especially, unambiguous resistant genotypes that do not
interact with amodiaquine resistance have yet to be described. A
sensitivity analysis on a hypothetical novel lumefantrine resistance
locus (Supplementary Figs. 1 and 2) shows that the MDR-risk assess-
ment does not change as MFT is still associated with the lowest risk.
Likewise, a sensitivity analysis on the pfmdr1 Y184F locus and on copy-
number variation inpfmdr1 shows that these twogenetic features,with
likely weak effects on lumefantrine resistance, do not determine the
evolutionary patterns of multi-drug resistance under MFT and cycling
strategies (Supplementary Figs. 3 and 4). A general sensitivity analysis
shows that treatment coverage has the greatest effect onMDR risk and
that longer cycling periods generate more MDR risk even if selection
pressure for all resistant phenotypes is not present simultaneously
(Supplementary Figs. 5 and 6).

Discussion
Despite the presence of multi-clonal infections and recombination in
certain malaria settings, recombination does not tend to rapidly bring
together different types of resistance mutations when multiple first-
line antimalarial therapies are deployed in a population. This is
important for long-term malaria planning as single-resistant and
double-resistant genotypes currently circulate in many regions
worldwide34,35, and two major goals of drug-resistance management
this decade will be to ensure that (i) current resistance numbers stay
low and (ii) novel resistant types do not emerge. For the near future, all
drug-resistance management in malaria will need to be done with the
deployment of ACTs (and potentially use of primaquine post-ACT

course36,37) as novel therapies will likely not be available until the sec-
ond half of the decade. This means that management of ACT stocks,
continuous molecular surveillance for resistance, and a flexible and
adjustable approach to treatment guidelines will all be necessary tools
for the WHO and National Malaria Control Programs to successfully
minimize drug resistance over the next decade18. The challenge with
this approach is that ACTs all share an artemisinin component, making
successful drug-resistance management difficult—potentially impos-
sible—if artemisinin resistance becomes widespread.

In choosing a specific response plan or drug-resistance manage-
ment approach at a national scale, our results indicate that NMCPs
should begin by considering MFT approaches—and eventually adjus-
table MFT approaches—as the best option to delay or slow down the
emergence and spread of drug-resistant genotypes. An MFT policy
creates amore variable environment than cycling approaches, and this
helps delay the emergence of resistant genotypes and slows down the
spread of these genotypes once they have emerged19,28. In addition, as
our present analysis shows, despite introducing multiple types of
selection pressure which do indeed allow a larger number of resistant
genotypes to emerge (Fig. 7), MFT does not cause this parade of
genotypes to recombine into novel multi-genic MDR types. This was a
major potential concern surrounding MFT policies15,20,21, but we show
here that the total MDR risk under MFT varies from statistically similar
to 80% lower than under cycling policies for a range of scenarios with
PfPR2-10 ≥ 1%.

From these results, the natural conclusion to draw for long-term
policy planning in drug-resistance management is that if MFT policies
were to be implemented adaptively—in the sameway as the status quo

Fig. 2 | Evolution of multi-drug resistance under three drug deployment stra-
tegies. Epidemiological scenario shown is 5% PfPR2-10 and 40% treatment coverage.
Each row shows the genotype frequency of triple or double resistance to a parti-
cular set of antimalarial drugs, with the most resistant genotypes shown in purple
(top two rows) or dark red (bottom three rows). In the bottom two rows, medium
red corresponds to triple-mutant double-resistance and light red corresponds to
double-mutant double-resistance. Median line is shown and interquartile ranges
are shaded. No importation is allowed in these figures. Black dots are 0.01 and 0.10
frequencymarkers for themaximally resistant genotypes. The columns show three
different treatment strategies. The outcomemeasures are the genotype frequency

of the maximally-resistant genotype after 20 years (x20), the time until the
maximally-resistant genotype reaches 0.01 frequency in the population (T.01), the
total area under the frequency curve of the maximally-resistant genotype (AUC),
and the total number of non-discounted treatment failures during the twenty years
that a strategy is implemented (NTF). AUC is themost appropriatemeasure of total
MDR risk, and the first, third, and fourth rows show that anMFT strategy generates
27% to 65% less risk than the more optimal cycling strategy. The second and fifth
rows show amedian value of AUC =0.0 frequency-days for themaximally-resistant
genotypes, for all three drug-distribution strategies.
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is currently adaptive by conducting surveillance and rotating out
therapies out at 10% treatment failure—these adaptive MFT approa-
ches would have more favorable profiles than the standard MFT stra-
tegies presented here. As an example, there are 11 (non-extinction)
comparisons where MFT generates higher risk (when compared to
cycling policies) for the ASAQ double-resistant genotype (Supple-
mentary Table 1). The reason is that our simulation scenarios start (as
most real-world settings do) with some amodiaquine resistance, and
an MFT deployment naively treats one third of patients with ASAQ
despite the presence of AQ-resistant genotypes; adaptive cycling
policies rotate away from ASAQ when resistance and treatment failure
arehigh but standardMFTdoes not. SupplementaryTable 1 shows that
a simple adjustment to a 50/50 MFT deployment of AL and DHA-PPQ
resolves this issue and leads to MFT having the lowest AUC for the
ASAQdouble-resistant, showing that even aminimal effort to adjust an
MFTpolicy to current drug-resistanceconditions results inmajor gains
in reducing emergence risk of MDR genotypes.

The simplest adaptation of an MFT policy is to not include, or
reduce the frequency of, a particular therapy to which high levels of
drug resistance are circulating. In addition to Supplementary Table 1,
the analysis in Zupko et al.38 shows that deployment of AL and DHA-
PPQ should be balanced to high levels of AL (for a spatial model
parameterized to Burkina Faso’s epidemiological parameters) when
trying to minimize treatment failure or artemisinin-resistance fre-
quency. In this case, the reason is that PPQ resistance both (i) evolves
more rapidly than lumefantrine resistance and (ii) results in higher
levels of treatment failure39. Essentially, a naïve equal-distributionMFT

approach is not guaranteed to be optimal when one of the therapies
has naturally low efficacy or potentially low future efficacy due to high-
grade drug resistance.

Limitations
A simulation approach is necessary for policy evaluations aiming to
manage the large-scale epidemiology and evolution of a human
pathogen over a years or decades-long time span; a particular strat-
egy’s effect on drug-resistance one decade into the future cannot be
evaluated with a field trial. Despite their usefulness, simulation
approaches come with a number of limitations that need to be made
clear to policy makers.

First, the simulations conducted for this analysis (216 epidemio-
logical scenarios with 100 replicates each) are not exhaustive of all
possible epidemiological and policy settings that need to be con-
sidered; this is impossible for modern simulation approaches where
multiple hours or tens of hours are required for each simulation run.
Rather, they represent the midpoints and endpoints of ranges of
plausible scenarios—e.g. from low transmission to high transmission,
or low drug coverage to high drug coverage—but cannot be used to
infer howan exact prevalence-coverage settingwould fareunder a pre-
planned but imperfect treatment policy. The purpose of these para-
meter explorations is to test hypotheses (here, whetherMFT generates
higher MDR risk) and extract general principles on how and when
multi-drug resistance is likely to emerge. Our results show that in this
broad range of settings (that includes the majority of malaria-endemic
scenarios in Africa) MFT generates less MDR risk than cycling policies.

Fig. 3 | Evolution of multi-drug resistance under three drug deployment stra-
tegies. Epidemiological scenario shown is 0.1% PfPR2-10 and 40% treatment cov-
erage. Each row shows the genotype frequency of triple or double resistance to a
particular set of antimalarial drugs, with the most resistant genotypes shown in
purple (top two rows) or dark red (bottom three rows). In the bottom two rows,
medium red corresponds to triple-mutant double-resistance and light red corre-
sponds to double-mutant double-resistance. Median line is shown (nearly always at
0.0) and interquartile ranges are shaded. No importation is allowed in these figures.
The columns show three different treatment strategies. The outcomemeasures are
the genotype frequency of the maximally-resistant genotype after 20 years (x20),
the time until the maximally-resistant genotype reaches 0.01 frequency in the

population (T.01), the total area under the frequency curve of the maximally-
resistant genotype (AUC), and the total number of non-discounted treatment fail-
ures during the twenty years that a strategy is implemented (NTF). AUC is themost
appropriate measure of total MDR risk, but median AUC=0.0 for the majority of
scenarios in this low-transmission setting.The interquartile ranges in the right-hand
column suggest that adaptive cycling has the highest probability of driving
maximally-resistant genotypes to high levels. In the first row after 20 years, the
triple-resistant reached 0.001 genotype frequency in 32/100 simulations under an
adaptive cycling strategy. Under MFT and 5-year cycling, the triple-resistant never
rose above 0.001 frequency during the twenty years of the simulation.
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Fig. 4 | Absolute risk of multi-drug resistance over 20 years. Each boxplot
(N = 100 simulations) shows the sum of AUCs across all five maximally-resistant
genotypes (Table 1). Boxplot whiskers are 1.5 times the IQR. AUC comparisons
betweenMFT and 5-year cycling and AUC comparisons betweenMFT and adaptive
cycling are assessed with a Mann-Whitney test, and p-value markers (testing

whether MFT has lower AUC) are placed next to each boxplot with p <0.05 (*) or
p < 10−4 (**). In the upper-right panel, the red p-value marker indicates that MFT
(median AUC=0.23 risk days) has higher AUC than the adaptive cycling strategy
(median AUC=0.10 risk days) with p =0.037.

Fig. 5 | Absolute risk of multi-drug resistance under an importation scenario
over20years. Eachboxplot (N = 100 simulations) shows the sumofAUCs across all
fivemaximally-resistant genotypes (Table 1). Boxplotwhiskers are 1.5 times the IQR.
AUC comparisons betweenMFT and 5-year cycling and AUC comparisons between
MFT and adaptive cycling are assessed with a Mann-Whitney test, and p-value

markers (testingwhetherMFThas lower AUC) are placed next to each boxplot with
p <0.05 (*) or p < 10−4 (**). In these scenarios resistant genotypes are imported
according to a Poisson process with a mean importation rate of one parasite per
year (in an asymptomatic individual) with an equal 0.20 probability that the
imported genotype is one of the five maximally-resistant parasites from Table 1.
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The results cannot be extrapolated to extremely low-coverage settings
(e.g. no drugs deployed or no access to treatment), high-coverage
locations where nearly everyone is treated, or other scenarios that fall
outside the bounds of what was studied.

Second, some parameter estimates come with substantial uncer-
tainty, with the emergence rate of resistant genotypes—either de novo
or through introduction via immigration—estimated from one of the
most data-poor areas of drug-resistance epidemiology. Occasionally,
the rate of appearance of certain mutants de novo is measured in
clinical trial settings with limited numbers of patients40, but these rates
are not predictive of how quickly drug-resistance will emerge in
populations of millions of individuals over years or decades. Likewise,
the immigration rate of malaria genotypes from one country to
another is not something that can be easily measured even with
intensive genomic surveillance. For this reason, we calibrate our
mutation rate to the approximate 5-10 year window in Cambodia
(1980s to 1990s) that it would have taken artemisinin-resistant alleles
to progress from initial mutation to 0.01 allele frequency4,26. A muta-
tion rate ten times higher is implausible as it results in months-long
fixation dynamics of drug resistance, something that has never been
observed in the field. A mutation rate ten times lower results in (i)
historically impossible emergence times on a multi-decade scale, and
(ii) lack of emergence of MDR types in a 20-year time frame.We tested
scenarios with 3-fold and 5-fold reduced mutation rates, but the main
feature of these scenarios was that for most simulations multi-drug
resistance did not emerge during the 20-year simulation window
(Supplementary Figs. 35 and 36). Similarly, immigration rates would
need to be custom-calculated for each epidemiological scenario based
on proximity to a source of drug resistance. We present a ‘rare
migration’ scenario in Fig. 5, but it is not guaranteed that MFT will
remain the best policy option under continuous importation of drug
resistance.

Third, one of the biggest challenges in drug-resistance modeling
is estimating the partial extent of partial drug resistance. For m pos-
sible therapies that could be deployed and n loci that could improve a

parasite’s in vivo survival when exposed to the drug, we would needm
times 2n estimates of partial efficacy of a particular therapy on a par-
ticular genotype. Clinical trials and therapeutic efficacy studies are not
powered to estimate genotype-specific efficacies of antimalarial
drugs41, and regardless, not all genotypes are observed in nature and
there are too few trials to enroll patients carrying all circulating gen-
otypes. For this exercise, we have chosen 64 genotypes defined by six
commonly sequenced loci and the threemostwidely usedACTs. These
3 × 64 = 192 genotype-treatment combinations represent the most
data-rich region of drug-genotype space, and approximations of
treatment efficacy can bemade24. However, sensitivity analyses on this
set of 192 treatment efficacies still show that we should expect sub-
stantial variation in emergence times (see Supplementary Section 4
here and Supplementary Section 5 in Watson et al.26). Until a better
understanding of the genetic landscape of drug-resistant genotypes is
achieved, there will continue to be substantial uncertainty as to which
alleles and genotypes will emerge first.

When compared to cycling policies, simultaneous deployment
of multiple first-line antimalarials creates drug environments with
higher variability, delaying the emergence and slowing the evolution
of drug-resistant genotypes and multi-drug resistant genotypes
alike. This diversity principle will be critical for both the introduc-
tion of new antimalarials later in the decade and current response
strategies42 to the emergence of artemisinin resistance in Rwanda
and Uganda. National Malaria Control Programs in many African
countries will need to be prepared for the possibility of continuous
monitoring and continuous adjustment of drug deployment strate-
gies, as reversing artemisinin resistance will be a delicate task for as
long as all approved therapies contain an artemisinin derivative. The
reason that both MFT and adaptive MFT approaches should be
seriously considered in the current context is that switching or
rotation strategies are likely to be sub-optimal in slowing down the
spread of artemisinin-resistant alleles. Given the pace of resistance
spread seen so far, we will likely have only one opportunity to con-
trol this particular epidemic of drug resistance.

KNY--C1x
KNY--C2x
KNY--Y1x

KYY--C1x

KYY--C2x
KYY--Y1x

TNY--C1x

TNY--C2x

TNY--Y1x
TNY--Y2x

TYY--C1x

TYY--C2x

TYY--Y1x

TYY--Y2x

TNF--C1x
TNF--C2x

TNF--Y1x
TNF--Y2x

TYF--C1x

TYF--C2x

TNYNYC1x TNYNYC2x
TNYNYY1x TNYNYY2x

TYYYYC1x

TYYYYC2x

Fig. 6 | Example of mutation flow during years 16 to 20 of a 5-year cycling
strategy, where DHA-PPQ is used first, ASAQ second, and AL last. PfPR2-10 is 5%
and treatment coverage is 40%. The diagram shows mutation flow during the
second period of DHA-PPQ usage for a ‘median’ simulation. Themedian simulation
was chosen by minimizing the absolute distance (among 100 runs) to the five
median frequency lines shown in Fig. 2. Drug-sensitive genotypes are shown in
green, single-resistant genotypes in blue, and the double-resistant to DHA-PPQ is
shown in crimson (“2” connotes PPQ-resistance).Mutation occurs from left to right,

and the width of the flow is proportional to the absolute number of mutations
during the five-year period. A total of 372 mutations to the maximally-resistant
triple-resistant (TYY--Y2) occur in years 16–20 of a 5-year cycling policy while the
corresponding number of mutations for an MFT policy is 318. The total number of
mutations to DHA-PPQ-AQ triple-resistant over 20 years is 581 for 5-year cycling
(this figure) and 498 for MFT. Mutations shown are mutations that emerge and fix
within host. Recombination occurs in the model but recombination events are not
shown in the diagram.
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Methods
We use a stochastic individual-based genotype-explicit pathogen
transmission model whose core components were specifically devel-
oped for Plasmodium falciparum transmission and evolution20,26,38. All
simulation details, data sources, and validations are described in pre-
vious publications20,26,38 with the exact parameterization from Zupko
et al.38 used for the present analysis (but with one spatial location, no
private-market drug use, and a population age-structure based on
Tanzania). Briefly, the simulation has adaily time-step, at thebeginning
of which a Poisson number of individuals are chosen to be bitten by
mosquitoes carrying particular genotypes of P. falciparum, with the
genotype-specific force of infection (FOI) dependent on (1) the num-
ber of individuals carrying a particular genotype, (2) the individuals’
biting attractiveness, (3) the parasite density within the individual, and
(4) the probability that recombination generates a particular genotype
based on the frequency and parasite density of currently circulating
genotypes (using a traditional population-genetic recombination
table). Individuals acquire and lose immunity at a previously calibrated
rate (see Figures S3 to S6 in Nguyen et al.20), and symptoms pre-
sentation is dependent on each host’s level ofmalaria immunity, which

is dependent on frequency and recency of past infections. Pharma-
codynamics is modeled with a traditional Hill equation43 and phar-
macokinetics is modeled as 1-compartment clearance for all drugs.

The evolutionary and epidemiological aspects of the simulation
are calibrated to (1) the relationship between prevalence in 2-10 year-
olds (PfPR2-10) and the entomological inoculation rate (EIR) for
P. falciparum38, (2) the relationship between age-specific incidence and
EIR20, (3) the relationship between EIR and multi-clonality of
infections20, (4) an approximate mutation rate based on the emer-
gence pattern of artemisinin resistance26, and (5) a genotype-
environment interaction matrix based on clinical trial data24. The
mutation rate is calibrated so that 40% treatment coverage of DHA-
PPQ (and no private market drug use) in a 10% PfPRall-ages setting of
100,000 individuals produces an 0.01 allele frequency of the 580Y
allele in exactly 7.0 years. This process is the most difficult to calibrate
as the per-infection “mutation and within-host selection” probability is
the most difficult to measure26,44, but the current parametrization is
within an order of magnitude of values that would replicate real-world
timings of drug-resistance emergence in Cambodia. A burn-in phase of
the simulation is started with one million individuals, and 10% are

Fig. 7 | Mutationflowdiagrams formedianMFT and 5-year cycling simulations,
separated into four 5-year periods. PfPR2-10 is 5% and treatment coverage is 40%.
Two different 5-year cycling strategies are explored (middle and right columns)
with different ordering of ACT deployment. Mutation occurs left to right in the
diagrams (but the x-axis here is not time) and the width of the flow is proportional
to the absolute number of mutations occurring during the five-year period. The

crimson-colored flows show evolution towards the maximally-resistant double-
resistant genotypes (bottom three rows of Table 1). All other flows are shown in
gray. The blue numbers in each panel show the number of ‘destination genotypes’
for the mutation and within-host-selection process; in other words these are the
genotypes being selected for during each period. MFT shows more diversifying
selection while 5-year cycling shows more unidirectional selection.
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randomly infected with one of two P. falciparum genotypes—either
wild-type allele N86 at the pfmdr1 locus or mutant allele 86Y, equally;
remaining alleles are all wild-type except for the 76T locus at pfcrt
(see below). The burn-in phase is run for ten years with 50% drug
coverage of an 80% efficacious therapy, at which point the population
reaches its equilibrium PfPR2-10 level of 0.1%, 1%, 5%, 25%, or 50% (these
were pre-calibrated). Once at equilibrium, artemisinin-combination
therapies are introduced and the simulation is run for another twenty
years. Note that when ACT coverage is 20% or 40%, prevalence may go
up as fewer individuals would be receiving treatment than during
burn-in.

Locus structure
As in the most recent version of this model24,26,38, we use a 6-locus
structure focused on the key drug-resistance determining alleles for
artemisinin (ART), lumefantrine (LUM), amodiaquine (AQ), and
piperaquine (PPQ). Included loci are pfcrt K76T, pfmdr1 N86Y, pfmdr1
Y184F, pfkelch13 C580Y, double-copy variant at pfmdr1, and a generic
piperaquine-resistance locus determined primarily by a group of
mutations in pfcrt17,45–50. The efficacy of different therapies on different
genotypes was calibrated for a previous publication24. Briefly, for each
of these 64 genotypes and for all four drugs modeled here, a specific
EC50-value is assigned (calibrated) to each of the 256 drug-genotype
combinations, allowing for 192 genotype-specific efficacies to be
computed for AL, ASAQ, andDHA-PPQ. The EC50 values are translated
into 28-day efficacies via a one-compartment pharmacokinetic model
and daily parasite kill rate modeled via a standard Hill equation (see
Nguyen et al.20, supplement, section 9). The EC50 values are then
calibrated so that the 28-day efficacies match cure rates from rando-
mized controlled trials or therapeutic efficacy studies for the three
different ACTs, with genotype information obtained from trial data,
routine molecular surveillance, or historical context (depending on
availability). For the current model version, we ignore the individual
effects of the pfcrt mutations relevant to PPQ-resistance and assume
that these emerge as a group or haplotype resulting in the lowest
possible DHA-PPQ efficacies on the DHA-PPQ double-resistant geno-
type (around 41.5%). Finally, we use the term lumefantrine-resistant to
describe alleles (K76, N86, 184F) that have been associated with
reduced lumefantrine susceptibility51–54 although high-grade lumefan-
trine resistance has not yet been observed in the field.

Using these loci we make specific definitions of double-resistant
and triple-resistant genotypes, and these always have to be defined
with respect to a particular therapy. In Table 1, we define the
maximally-resistant double-resistants to AL, ASAQ, and DHA-PPQ, and
we define the maximally-resistant triple-resistants to DHA-PPQ-LUM
andDHA-PPQ-AQ, in the context of our 6-locus framework. Note that it
is not possible to define a triple-resistant to AL-AQ because the pleio-
tropic effects at the pfmdr1 and pfcrt genes prevent any of our mod-
eled genotypes from being simultaneously resistant to amodiaquine
and lumefantrine. The multi-genic resistant types in Table 1 may arise
via recombination or successive mutations. The genotypes in Table 1
were chosen as they carry the most commonly observed resistance
mutations to the most widely deployed ACTs.

For some model scenarios, genotypes with lower resistance
levels are tracked. For example, the 580Y 184F genotype is a double-
resistant to AL, but it does not have the full complement of lume-
fantrine resistance mutations (N86, 184F, K76). We call this geno-
type a double-resistant double-mutant, or a “2-2” genotype. In some
cases (e.g. Fig. 1E, G for the AL resistant) the “2-2” genotypes are
tracked if the maximally-resistant “2-4” genotypes do not emerge. In
the color schemes in Figs. 1 to 3, the lighter red colors represent “2-2”
genotypes and the darker red (crimson) colors represent “2-4”
genotypes; in other words, darker red corresponds to stronger drug
resistance.

Treatment Strategies and Scenarios
At the population’s natural endemic malaria equilibrium (modelled to
mimic the chloroquine and SP era of treatment in Africa that lasted
until 2005), artemisinin-combination therapies are introduced into use
into one of three ways: (1) as the current status quo approach of
recommending a single first-line ACT, which is rotated out when
treatment failurewith thisACTcrosses the 10% failure threshold,with a
one-year delay included in the rotation as changing first-line therapies
cannot be implemented instantaneously by a large national health
system; (2) as a five-year cycling approach where ACTs are rotated out
and replaced every five years; and (3) as multiple first-line therapies
(MFT) where all three therapies—DHA-PPQ, ASAQ, and AL—are
deployed simultaneously in equal proportions. The order of the
deployed therapies in cycling strategies is DHA-PPQ first, ASAQ sec-
ond, and AL last, as this has the largest effect on prevalence reductions
due to the longer half-life drugs being used first. A reverse-order
cycling approach is analyzed in Fig. 7 to examine differences in the
pattern of mutation and selection.

Fifteen epidemiological scenarios are evaluated. The simulation’s
transmission parameter, which controls the daily biting rate, was
calibrated to achieve five different prevalence levels (0.1%, 1%, 5%, 25%,
50%) at three different drug coverage levels (20%, 40%, 60%). Drug
coverage is the percentage of symptomatic falciparum cases that have
access to treatment, seek treatment, and complete a full 3-day ACT
course. In order to remove the effect of de novo mutation which has
stronger effects at higher prevalence levels where there are higher
absolute numbers of patients treated, the scenarios were re-run with
highmigration levels with a one-yearwaiting time (Poisson process) to
the next immigration event of amaximally-resistant genotype,which is
chosen at random with 1/5 probability from Table 1. Alternatively, this
can be viewed as five independent Poisson processes for the five
maximally-resistant genotypes, with a five-year waiting times for each
genotype.

Outcomes measures
In order to evaluatewhetherMFTwill generatemoreor lessmulti-drug
resistance than either cycling approach we introduce two key metrics
for comparison. First, we track the time until a maximally-resistant
genotype reaches 0.01 genotype frequency (T.01). The0.01 threshold is
chosen as this frequency is high enough that the parasites will not be at
risk of extinction due to the effects of random genetic drift, but low
enough that the major evolutionary driving forces in reaching this
threshold will be mutation, recombination, and within-host selection
(see Supplementary Fig. 3 in Watson et al.26). A desirable outcome in
drug-resistance management is that a chosen strategy is late at gen-
erating and establishing a lineage of multi-drug resistant parasites.
Visually, we also show T.10 as this is the point of establishment. The
genotype frequency after 20 years (x20) is also shown.

Second, we track the total number of “multi-drug resistant risk
days” over a 20-year period. This is the area under the frequency curve
(AUC) for each maximally-resistant genotype. This is the total risk
generated by cumulative relative exposure to a particular maximally-
resistant genotype, but it does not account for lower prevalence. In
other words, this AUC measure characterizes the total evolutionary
pressure for multi-drug resistance, but not the combined
epidemiological-evolutionary pressure. This is a moot point in our
analysis as prevalence values are nearly identical for MFT and cycling
policies (Supplementary Fig. 37). A total AUC measure across all five
maximally-resistant genotypes is also presented (Figs. 4 and 5), and
note that the five individual-genotype AUCs are not simply added to
obtain this total AUC measure. The double-resistant AUC quantities
include the genotype frequencies of triple-resistant genotypes, and
this double counting is removed when presenting the combined five-
genotype AUC in Figs. 4 and 5.
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Results are presented as medians, interquartile ranges (shaded
regions), and 95% ranges (where specified) from 100 simulations.
Differences between distributions are assessed with Mann-Whitney
tests. Mutation flow diagrams were generation with Python library
plotly v5.9.0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All simulation outputs, i.e. the simulated data generated for this study,
are available55 at https://github.com/bonilab/malariaibm-generation-
of-MDR-mutants.

Code availability
All code is available55 at https://github.com/bonilab/malariaibm-
generation-of-MDR-mutants.

References
1. World Health Organization. World Malaria Report 2021. https://

apps.who.int/iris/handle/10665/350147 (2021).
2. Shibeshi, W., Alemkere, G., Mulu, A. & Engidawork, E. Efficacy and

safety of artemisinin-based combination therapies for the treatment
of uncomplicated malaria in pediatrics: a systematic review and
meta-analysis. BMC Infect. Dis. 21, 326 (2021).

3. Marwa, K. et al. Therapeutic efficacy of artemether-lumefantrine,
artesunate-amodiaquine and dihydroartemisinin-piperaquine in the
treatment of uncomplicated Plasmodium falciparum malaria in
Sub-Saharan Africa: A systematic review and meta-analysis. PLOS
ONE 17, e0264339 (2022).

4. Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmo-
dium falciparum malaria. Nature 505, 50–55 (2014).

5. Balikagala, B. et al. Evidence of Artemisinin-resistant malaria in
Africa. N. Engl. J. Med 385, 1163–1171 (2021).

6. Carrara, V. I. et al. Changes in the treatment responses to Artesunate-
Mefloquine on the Northwestern border of Thailand during 13 Years
of continuous deployment. PLOS ONE 4, e4551 (2009).

7. Chenet, S. M. et al. Independent emergence of the Plasmodium
falciparum Kelch Propeller DomainMutant Allele C580Y in Guyana.
J. Infect. Dis. 213, 1472–1475 (2016).

8. Dondorp, A. M. et al. Artemisinin resistance in Plasmodium falci-
parum malaria. N. Engl. J. Med. 361, 455–467 (2009).

9. Miotto, O. et al. Emergence of artemisinin-resistant Plasmodium
falciparum with kelch13 C580Y mutations on the island of New
Guinea. PLoS Pathog. 16, e1009133 (2020).

10. Phyo, A. P. et al. Emergence of artemisinin-resistant malaria on the
western border of Thailand: a longitudinal study. Lancet 6736,
1–7 (2012).

11. Tun, K. M. et al. Spread of artemisinin-resistant Plasmodium falci-
parum in Myanmar: a cross-sectional survey of the K13 molecular
marker. Lancet Infect. Dis. 3099, 21–26 (2015).

12. Uwimana, A. et al. Emergence and clonal expansion of in vitro
artemisinin-resistant Plasmodium falciparumkelch13 R561Hmutant
parasites in Rwanda. Nat. Med. 26, 1602–1608 (2020).

13. Wernsdorfer, W. & Payne, D. The dynamics of drug resistance in
Plasmodium falciparum. Pharmacol. Ther. 50, 95–121 (1991).

14. Talisuna, A. O., Bloland, P. & D’Alessandro, U. History, dynamics,
and public health importance of malaria parasite resistance. Clin.
Microbiol Rev. 17, 235 (2004).

15. Boni, M. F.,White, N. J. & Baird, J. K. The community as the patient in
malaria-endemic areas: preempting drug resistance with multiple
first-line therapies. PLoS Med. 13, e1001984 (2016).

16. Peto, T. J. et al. Triple therapy with artemether–lumefantrine plus
amodiaquine versus artemether–lumefantrine alone for artemisinin-

resistant, uncomplicated falciparum malaria: an open-label, rando-
mised, multicentre trial. Lancet Infect. Dis. 2, 867–878 (2022).

17. van der Pluijm, R. W. et al. Determinants of dihydroartemisinin-
piperaquine treatment failure in Plasmodium falciparum malaria in
Cambodia, Thailand, and Vietnam: a prospective clinical, pharma-
cological, and genetic study. Lancet Infect. Dis. 19, 952–961 (2019).

18. Boni, M. F. Breaking the cycle of malaria treatment failure. Front.
Epidemiol. 2, 1041896 (2022).

19. Boni,M. F., Smith,D. L. & Laxminarayan, R. Benefits of usingmultiple
first-line therapies against malaria. Proc. Natl Acad. Sci. 105,
14216–14221 (2008).

20. Nguyen, T. D. et al. Optimum population-level use of artemisinin
combination therapies: a modelling study. Lancet Glob. Health 3,
e758–e766 (2015).

21. Rasmussen, C., Alonso, P. & Ringwald, P. Current and emerging
strategies to combat antimalarial resistance. Expert Rev. Anti Infect.
Ther. 20, 353–372 (2022).

22. Weissman, D. B., Feldman, M. W. & Fisher, D. S. The rate of fitness-
valleycrossing in sexualpopulations.Genetics 186, 1389–1410 (2010).

23. Ghafari, M. &Weissman, D. B. The expected time to cross extended
fitness plateaus. Theor. Popul. Biol. 129, 54–67 (2019).

24. Nguyen, T. D., Tran, T. N.-A., Parker, D. M., White, N. J. & Boni, M. F.
Antimalarial mass drug administration in large populations and
the evolution of drug resistance. PLoS Glob. Public Health 3,
e0002200 (2023).

25. World Health Organization. WHO Guidelines for Malaria. https://
www.who.int/publications/i/item/guidelines-for-malaria (2022).

26. Watson, O. J. et al. Pre-existing partner-drug resistance facilitates
the emergence and spread of artemisinin resistance: a consensus
modelling study. Lancet Microbe 3, 701–710 (2022).

27. Spiliotopoulou, E., Boni, M. F. & Yadav, P. Impact of treatment het-
erogeneity on drug resistance and supply chain costs. Socio-Econ
Planning. Sci 47, 158–171 (2013).

28. Bergstrom, C. T., Lo, M. & Lipsitch, M. Ecological theory suggests
that antimicrobial cyclingwill not reduceantimicrobial resistance in
hospitals. Proc. Natl Acad. Sci. USA 101, 13285–13290 (2004).

29. Bonhoeffer, S., Lipsitch, M. & Levin, B. R. Evaluating treatment
protocols to prevent antibiotic resistance. Proc. Natl Acad. Sci. USA
94, 12106–12111 (1997).

30. Hastings, I.M. &Watkins,W.M. Intensity ofmalaria transmission and
the evolution of drug resistance. Acta Trop. 94, 218–229 (2005).

31. Whitlock, A. O. B., Juliano, J. J. & Mideo, N. Immune selection sup-
presses the emergence of drug resistance in malaria parasites but
facilitates its spread. PLOS Comput Biol. 17, e1008577 (2021).

32. Masserey, T. et al. The influence of biological, epidemiological, and
treatment factors on the establishment and spread of drug-
resistant Plasmodium falciparum. eLife 11, e77634 (2022).

33. Hastings, I. M., Watkins, W. M. & White, N. J. The evolution of drug-
resistant malaria: the role of drug elimination half-life, Philos. Phil.
Trans. R. Soc. Lond. B 357, 505–519 (2002).

34. WWARN. WWARN ACT Partner Drug Molecular Surveyor. http://
www.wwarn.org/molecular/surveyor/.

35. World Health Organization.Malaria Threats Map. https://apps.who.
int/malaria/maps/threats/.

36. Smithuis, F. et al. Effectiveness of five artemisinin combination
regimens with or without primaquine in uncomplicated falciparum
malaria: an open-label randomised trial. Lancet Infect. Dis. 10,
673–681 (2010).

37. Stepniewska, K. et al. Efficacy of single-dose primaquine with
artemisinin combination therapy on plasmodium falciparum
gametocytes and transmission: an individual patient meta-analysis.
J. Infect. Dis. 225, 1215–1226 (2022).

38. Zupko, R. J. et al. Long-term effects of increased adoption of arte-
misinin combination therapies in Burkina Faso. PLOS Glob. Public
Health 2, e0000111 (2022).

Article https://doi.org/10.1038/s41467-024-45547-x

Nature Communications |         (2024) 15:1390 11

https://github.com/bonilab/malariaibm-generation-of-MDR-mutants
https://github.com/bonilab/malariaibm-generation-of-MDR-mutants
https://github.com/bonilab/malariaibm-generation-of-MDR-mutants
https://github.com/bonilab/malariaibm-generation-of-MDR-mutants
https://apps.who.int/iris/handle/10665/350147
https://apps.who.int/iris/handle/10665/350147
https://www.who.int/publications/i/item/guidelines-for-malaria
https://www.who.int/publications/i/item/guidelines-for-malaria
http://www.wwarn.org/molecular/surveyor/
http://www.wwarn.org/molecular/surveyor/
https://apps.who.int/malaria/maps/threats/
https://apps.who.int/malaria/maps/threats/


39. Witkowski, B. et al. A surrogate marker of piperaquine-resistant
Plasmodium falciparum malaria: a phenotype–genotype associa-
tion study. Lancet Infect. Dis. 17, 174–183 (2017).

40. Llanos-Cuentas, A. et al. Antimalarial activity of single-dose
DSM265, a novel plasmodium dihydroorotate dehydrogenase
inhibitor, in patients with uncomplicated Plasmodium falciparumor
Plasmodium vivax malaria infection: a proof-of-concept, open-
label, phase 2a study. Lancet Infect. Dis. 18, 874–883 (2018).

41. Ljolje, D. et al. Prevalence of molecular markers of artemisinin and
lumefantrine resistance among patients with uncomplicated Plas-
modium falciparum malaria in three provinces in Angola, 2015.
Malar. J. 17, 84 (2018).

42. Zupko, R. J. et al. Modeling policy interventions for slowing the
spread of artemisinin-resistant pfkelch R561Hmutations in Rwanda.
Nat. Med. 29, 2775–2784 (2023).

43. Hill, A. V. The possible effects of the aggregation of the molecules
of haemoglobin on its dissociation curves. J. Physiol. 40, 4–7 (1910).

44. Pongtavornpinyo, W. et al. Probability of emergence of antimalarial
resistance in different stages of the parasite life cycle. Evolut. Appl.
2, 52–61 (2009).

45. Dhingra, S. K., Small-Saunders, J. L., Ménard, D. & Fidock, D. A.
Plasmodium falciparum resistance to piperaquine driven by PfCRT.
Lancet Infect. Dis. 19, 1168–1169 (2019).

46. Okombo, J. et al. Piperaquine-resistant PfCRT mutations differen-
tially impact drug transport, hemoglobin catabolism and parasite
physiology in Plasmodium falciparum asexual blood stages. PLOS
Pathog. 18, e1010926 (2022).

47. Ross, L. S. et al. Emerging Southeast Asian PfCRT mutations confer
Plasmodium falciparum resistance to the first-line antimalarial
piperaquine. Nat. Commun. 9, 3314 (2018).

48. Wicht, K. J., Small-Saunders, J. L., Hagenah, L.M.,Mok, S. & Fidock, D.
A. Mutant PfCRT can mediate piperaquine resistance in African
Plasmodium falciparum with reduced fitness and increased sus-
ceptibility to other antimalarials. J. Infect. Dis. 226, 2021–2029 (2022).

49. Small-Saunders, J. L. et al. Evidence for the early emergence of
piperaquine-resistant Plasmodium falciparum malaria and modeling
strategies to mitigate resistance. PLOS Pathog. 18, e1010278 (2022).

50. Agrawal, S. et al. Association of a novelmutation in the plasmodium
falciparum chloroquine resistance transporter with decreased
piperaquine sensitivity. J. Infect. Dis. 216, 468–476 (2017).

51. Baraka, V. et al. In vivo selection of Plasmodium falciparum Pfcrt
and Pfmdr1 variants by Artemether-Lumefantrine and
Dihydroartemisinin-Piperaquine in Burkina Faso.Antimicrob. Agents
Chemother. 59, 734–737 (2015).

52. Bassat, Q. et al. Dihydroartemisinin-Piperaquine and Artemether-
Lumefantrine for treating uncomplicated malaria in African chil-
dren: a randomised, non-inferiority trial. PLOSONE4, e7871 (2009).

53. Kiaco, K., Teixeira, J., Machado, M., do Rosário, V. & Lopes, D. Eva-
luation of artemether-lumefantrine efficacy in the treatment of
uncomplicated malaria and its association with pfmdr1, pfatpase6
and K13-propeller polymorphisms in Luanda, Angola. Malar. J. 14,
504 (2015).

54. Plucinski, M. M. et al. Efficacy of Artemether-Lumefantrine and
Dihydroartemisinin-Piperaquine for treatment of uncomplicated
malaria in children in Zaire and Uíge Provinces, Angola. Antimicrob.
Agents Chemother. 59, 437–443 (2015).

55. Li, E. Z., Boni, M. F. & Nguyen, T. D. bonilab/malariaibm-generation-
of-MDR-mutants: Figuresoutput and sourcecode for publicationon

effects of MFT on multi-drug resistance (v1.0.0). Zenodo. https://
doi.org/10.5281/zenodo.10466015 (2024).

Acknowledgements
EZL was funded by the University of Washington’s Malaria Modeling
Consortium grant from the Bill and Melinda Gates Foundation
(OPP159934) and by Bill and Melinda Gates Foundation grant INV-
005517. TDN, TN-AT, RJZ,MFBare fundedbyNational InstitutesofHealth
grant NIAID R01AI153355 and Bill and Melinda Gates Foundation grant
INV-005517. Computations for this research were performed on the
Pennsylvania State University’s Institute for Computational and Data
Sciences’ Roar supercomputer.

Author contributions
EZL, TDN, MFB designed the study. EZL, RJZ, TDN upgraded the simu-
lation to explicitly and flexibly handle outputs on multi-drug resistant
genotypes. EZL and TDN performed all simulations and EZL made all
figures. EZL and TNAT analyzed evolutionary outcomes and verified that
they were consistent with treatment outcomes in clinical trial data. MFB
wrote the first draft of the paper. All authors contributed to editing the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-45547-x.

Correspondence and requests for materials should be addressed to
Maciej F. Boni.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-45547-x

Nature Communications |         (2024) 15:1390 12

https://doi.org/10.5281/zenodo.10466015
https://doi.org/10.5281/zenodo.10466015
https://doi.org/10.1038/s41467-024-45547-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Assessing emergence risk of double-resistant and triple-resistant genotypes of �Plasmo�dium falciparum
	Results
	Emergence of double- and triple-resistance in specific scenarios
	Total multi-drug resistance risk across all scenarios
	Characterization of selection pressure
	Sensitivity analyses

	Discussion
	Limitations

	Methods
	Locus structure
	Treatment Strategies and Scenarios
	Outcomes measures
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




