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High resolution spatial profiling of kidney
injury and repair using RNA hybridization-
based in situ sequencing

Haojia Wu 1, Eryn E. Dixon 1, Qiao Xuanyuan1, Juanru Guo1,
Yasuhiro Yoshimura 1, Chitnis Debashish2, Anezka Niesnerova2, Hao Xu2,4,
Morgane Rouault2 & Benjamin D. Humphreys 1,3

Emerging spatially resolved transcriptomics technologies allow for the mea-
surement of gene expression in situ at cellular resolution.We apply direct RNA
hybridization-based in situ sequencing (dRNA HybISS, Cartana part of
10xGenomics) to compare male and female healthy mouse kidneys and the
male kidney injury and repair timecourse. A pre-selected panel of 200 genes is
used to identify cell state dynamics patterns during injury and repair. We
develop a new computational pipeline, CellScopes, for the rapid analysis,
multi-omic integration and visualization of spatially resolved transcriptomic
datasets. The resulting dataset allows us to resolve 13 kidney cell types within
distinct kidney niches, dynamic alterations in cell state over the course of
injury and repair and cell-cell interactions between leukocytes and kidney
parenchyma. At late timepoints after injury, C3+ leukocytes are enriched near
pro-inflammatory, failed-repair proximal tubule cells. Integration of snRNA-
seq dataset from the same injury and repair samples also allows us to impute
the spatial localization of genes not directly measured by dRNA HybISS.

The kidney is a highly complex organ, consisting of hundreds of
thousands of nephrons supported by a rich peritubular vascular net-
work as well as interstitial fibroblasts, macrophages, lymphocytes and
perivascular cells. These disparate cell types play critical roles in
maintaining homeostasis as well as responding to kidney injury.
Recently several single-cell multi-omic analyses have greatly advanced
our understanding of kidney cell states both in healthy and diseased
kidneys1–6. A limitation of these single-cell multi-omic analyses is that
they require cell or nuclear dissociation as a first step, resulting in the
loss of spatial information which precludes a full analysis of how cells
interact with each other in their tissue microenvironment7.

Recent advances in spatial transcriptomic technologies have
begun to allow high-throughput quantification of RNAs within an
intact tissue section. We have previously applied a next-generation
sequencing (NGS)-based spatially resolved transcriptomic (SrT)

approach, Visium by 10X Genomics, to map transcriptional changes
during the full acute kidney injury timecourse8. This allowed us to
reconstruct the spatial interactions between injured proximal tubular
cells (InjPT) and macrophages8. Other groups have used the same
technique to localize macrophage subtypes to their different kidney
regions andmap changes in their spatial localization duringAKI9. Slide-
seq is another NGS-based SrT implementation which has been used to
analyze transcriptomic changes in glomeruli during diabetic kidney
disease, revealing a unique glomerulus-associated TREM2+ macro-
phage population10. Despite the power of these NGS-SrT techniques
for revealing the spatial relationships between kidney cell types, they
are all limited by relatively low resolution. For example, Visium has a
spot size of 55 μm and therefore cannot resolve individual cell types
within a glomerulus which itself is ~50–100μm. Slide-seq V2 has
improved spatial resolution of 10μm but is limited by substantially
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lower gene detection sensitivity and a smaller capture area (3mm in
diameter).

Herewe aimed to generate a high-resolution transcriptomicmap
of kidney cell types during injury and repair using in situ sequencing
(dRNA HybISS) by Cartana (10X Genomics)11,12. We selected 50 cus-
tom kidney gene probes and added 150 pre-designed probes for
immune and lung cell types. Out of this 50 gene custom kidney panel,
we successfully detected expression of 37 of these genes (74%). In
total we generated seven SrT datasets: one Visium dataset to com-
pare performance of NGS-SrT and ISS-SrT on the same sample, and
six ISS datasets to study differences in spatial gene expression pat-
terns between healthy male and female kidneys or during the male
murine ischemia-reperfusion (IRI) injury timecourse. We developed a
new computational pipeline which we call CellScopes, for the rapid
processing, visualization and mulit-omic integration of this high
dimensional spatial data. This allowed us to resolve nearly all major
kidney cell types from murine cortex, medulla and papilla and pro-
vided us a high-resolution view of kidney niches including the glo-
merulus, the interstitium and renal artery.We could observe dynamic
cell state changes during IRI, both in cell proportions and spatial
location during the injury and recovery phases. This single-molecule
level spatial technique also allowed us to dissect the heterogeneity
and spatial distribution of the immune subtypes in the recovery
phase of AKI, and to identify the interactions between the failed-
repair proximal tubule and the inflammatory macrophages. To
extend the power of the dataset, we integrated the dRNAHybISS data
with 10X Visium for directly decomposing the cell-type proportion in
each Visium spot. This provided a ground truth for testing the
accuracy of various cell-type deconvolution tools that rely on com-
putational prediction. Finally, we integrated a single nucleus RNA-
sequencing (snRNA-seq) onto our high-resolution SrT dataset which
enabled us to impute gene expression patterns for genes that were
not measured by in situ sequencing. This allowed us to validate the
spatial expression patterns of the sexually dimorphic genes and
disease genes in IRI. This kidney injury atlas serves as a high-
resolution resource to better understand AKI, and the underlying
tool developed is broadly applicable for the analysis of high-
resolution SrT datasets across tissues.

Results
Optimized workflow for dRNA HybISS and its application in
kidney research
The application of ISS-based SrT has primarily been applied in neu-
roscience and developmental biology13–16. To evaluate the utility of this
approach to study kidney injury, we applied a probe-set targeting 200
mouse genes during five different timepoints in an ischemia-
reperfusion injury timecourse spanning the acute injury phase (hour
4, hour 12, and day 2) and the repair phase (week 6) (Fig. 1A). We chose
these timepoints in part because we have previously profiled this same
IRI timecourse by snRNA-seq17 which would allow for downstream
integration of these datasets. Kidney injury and repair-specific genes
were selected based on our prior snRNA-seq analysis highlighting
specific injury and repair cell states. In addition, two immune cell gene
panels were selected to elucidate interactions between immune cells
and kidney parenchyma. To study sexual dimorphism, we incorporated
a female sham sample for dRNAHybISS to comparewith themale sham
sample (Fig. 1A). Finally, we performed Visium and dRNAHybISS on the
same healthy male sample to illustrate how integrating whole tran-
scriptome and targeted in situ imaging data offers complementary and
enriching biological insights (Fig. 1A). Sample preparation and dRNA
HybISS protocols were performed according to manufacturer’s
instructions and all timepoints were processed in the same run to
minimize batch effects (Fig. 1A).

We compared different cell segmentation algorithms based on
DAPI staining of nuclei. First we utilized the Watershed algorithm

which has been used in the literature to split clustered objects18,19.
This resulted both in missed nuclei as well as clusters of multiple
nuclei that were incorrectly designated as a single segment (Supple-
mentary Fig. 1A), likely due to the dense packing of cells in the kidney
which decreases the accuracy of the watershed algorithm20. Next, we
segmented the nuclei using CellPose, a machine learning based seg-
mentation algorithm21. This generated superior results with few mis-
sed nuclei and many fewer multiple nuclei clusters (Supplementary
Fig. 1A). After using Cellpose to segment nuclei, we added cell
boundaries and assigned each detected transcript to individual cells
using the Baysor algorithm22. This algorithm considers both the RNA
transcriptional composition and cell morphology, modeling each cell
as a combination of its spatial location and gene identity of each
molecule, and has been shown to be superior to other segmentation
tools in terms of achieving higher segmentation accuracy, detecting
more cells and providing improved molecular resolution22. This
approach successfully assigned specific transcripts to individual
kidney cells (Supplementary Fig. 1B). Cells survived from the Baysor
cell filtering and greater than 5 transcripts detected were selected for
downstream analysis. Cell counts for each sample were summarized
in Supplementary Table 1.

A toolkit, CellScopes, for highly efficient spatial data analysis
Existing tools23–25 for spatial data analysis are designed to process input
data from particular spatial transcriptomics techniques integrated
within their systems such as Visium or Xenium. New spatial data types,
such as the dRNA HybISS data introduced in this study, either couldn’t
be processed by these tools or required significant effort to adapt the
format to meet their input specifications. In addition, these tools fall
short of visualizing the complex structure in the kidney and fail to
adequately illustrate the dynamic changes in gene and cell spatial
relationships. To overcome these challenges, we developed a new
software package, CellScopes.jl, to perform downstream data analysis
and visualization after cell segmentation (Fig. 1B), with functionalities
specifically tailored for kidney spatial data analysis (See Methods). This
implementation is open-source and written in Julia, a programming
language known for its high-performance capabilities and efficient
execution26. CellScopes can process a diverse range of modalities,
including datasets from single-cell profiling (scRNA-seq and scATAC-
seq), sequencing-based SrT profiling (10X Visium and Slide-seq), and
imaging-based SrT profiling (dRNA HybISS as presented in this study,
as well as MERFISH, SeqFish, STARmap, and 10X Xenium) (Fig.1B).
CellScopes is publicly available on GitHub (https://github.com/
TheHumphreysLab/CellScopes.jl).

To highlight the distinctive features of CellScopes, we analyzed
two public human kidney datasets from Xenium and Visium using
CellScopes, Seurat V527, Giotto24, and Squidpy25 (Supplementary
Figs. 2–6). For imaging-based data analysis, we clustered the cells from
a human kidney Xenium dataset with CellScopes and identified the cell
types based on the marker gene expression and their spatial distribu-
tion patterns (Supplementary Fig. 2A, B). For direct comparison, we
applied the same cell annotations to the clusters identified from other
tools and focus on the same field of view (FOV) to highlight the
visualization features. CellScopes facilitates easy selection and zoom-
ing into specific FOV to examine intricate kidney structures by adding a
grid system (Supplementary Fig. 2C), a direct visualization of tran-
scripts, genes and cell-type annotation in cells as data point or cell
polygons format (Supplementary Fig. 2D–H) and direct imputation of
the missing genes by integrating the popular gene imputation tools
such as SpaGE28, gimVI29 and tangram30 (Supplementary Fig. 2I). Some
of these important features aremissing in other tools such as Seurat V5
(Supplementary Fig. 3), Giotto (Supplementary Fig. 4), Squidpy (Sup-
plementary Fig. 5). For sequencing-based SrT data analysis, CellSco-
pes.jl also can incorporate any high-resolution images as the
background layer that allows colocalizing the cell-type annotations or
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gene expression on top of precise histologic features (Supplementary
Fig. 6). This can significantly facilitate the interpretation of the cell-type
annotation and gene expression pattern by showing the delicate kidney
structure (such as the glomerulus) in histological staining images
(Supplementary Fig. 6B). Other tools only allow importing the images
from the 10X SpaceRanger output, which is not high resolution enough
to visualize the kidney structure (Supplementary Fig. 6B). The primary
advantages of CellScopes are summarized in Supplementary Table 2.

We then used CellScopes to analyze the dRNA HybISS data. Data
processing for dRNA HybISS with CellScopes consists of the following
steps (Supplementary Fig. 1C): (1) Input the spatial coordinate files and

the gene-by-cell count matrix from cell segmentation. (2) These data-
sets are stored in a data structure called CartanaObject. (3) Analysis is
performed directly on the CartanaObject (for example cell clustering,
cell–cell distance computation, coordinate transformation, scRNA-seq
integration) and the output is saved in the same object. (4) Finally, a
variety of different functions are then used to visualize the analyses.We
used CellScopes to complete the primary analyses in this study
including gene and cell visualization after segmentation, data integra-
tion, cell proximity analysis (Fig. 1C). Transcripts, genes and cell types
in complicated kidney structures (such as glomeruli) can be robustly
revealed by CellScopes (Fig. 1D–F).

Fig. 1 | dRNA HybISS workflow, experimental design and computational ana-
lysis. A Schematic of using dRNAHybISS to study AKI. Schematic was created with
BioRender. B A Julia package, CellScopes.jl, was developed for spatial data pro-
cessing, analysis and visualization. Image was created with BioRender. COutline of

the spatial analysis pipeline used in this study, created with BioRender.
D–F CellScopes.jl allows for visualization of gene expression on cells as data points
(D), segmented polygons (E), and cell-type annotations (F).
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Spatial cell-type classification of the mouse kidney
We categorized the cell types in each dataset by using the transcript
clustering results from the Baysor segmentation22. Baysor first
employs a Markov Random Fields (MRFs) approach to cluster the
transcripts. It then assigns a cluster label to each segmented cell,
based on the highest probability of a particular cluster label’s
occurrence within the cell, and designating the most frequently
occurring label to that cell. We selected a day 2 IRI kidney as a
representative to demonstrate the resolution of dRNA HybISS in
classifying cell type, given that kidney at this timepoint contains
kidney cell types in both healthy and disease states. The cell anno-
tations based on the cluster labels assigned by Baysor are very
consistent with the cell annotations derived from Seurat clustering
(Supplementary Fig. 7). Overall, the clustering algorithm identified
13 molecularly distinct cell populations in the kidney (Fig. 2A). This
includesmostmajor kidney cell types previously detected in scRNA-
seq studies17,31,32 including rare cell types such as podocyte, juxta-
glomerular apparatus (JGA) and glomerular endothelial cells (gEC)
(Fig. 2A). To determine how many kidney cell types from the pub-
lished scRNA-seq datasets can be identified in our dRNA HybISS
dataset, we performed label transfer using Seurat to transfer the
cell-type annotations from two separate mouse kidney scRNA-seq
datasets17,33 onto our spatial data in the sham kidney. This analysis
confirmed that the majority of kidney cell types can be accurately
mapped to clusters in our spatial data (Supplementary Fig. 8).
However, due to the constraint on the number of genes included,
cell types lacking marker genes in our probe panel were undetect-
able in our data. These include the parietal epithelial cells (PEC), the
thin limb of the loop of Henle (ATL-DTL), and certain subpopula-
tions within a cell type (e.g., mTAL, cTAL1, and cTAL2 from Kirita et
al. dataset17 were indistinguishable within the TAL cell cluster)
(Supplementary Fig. 8). CellScopes.jl allowed for the detection of
fine kidney structures from different kidney compartments
including the glomerulus, cortex, outer medulla, inner medulla,
cortex, and renal arteries, preserving tissue morphology (Fig. 2A).
For example, we could precisely identify the spatial relationship of
podocytes, Renin+ JGA cells and gEC (Fig. 2A). The unique expres-
sion of cell markers defined for each cell type reflects the accuracy
of our cell segmentation approach (Fig. 2B). The spatial expression
of these anchor genes colocalized with the spatial distribution of
predicted cell types (Supplementary Fig. 9). In addition, our high
resolution of dRNA HybISS data can resolve individual intercalated
interspersed among principal cells in collecting duct (Supplemen-
tary Fig. 10A). Finally, a detailed subclustering analysis further
identified two distinct subpopulations within the fibroblast cell type
(Supplementary Fig. 10B), each with a unique spatial distribution
(Supplementary Fig. 10C, D). One subpopulation is characterized by
the expression of pericyte/myofibroblast markers such as Tagln and
Acta2, while the other is marked by the expression of differentiated
fibroblast markers, Col1a1 and Col1a2 (Supplementary Fig. 10E).

Since our SrT dataset generated spatial coordinates for each
single cell, we could use these coordinates to validate certain pre-
dicted cell-type annotations based on expected proximity. For
example, glomerular endothelial cells are distinct from arterial
endothelial cell subpopulations based both on their gene expression
(Ehd3 for gEC and Eln for arterial EC) but also spatial localization
(glomerulus vs. artery). To confirm our cell annotations, we com-
pared the cell–cell distance between podocytes and these two EC
subtypes, reasoning that gEC would be much closer to podocytes
than arterial EC (see Methods). We designed an algorithm (imple-
mented in CellScopes) to measure the cell density of any cell type
within a given radius centered by each podocyte and uses the cell
density as a readout tomeasure the proximity between podocyte and
other cell types (Supplementary Fig. 11A). By measuring the cell
density of the EC subtypes according to distance from podocytes, we

confirmed that gEC was much closer to podocytes at short distances
(2-20 cells) but this distinction is lost at higher cell distances
(200–600 cells) (Fig. 2C).

To measure gene expression dynamics and cell-type composi-
tion changes across the entire kidney, we created a kidney coordi-
nate system in the CellScopes.jl package (see Methods). In this
system, the position of a cell is defined by the kidney depth (mea-
suring the distance of each cell type to the kidney capsule) and the
kidney angle (measuring the slope of each cell with respective to the
positive x-axis of the new coordinate system) (Supplementary
Fig. 11B). With these coordinates, we were able to visualize cell type
and transcript distribution changes from outer cortex to papilla
(Fig. 2D). As expected, the cell types residing in cortex, such as PT
and podocytes, have lower kidney depth values, whereas cell types in
the papilla such as principal cells (CD-PC) and urothelial cells (Uro)
have higher kidney depth values (Fig. 2D). The distribution of cell-
type-specific markers is consistent with the distribution of the cell
types (Fig. 2D), further corroborating the accuracy of our cell-type
classification.

Sex-related gene expression diversity in proximal tubule
Sexually dimorphic gene expression has been reported in proximal
tubule from recent cell-type-specific bulk RNA-seq and scRNA-seq
studies34,35. To investigate this further, we next generated in situ
sequencing (dRNAHybISS) byCartana (partof 10XGenomics)datasets
comparing healthy male and female mouse kidney. Unsupervised
clustering identified the same kidney cell populations from both sexes
(Fig. 3A). We annotated cell types based on markers identified from a
previous scRNA-seq study35 of sexually dimorphic gene expression
(Supplementary Fig. 12A, B). These anchor genes did not exhibit
sexually dimorphic gene expression (Fig. 3B, Supplementary Fig. 12C).
We selected five marker genes from the scRNA-seq study corre-
sponding to specific cell types in both sexes. These were Inmt (PTS2),
Rnf24 (PTS3), Csf1r (PTS3), Scel (ATL), andMsln (Uro) (Supplementary
Fig. 12D). We mapped the expression of these genes onto our spatial
coordinates and confirmed the expected cell-specific spatial expres-
sion pattern in both male and female (Fig. 3C). This result demon-
strates that high-resolution spatial transcriptomic data can validate the
expected expression patterns of cell-specific marker genes.

We next sought to characterize the expression patterns of sexu-
ally dimorphic genes. Although our initial probe set was limited, we
wanted to be able to predict gene expression patterns transcriptome
wide.We therefore comparedmethods to impute gene expression.We
evaluated the performance of tangram30, SpaGE28 and gimVI29. SpaGE
had superior accuracy in our dataset so this method was selected
(Supplementary Fig. 13). We could then validate the expression pat-
terns for sexually dimorphic genes in proximal tubule identified in the
scRNA-seq dataset (Fig. 3 and Supplementary Fig. 12E). The spatial
distribution of these genes is consistent with the expected proximal
expression pattern (Fig. 3E). For example, Abcc3 (an ATP-binding
cassette (ABC) transporter) and Akr1c18 (a Aldo-keto reductase) are
expressed in the S3 segment of the female PT only, whereas two of the
cytochrome P450 superfamily enzymes, Cyp2e1 and Cyp4a12, are
expressed in the male PT only (Fig. 3E). Interestingly, Cyp2e1 null mice
have been shown to be protective against AKI36, potentially providing a
clue to explain why female mice are resistant to AKI.

Integration of Visium and dRNA HybISS for cell-type
deconvolution
Lower resolution but with genome deep detection capacity, Visium
spots can be deconvolved to estimate cell-type proportions on each
spot using a wide range of methods24,37,38. Importantly, these methods
are computational predictions and not direct measurements. We
therefore sought to leverage our ISS data to directly decompose cell-
type proportions in each Visium spot by comparing a new Visium
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Fig. 2 |Major cell types and their spatial organizations in the kidneyas revealed
bydRNAHybISS.ASpatial distributions ofmajor cell types in thewhole kidney and
close-ups of cell-type organizations in glomerulus, cortex, outer medulla, inner
medulla, papilla and renal artery. Podo podocytes, JGA juxtaglomerular apparatus
cells, gEC glomerular endothelial cells, aEC arterial endothelial cells, Fib fibroblasts,
HealthyPT healthy proximal tubular cells, InjPT injured proximal tubular cells, TAL
thick ascending limb of Loop of Henle, DCT distal deconvoluted tubule, CD-PC
collecting duct principal cells, CD-IC collecting duct intercalated cells, Immune

immune cells, Uro urothelial cells. B Expression knownmarker genes to define the
cell-type identity. C Spatial distance between the two EC subtypes and the podo-
cyte. n = 2812 podocytes. The line inside the box of the box plot represents the
median and the boxes indicate 25th/75th percentile. Solid lines represent the full
range of the distribution. Mann–Whitney U test was performed to determine the
significance of the difference. D Change of transcript and cell proportion from
cortex to papilla. **, P <0.001; n.s. not significant.
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dataset from the same kidney that was subjected to imaging-based SrT
by dRNA HybISS. With Visium, we were only able to classify 8 kidney
cell types based on the mixed gene expression from each spot
(Fig. 4A), far fewer than the 14 cell types identified in the corre-
sponding dRNA HybISS dataset (Fig. 3A). The expression of cell-type-

specific markers in each cell population identified by Visium was also
not as clean as those cell types identified by dRNA HybISS (Fig. 4B),
reflecting the higher accuracy of dRNA HybISS for cell-type classifica-
tion. We then selected and aligned the kidney regions that shared
common kidney structures between Visium and dRNA HybISS. After

Fig. 3 | Spatial conserved and divergent gene expression in female and male
kidneys.A Same cell types were identified from female andmale kidneys.B Female
and male kidney cell types express conserved markers. C Spatial expression of cell
markers were validated by dRNA HybISS.D Expression of the sex dimorphic genes

in proximal tubule. E Spatial distribution of the sex dimorphic genes in the kidney.
PTS1 proximal tubule S1 segment, PTS2 proximal tubule S2 segment, PTS3proximal
tubule S3 segment.
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Fig. 4 | Visium and dRNA HybISS integration to measure the cell-type compo-
sition. A Cell-type classification by Visium on the kidney section adjacent to the
section that has been profiledwith dRNAHybISS.BDotplot to show the expression
of cell-type-specificmarkers in the cell types identifiedbyVisiumanddRNAHybISS.

C Overlay of the Visium and dRNA HybISS images to inspect the cell-type-specific
markers expression on each modality. D Visualization of the cell types in dRNA
HybISS. E Using the cell-type information from dRNA HybISS to measure the cell-
type composition for each Visium spot.
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graph alignment, the spatial expression cellmarkers for PT (Inmt), TAL
(Umod), CD-PC (Aqp2) and Urothelium (Krt19) matched between Vis-
iumanddRNAHybISS (Fig. 4C). This accurate graph alignment allowed
us to use the cell-type information from dRNA HybISS (Fig. 4D) to
directlymeasure the cell-type composition in the Visium spot (Fig. 4E).
Since this cell-type enumeration approach is from direct measure-
ment, it can serve as ground truth to test the robustness of the cell-
type deconvolution tools that are based on computational prediction.
We therefore performed cell-type deconvoluton on the each Visium
spot from the same region using four different tools including
Spotlight38, RCTD39, TACCO40 and STdeconvolve41. To benchmark the
results from different tools, we focused on the papilla region since the
cell types in papilla were known to be relatively pure (only PC). In this
analysis, TACCO and STdeconvolve demonstrated superior perfor-
mance in our kidney Visium data because the cell-type proportions
that were deconvolved by TACCO and STdeconvolve exhibited higher
correlation with those obtained through direct measurement (Sup-
plementary Fig. 14).

dRNA HybISS detects spatial dynamics of cell-type distribution
and gene expression in AKI
Our previous study from scRNA-seq revealed important cell states and
cell-type-specific gene expression change during the timecourse of
AKI17. A central question is how these cell states and disease genes are
distributed in the kidney. To answer this question, we performed ISS-
based SrT with dRNA HybISS on the full IRI timecourse. We annotated
cell types from a combined dataset of all samples after correcting for
batch effects using the Seurat integration algorithm. This leads to
slight differences in the cell-type labels. It is noteworthy that distinc-
tions arise primarily in the PT: while single-sample clustering can dis-
cern different PT subtypes such as PTS1, PTS2 and PTS3 (Fig. 4B), this
difference was not captured when clustering the combined dataset
because injury causes downregulation of PT segment-definingmarkers
(Fig. 5A and Supplementary Fig. 15). Consistent with our earlier find-
ings from snRNA-seq and lineage tracing studies42, the number injured
PTs increases in the acute phase of IRI and returns to normal after
repair (week 6) (Fig. 5A). As expected, the spatial distribution of the
injPT cell state and the injury marker Havcr1 expression extends
throughout the cortex at early timepoints (Fig. 5 and Supplementary
Fig. 16). Based on bulk profiling data, it has been hypothesized that
persistent renal parenchymal injury in AKI models drives chronic
inflammatory responses and leading to the AKI to CKD transition43. We
could utilize our high-resolution SrT dataset to visualize increased
immune cell infiltration at week 6, despite apparent successful epi-
thelial repair, supporting this hypothesis (Fig. 5A, B, and Supplemen-
tary Fig. 16A). Intriguingly, the fibroblast population proliferates in the
early phase of AKI (peaking at day 2) (Fig. 5A, B, and Supplementary
Fig. 16A), suggesting an early activation of this cell type. This is con-
sistent with the data from another study on the same animal model44.
Fromour snRNA-seqdata, we identified anumber of diseasegenes that
were expressed in timepoint-specific and cell-type-specific expression
patterns as Cxcl1, Plin2, and Gsta1 (Supplementary Fig. 16B). dRNA
HybISS was able to validate the temporal expression pattern of these
genes and also provided the additional information about the spatial
distribution of each gene from the cortex to the papilla (Fig. 5C). For
example, Glutathione S-TransferaseAlpha 1 (Gsta1) is a newly identified
disease gene whose expression was activated in PT during the injury
phase of AKI. We validated the spatial expression pattern for these
genes that were activated at 12 h and 2d of IRI and restricted to cor-
tex (Fig. 5C).

Gene imputation expands dRNA HybISS measurements of dis-
ease genes to genome scale
Given the high accuracy of SpaGE28 gene imputation in the healthy
kidney (Supplementary Fig. 13), we next asked whether gene

imputation could allow us to predict the spatial expression for genes
whose expression is temporally modulated by injury. We selected the
cell-type-specific diseasegenes using our previous snRNA-seq dataset17

on the same IRI model (Fig. 6A and Supplementary Fig. 17A). SpaGE
accurately predicted the spatial distribution of the disease genes
including Nox4 for PT, Tarm1 for TAL, Klhl3 for DCT-CNT, Frmpd4 for
CD-PC (Fig. 6B) along with four disease genes for PTS3 including the
known disease markers such as Krt20 (Supplementary Fig. 17B). In
addition, the expression changes of these genes in injury phase were
also accurately predicted by the gene imputation algorithm (Fig. 6B
and Supplementary Fig. 17B). Nox4 (NADPH oxidase 4) in relation to
acute kidney injury (AKI) appears to have a complex and controversial
role. Prior study showed that expression of Nox4 is upregulated in day
1 of IRI but the genetic ablation of this gene exacerbated the acute
kidney injury45. our snRNA-seq gene measurement and spatial gene
imputation both showed a downregulation of Nox4 in the injury phase
of IRI (Fig. 6A, B). This finding aligns with published bulk RNA-seq
datasets from the same IRI model (Supplementary Fig. 17C, D). By
immunofluorescent staining, we validated that Nox4 expression is
downregulated at Day 2 of IRI and the downregulation of Nox4 was
colocalized to the upregulation of Havcr1 (Fig. 6C).

Immune cell heterogeneity and cell–cell communications
We have previously documented the existence of a pro-inflammatory
and pro-fibrotic cell state that we have termed “failed-repair proximal
tubule” and other have called “maladaptive repair6,17,46.” Since we
could observe substantial immune cell infiltration at week 6, and this
failed-repair cell state also exists at week 6 (Supplementary Fig. 18A,
B), we next asked whether immune cells were enriched near failed-
repair proximal tubule. We subclustered immune cells at week 6
using Seurat and annotated cell types based on the unique gene
expression in each cluster (Fig. 7A). This analysis identified six dis-
tinct immune subtypes, including macrophages, Ly6e+ lymphocytes,
T cells, Cxcl10+ macrophages, C3+ monocytes and plasma cells
(Fig. 7A, B). It is important to note that our gene panel also included
marker genes for neutrophil and other lymphocyte subtypes such as
B cells. However, these genes were largely undetected (Supplemen-
tary Fig. 18C). Therefore, these immune cell types were not identified
in our dataset. We next mapped these immune subtypes to the
immune cell types identified from a previous scRNA-seq study47

(Fig. 7C). This comparative analysis allowed us to refine the annota-
tion of each immune subtype. The spatial distribution patterns for
the immune subtypes were distinct from each other (Fig. 7D). For
example, macrophages and lymphocytes are distributed throughout
the whole kidney, whereas Lys6c2+ monocytes were confined in the
cortex (Fig. 7D). Using Visium, we have previously detected changes
in leukocyte–epithelial cell interactions during kidney repair at week
68. Due to the low resolution of the Visium data, it remains unknown
what immune subtypes directly interact with tubular cells. To reveal
the spatial interaction between the immune subtypes and the injured
PT, we used a cell-enrichment approach reported by Lu et al.48 to
compute the proximity between each immune subtype and the
failed-repair PT. We calculated the probability of cell-type pairs in a
neighborhood within a given searching area (radius = 50μm). We
then computed the enrichment of cell-type pairs in spatial proximity
after normalized to the control probability based on random pairing.
This analysis revealed a close proximity between C3+ monocytes and
the FR-PT (Fig. 7E), suggesting that the FR-PTs are recruiting C3+
monocytes in situ. Indeed, when we projected the cells back to the
kidney, we observed a close distance in space between these two cell
types (Fig. 7F, G).

Discussion
In this study, we successfully applied dRNA HybISS (Cartana, part of
10X Genomics), to spatially resolve gene expression patterns in
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murine kidney at cellular resolution. We generated a large dataset of
transcriptional changes in cell-type-specific genes between sexes
and during kidney injury and repair. We also developed a new tool,
CellScopes.jl, to aid in data processing, integration, analysis,

visualization, and interpretation. With this tool, we computationally
reconstructed the kidney structure cell-by-cell and delineated the
cell-type compositional changes along the kidney axis from the
outer cortex to the papilla. We validated the sex dimorphic genes

Fig. 5 | Spatial dynamics of cell type and gene expression changes in acute
kidney injury. A Cell-type composition in IRI timecourse. B Spatial expression
patterns of the known disease genes that marks injured PT, immune cells and

fibroblasts in IRI timecourse.CSpatial-temporal expressionof diseasegenes ineach
phase of AKI. C cortex, P papilla.
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identified in the proximal tubule and accurately mapped these genes
back to their original kidney compartments. Additionally, we pro-
vided a robust approach to integrate Visium and dRNA HybISS data,
leading to accurate cell-type deconvolution of Visium spots. We
revealed the dynamic changes of cell types and disease genes in 2D
space and validated the spatiotemporal expression of disease tar-
gets. We used the gene imputation tools to investigate the spatial
distribution and gene expression changes of the disease genes
during kidney injury and repair. Finally, we report a spatial rela-
tionship between a C3+ monocyte subset and failed-repair proximal
tubules. All of our raw and processed data, analysis pipeline, and
computational tutorial are provided in publicly available data and
code sharing repositories.

Kidney dissociation or nuclear isolation followed by scRNA-seq
has become a standard approach for studying kidney cell-type
diversity1,32,49, cell state heterogeneity2,17,50,51 the distinct responses of
cells to disease and drug treatments31,52. However, this approach is
limitated by the loss of spatial information, complicating inference of
cell–cell communication within the disease niche. Cell dissociation
itself also introduces stress-response gene expression artifacts that
complicate downstream data interpretation53. Furthermore, both
single cell and single nucleus dissociation introduces bias in cell
representation54. dRNA HybISS overcomes these limitations and
detects transcripts in situ without requiring tissue dissociation or
nuclear isolation. This direct characterization of gene expression on a
kidney section allows for a less biased analysis of cell distribution and
gene expression. Furthermore, it enables the validation of important
disease signatures and the study of physical cell–cell interactions
without relying on computational predictions. Our study provides a
proof of principle for investigating cell diversity in both healthy and
diseased kidneys, complementing other widely used single-cell
technologies.

Sex dimorphism in acute kidney injury (AKI) has been observed
in both animal models and clinical settings55. In mouse models of
renal ischemia-reperfusion (IR) injury, females have been observed to
be more resistant to kidney injury compared to males56. A study
conducted on C57BL/6 mice revealed that male mice showed higher
levels of IR-induced tubular injury andmacrophage infiltration, which
was associated with increased expression of inflammatory cytokines
such as tumor necrosis factor-α, monocyte chemotactic protein-1,
interferon-γ, and chemokine (C-C motif) ligand 1757. Another study
identified that Sirt3 might mediate sexual dimorphism in AKI58. The
discovery of sex-biased gene expression in each kidney cell type can
be crucial for understanding the sex dimorphism observed in acute
kidney injury (AKI) and other kidney diseases. A prior snRNA-seq
study aimed at comparing gene expression differences between
sexes revealed numerous genes that vary between male and female
kidneys, particularly within the PTS3 segment35. In this spatial tran-
scriptomics study, we corroborated the spatial distribution of genes
exhibiting sex differences. Using gene imputation, we verified addi-
tional genes associated with sex differentiation, underscoring the
significance of understanding the spatial and molecular dimensions
of sex-specific gene expression. This is pivotal for advancing our
comprehension of sex dimorphism in renal physiology and diseases,
potentially guiding the development of sex-specific therapeutic
strategies.

Our previous study used Visium to characterize IRI yielded some
important findings, including the identification of an enhanced
immune–epithelial interaction during the repair phase of AKI8.
However, this dataset was limited by low resolution which hindered
our ability to further elucidate the detailed intercellular commu-
nication maps. In addition to Visium, a higher-resolution technique
called slide-seq has also been used to reveal immune–tubule
interactions10. However, this technique has limited power for

Fig. 6 | Gene imputation for IRI timecourse and independent validation of
imputation. A Cell-type-specific expression of the disease genes Nox4, Tarm1,
Klhl3, and Frmpd4 across IRI timecourse as revealed by snRNA-seq. B Visualization
of imputed gene expression and spatial distribution for Nox4, Tarm1, Klhl3, and

Frmpd4.CValidation ofNox4expression in kidney tissue across the IRI timecourse.
Kidney section was costained with Nox4 (green), Havcr1 (red) and; Lotus Tetra-
gonolobus Lectin (LTL, white).
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detecting genes with low expression and rare cell types10. The high-
resolution dRNA HybISS measurements of gene expression in single
cells not only allowed us to detect low-expression genes like the
podocyte markers and rare cell types like JGA cells, but also enabled
us to chart the detailed spatial relationships between these rare cell
types. For example, we identified that, of all the immune subtypes in

week 6 of IRI, only the C3+ monocytes (a rare cell type) are in close
proximity to the FR-PT cells (another rare cell type), suggesting active
interaction between the two. This data precisely pinpoints the
immune subtype that contributes to myeloid cell-mediated inflam-
mation during initial kidney injury, a widely reported pathological
event in the literature59,60.

Fig. 7 | Heterogeneity of immune cells in the recovery phase of AKI.
AClassification of immune subsets atweek 6.BMarker genes to define the immune
cell identities.C Immune subtypes atweek 6 of IRIweremapped to the immune cell
types identified from the UUO kidney using Pearson correlation analysis. Mono

monocytes, Mac macrophages, DC dendritic cells. D Spatial distribution of each
immune cell type in the kidney.E Spatial proximity of failed-repair proximal tubular
cells (FR-PT) and each immune subtype through cell-enrichment analysis.
F, G Visualization of the C3+ immune cells and FR-PT in a selected kidney region.
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A limitation inherent in the dRNA HybISS technology applied in
this study is its restriction to a panel comprising 200 genes, which
allowed for the inclusion of 50 custom kidney genes in our probe
design. Although this 200 gene panel incorporated 11 genes specific
to lymphocytes, most of these were undetected in our analysis. As a
result, we were unable to identify lymphocyte subpopulations. Simi-
larly, neutrophils were also not identified in our dataset, likely due to
an insufficient number of neutrophil-specific markers in our gene
panel design. We would have needed a larger panel of immune
subtype-specific genes to detect them. This limitation has now been
addressed in more recent commercial versions of this technology,
Xenium, which now allows for 480 custom gene probes. In addition,
several tools from the computational side have also been developed
to specifically address this issue28–30,61. A common practice of those
tools is that they integrate the scRNA-seq data frommatched samples
and use the gene expression data from scRNA-seq to impute the
missing genes in the ISS-based data. This can leverage ISS datasets to
encompass the entire genome. We validated this approach to infer
sexually dimorphic gene expression patterns and intercellular com-
munication networks. The accuracy of those tools, however, still
relies on the specificity of the genes being measured in the ground
truth spatial dataset. As ISS technologies mature14, this situation is
expected to be alleviated.

In conclusion, we expanded the resolution of spatial tran-
scriptomics in kidney research to a cellular level. The high-quality data
generated by dRNAHybISS revealed fine kidney structures, cellmarker
expression patterns, and how the spatial expression patterns of the
disease signature change during acute kidney injury. Our spatial tools
and analytic approaches should be useful for future cell-resolution
spatial transcriptomic analyses across tissues.

Methods
Animals
All in vivo experiments were performed on 8- to 10-week-old C57BL6/J
male mice from The Jackson Laboratory. Experiments and housing
guidelines were executed in accordance with the Animal Care and Use
Committee at Washington University in St. Louis. Mice were main-
tained on ad libitum food and water in a 12-h light:dark cycle. The
mouse housing room was maintained at humidity 30%–70% and tem-
perature 20–26 °C (68–79 °F).

Bilateral IRI surgery
Bilateral IRI (Bi-IRI) surgeries were performed as previously
described8,17,42. Briefly, mice at 8–10 weeks old were anesthetized on
isoflurane (1.8%–2%) with administration of buprenorphine for
analgesia. Body temperature was kept between 36.5–37.5 °C on a
heatedpadandmonitoredby a rectal thermometer. Both kidneyswere
exposed by bilateral flank incisions made through the skin and the
fascia. Both right and left kidneys were clamped with nontraumatic
microaneurysm clamps (RS-5420, Roboz) for 23min. The clamps were
removed at time completion and kidneys were able to reperfuse at
37 °C (kidney color turned from dark red to pink). Kidneys were
returned to the peritoneal cavity. The peritoneal layer of the skin was
closed with absorbable suture and the flank incisions closed with
wound clips. Mice were rehydrated by subcutaneous injections of
warmed, sterile saline and recover in a 50 °C chamber before being
reintroduced to animal facility. For tissue collection, mice were
euthanized after Bi-IRI for shamcontrol or 4 h, 12 h, 2days, and6weeks
post-surgery. Blood for end point kidney function analysis was taken
from the inferior vena cava. BUNmeasurement at 24 h was done using
the QuantiChrom Urea Assay kit for surgery quality control.

Cartana library preparation and in situ sequencing
Fresh kidneys were incubated in 2-methylbutane (Millipore, Sigma)
equilibrated in liquid nitrogen to maintain RNA integrity. Tissues

were then stored at −80 °C and embedded in cryomolds using OCT
(Tissue-Tek 4583) on dry ice. For frozen sectioning, OCT blocks were
equilibrated to −18 °C, and 10 μm-thick sections were mounted onto
the glass slides (1358W; Globe Scientific). Libraries were prepared
using the high sensitivity (HS) library preparation kit provided by
Cartana (part of 10X Genomics) per manufacturer’s instruction. In
brief, slides were fixed in freshly prepared formaldehyde diluted in
0.01% DEPC treated PBS, followed by permeabilization in 0.1M HCl
(DEPC treated). After dehydration and rehydration in series of alcohol
gradients, slides were incubated in RM1-mix (provided by the library
kit) overnight at 37 °C. Kidney sections were incubated in WB4
(library kit) at 37 °C for 30min. Gene probes were ligated in ligases
dissolved in RM2 (library kit) at 37 °C for 2 h. Transcripts were
amplified in RM3-mix (library kit) at 30 °C overnight. Slides were
stained with DAPI for quality control imaging and shipped to 10X
Genomics for in situ sequencing.

Visium library preparation and sequencing
After removing the renal capsule, the kidneys were bisected in a
coronal manner to prepare for 10X Genomics Visium sample pre-
paration. To preserve the high quality of RNA for processing, the
fresh tissue was immersed in a bath of 2-methylbutane equilibrated
with liquid nitrogen. The tissue samples were then stored at −80 °C
prior to embedding them in optimal cutting temperature compound
(OCT). The remaining kidney tissue was fixed overnight in 10% for-
malin at room temperature, before being transferred to 70% ethanol
for storage at 4 °C. The tissue was subsequently embedded in paraffin
by the Washington University Musculoskeletal Research Center Core.
Frozen kidney samples were embedded in cryomolds using OCT on
dry ice. The blocks were then stored at −80 °C. For preparation of
Visium, the blocks were equilibrated to −18 °C, and 10 μm sections
weremounted onto the active sequencing areas of the 10X Genomics
Visium slides. The slides were stored in airtight containers at −80 °C
until used for spatial library generation. Hemotoxylin and eosin
staining were performed according to the 10X Genomics Visium
protocol. Visium libraries were prepared according to 10X Genomics
Visium manufacturer’s instructions (PN-1000185, Lot No. 155614, Rev
D). Sequencing was performed on a NovaSeq S4, targeting 125 million
reads using dual indexing. Resulting FASTQ files were aligned to
mm10 reference, manually aligned to respective hematoxylin and
eosin stained images. The counts were normalized using 10X Geno-
mics Space Ranger (spatial 3′ v1; spaceranger-1.2.1). The gene-by-
count matrix was input to CellScopes.jl for downstream analysis.

Cell segmentation for dRNA HybISS
We used Baysor22 to assign the transcript imaging spots captured by
dRNA HybISS into cells. We employed Baysor in prior mode, which
requires nuclei segmentation as an initial input. We evaluated the
performance of Watershed and Cellpose21 for nuclei segmentation
(based on DAPI staining). The Watershed algorithm was executed on
the ImageJ platform (Fiji). The images were initially converted to 8-bit
and processed with a Gaussian Blur filter. The threshold was adjusted
using the default method, and then the images were further pro-
cessed by the Watershed algorithm in the binary category. Cellpose
was run on our Nvidia GPU server using default settings and a pre-
trained nuclei model. The images after Cellpose segmentation were
input into Baysor. Low-quality cells were filtered out using Baysor’s
cell segmentation statistics, such as number of transcripts per cell,
elongation characteristics, cell area values, and average confidence
scores of segmentation. Cells that did not meet the quality standards
or were not located in the kidney were excluded from further ana-
lysis. We further filtered out the cells with less than five transcripts
detected. The remaining segmented and filtered cells were used as
input for downstream cell-type assignment analysis. To annotate the
cells, we used the cluster labels from Baysor and defined the cluster
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identity by inspecting the marker gene expression in each cluster. To
validate the accuracy of our cell-type annotations, we employed two
different methods. First, we compared our cell-type annotations to
the cell types identified from Seurat clustering. We then calculated
the Pearson’s correlation and analyzed the proportion of cells over-
lapping within same cell types to evaluate the concordance between
the cell types identified from Baysor and Seurat clustering. Second,
we used the label transfer algorithm in Seurat V4 (https://satijalab.
org/seurat/articles/integration_mapping.html) to map the cell types
from snRNA-seq onto our dRNA HybISS dataset.

CellScopes.jl for spatial data analysis
Wecreated a Juliapackage, CellScopes.jl, to aid indownstreamanalysis
after cell segmentation. Installation can be done via the Julia package
manager. CellScopes offers simple usage, allowing users todirectly call
functions for data processing, normalization, and visualization. The
current version supports data types from single-cell profiling techni-
ques such as scRNA-seq and scATAC-seq, and spatial profiling techni-
ques such as Visium, Slide-Seq V2, dRNA HybISS, Xenium, MERFISH
and STARmap. We also customized CellScopes.jl for kidney spatial
analysis, including a cell-centric approach to calculate cell–cell dis-
tance and a kidney coordinate system to depict cell location and gene
expression changes along the kidney axis (See detailsmethods below).
To facilitate the transition from other languages to Julia, we have
enhanced CellScopes’s accessibility by providing functions that can
directly read ScanpyAnnData and SeuratRobjects, converting them to
corresponding objects within CellScopes.jl (https://github.com/
TheHumphreysLab/CellScopes.jl).

Spatial proximity analysis
To reveal the physical cell–cell contact, we provided two approaches
to calculate the distance of any given cell populations depending on
their cell distribution patterns. (1) When the cells are confined to
some specific regions (such as the glomerular cell types), we take a
cell-centric approach to calculate the cell–cell distance. We take each
cell from the cell population of interest, and compute the distance
between this cell and the cells from other cell types. This process will
be iteratively repeated until all cells from the cell type of interest are
done. For example, this can be applied to measure which EC subtype
is close to the podocyte within a given search area (radius). (2) When
the cell distribution is very diffusive (such as the immune cells or
fibroblasts), we use a cell-enrichment approach to compute the
spatial proximity of pairs of cell types as reported by Lu et al.48. We
calculate the probability of cell-type pairs in a neighborhood within a
given searching area. We then compute the enrichment of cell-type
pairs in spatial proximity after normalized to the control probability
based on random pairing. These approaches were incorporated in
CellScopes.jl.

Kidney coordinates to study the gene and cell distribution along
the kidney axis
In CellScopes.jl, we created a new coordinate system, namely
kidney coordinate system, to precisely depict the position of
every single cell in the kidney. In this system, the position of a cell
was defined by the kidney depth, and the kidney angle. To
transform the xy coordinate system to kidney coordinate system,
we first defined the origin of the coordinate by finding the center
point in the papilla. For each cell, we computed the kidney depth
by calculating the distance of the cell to the kidney boundary, and
divided by the distance of the kidney boundary to the origin of
the coordinate. We can define the kidney angle of the cells by
measuring the angle of the slope and the new x coordinate (in
tangent value) (Supplementary Fig. 11B). This kidney coordinate
system can help define the kidney compartment where the cell
resides, how the cell-type and transcript distribution changes

from outer cortex to papilla, and how the gene expression
changes in different conditions.

Benchmark the analyses from CellScopes, Seurat V5, Giotto and
Squidpy
In order to compare the output from CellScopes, Seurat, Giotto, and
Squidpy, we downloaded two publicly available healthy human kidney
datasets from the 10X website – one from Xenium (https://www.
10xgenomics.com/resources/datasets/human-kidney-preview-data-
xenium-human-multi-tissue-and-cancer-panel-1-standard) and the
other from Visium (https://www.10xgenomics.com/resources/
datasets/human-kidney-11-mm-capture-area-ffpe-2-standard). We first
used CellScopes to process the data for cell clustering and annotation,
then applied the same cell labels to the clustering outcomes from
Seurat, Giotto, and Squidpy. Since CellScopes is the only tool that can
select the Field of View (FOV) based on its grid system, we chose the
FOV to visualize the kidney structure from the region of interest, and
applied the same FOV (determined by the xy coordinates) to the other
tools. For a more direct comparison, wemaintained a consistent color
coding for cell annotation, and visualized same genes on the same
kidney region across all tools. In cases where a tool lacked certain
visualization functions, those particular plots were not shown in
the figure.

Integration of dRNA HybISS and Visium
For registration of Visium to dRNA HybISS data, we aligned matched
kidney sections vertically and rotated them to overlap the two graphs
with similar kidney structure. CellScopes was used to perform this
alignment and coordinate transformation, using some important
functions such as rotate_axis, align_coordinates, and split_field. We
then cropped the area that achieved the best alignment outcome
based on the kidney structure and the spatial expression pattern of
selected cell-type markers. Using the aligned graph, we binned cells
and transcripts from ISS by dRNA HybISS into the Visium spots based
on proximity. For instance, we identified the closest spot to a cell or
transcript as the Visium spot where it lies within. As a result, the cell-
type composition of each Visium spot can be directly measured by
the cell-type information obtained from the overlaid ISS data in the
same area.

Immunofluorescence staining
6μm cryosections from frozen OCT blocks were cut and mounted
onto slides. Kidney sectionswasfixedusing4%paraformaldehyde in 1×
PBS for 10min, washed with 1× PBS (3 times, 5min each), and then
blocked with blocking buffer (1% BSA, 0.1% Triton X-100 in 1× PBS) for
one hour. Primary antibodies Nox4 (PA5-95083, ThermoFisher; 1:100),
Havcr1 (AF1817, R&D Systems; 1:100), and lotus tetragonolobus lectin
(B-1325-2, Vector Labs; 1:500) were incubated overnight at cold room
(4 °C). Samples were washed in 1× PBS (3 times, each) and incubated
with secondary antibodies Alexa Fluor® 488 anti-rabbit (711-545-152;
Jackson ImmunoResearch; 1:200), Alexa Fluor® 568 anti-goat (A11057,
Fisher Scientific, 1:200), and Alexa Fluor® 647 anti-streptavidin (016-
600-084, Jackson ImmunoResearch, 1:1000) for one hour at room
temperature in the dark. Sections were stained with 4′,6-diamidino-2-
phenylindole (DAPI) and mounted with Prolong Gold (Life Technolo-
gies). Images were obtained by confocal microscopy (Nikon C2+
Eclipse; Nikon, Melville, NY).

Visium cell-type deconvolution
We utilized our prior healthy kidney snRNA-seq dataset as a reference
to determine the cell-type composition of each Visium spot using
various publicly available tools, including Spotlight38, RCTD39,
TACCO40, and STdeconvolve41. We compared the results obtained
from the deconvolution tools to the cell-type proportions directly
measured by dRNA HybISS. We calculated Pearson correlation
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coefficients to assess the accuracy of each tool in estimating the cell-
type proportions.

Genome-wide imputation of expression in dRNA HybISS
To assess the robustness of the spatial gene imputation tools in our ISS
data, we benchmarked the performance of Tangram, SpaGE and gimVI
using our matched timepoint snRNA-seq dataset17. We then used two
approaches to estimate the accuracy of the imputation result. First, we
selected a gene with a known expression pattern (such as the principal
cell marker Aqp4), which was included in the probe design, and per-
formed a leave-one-out analysis. In brief, wewithheld expression value
of Aqp4 from the dataset and used the imputation tools to predict the
expression of Aqp4. We then inspected the spatial expression of Aqp4
by comparing the measured value and imputed value. Second, we
chose a gene that has cell-type-specific expression pattern based on
the snRNA-seq data and has not been included in our probe design. In
this case, we used a new PTS3 marker Wdr4. Then we used the impu-
tation tools to infer the expression of the Wdr4 and inspect its spatial
expression in the tissue.

Re-analysis of the public scRNA-seq datasets
We used Seurat to reanalyze publicly available scRNA-seq data from
initial data processing to final cell clustering. Tomitigate batch effects
for datasets with multiple samples, such as those from Ransick et al.35

and Conway et al.47, we employed a data integration workflow as
described in the Seurat tutorials (https://satijalab.org/seurat/articles/
integration_introduction.html). Cell clusters were annotated based on
known cell-type markers and correlation with our previous snRNA-seq
dataset17, and a scRNA-seq dataset published by other laboratory33.
Cell-type mapping and annotation were performed using the Seurat
label transfer tutorial provided by Satija Lab (https://satijalab.org/
seurat/articles/integration_mapping).

Subclustering analysis of the immune cell population at week
6 of IRI
Weextracted the gene expressiondata for the immune cells fromweek
6 and re-clustered them using Seurat. We annotated the immune
subtypes by mapping the clusters in our spatial data to the public
kidney immune cell types idnetified from a scRNA-seq dataset47.

Statistics and reproducibility
Statistical analysis was conducted on all collected samples and data.
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. Investigators were not blinded to allocation during experi-
ments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All spatial transcriptomics data generated in this study have been
deposited in the Gene Expression Omnibus (GEO) under accession
number GSE227046. The dRNA HybISS (Cartana) data are available
under accession number GSE227044. The Visium raw data can be
accessed under accession number GSE227045. Source data are
provided with this paper. Public single-cell RNA-seq data were col-
lected from GEO with accession numbers: GSE180420, GSE139107,
and GSE182256. The Xenium and Visium datasets for human kidney
were downloaded from the 10X Genomics website (https://www.
10xgenomics.com/resources/datasets?query=&page=1&configure%
5BhitsPerPage%5D=50&configure%5BmaxValuesPerFacet%5D=
1000). Source data are provided with this paper.

Code availability
Original codes to reproduce the figures were deposited on GitHub at
https://github.com/TheHumphreysLab/Spatial_analysis. A Julia pack-
age, CellScopes.jl, for analyzing various spatial transcriptomics data
were available at https://github.com/TheHumphreysLab/CellScopes.jl.
The codes are also available at zenodo (https://doi.org/10.5281/
zenodo.10499323).
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