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ABSTRACT: Lithium ortho-thiophosphate (Li3PS4) has emerged as a
promising candidate for solid-state electrolyte batteries, thanks to its
highly conductive phases, cheap components, and large electrochemical
stability range. Nonetheless, the microscopic mechanisms of Li-ion
transport in Li3PS4 are far from being fully understood, the role of PS4
dynamics in charge transport still being controversial. In this work, we
build machine learning potentials targeting state-of-the-art DFT
references (PBEsol, r2SCAN, and PBE0) to tackle this problem in all
known phases of Li3PS4 (α, β, and γ), for large system sizes and time
scales. We discuss the physical origin of the observed superionic behavior
of Li3PS4: the activation of PS4 flipping drives a structural transition to a
highly conductive phase, characterized by an increase in Li-site availability
and by a drastic reduction in the activation energy of Li-ion diffusion. We
also rule out any paddle-wheel effects of PS4 tetrahedra in the superionic
phases�previously claimed to enhance Li-ion diffusion�due to the orders-of-magnitude difference between the rate of PS4 flips and
Li-ion hops at all temperatures below melting. We finally elucidate the role of interionic dynamical correlations in charge transport,
by highlighting the failure of the Nernst−Einstein approximation to estimate the electrical conductivity. Our results show a strong
dependence on the target DFT reference, with PBE0 yielding the best quantitative agreement with experimental measurements not
only for the electronic band gap but also for the electrical conductivity of β- and α-Li3PS4.

I. INTRODUCTION
The growing demand for portable electronic products and
electric vehicles has stimulated the creation of energy storage
systems that offers better safety and higher energy density than
current Li-ion battery systems.1 While commercial Li-ion
batteries use organic liquid electrolytes and additives to achieve
a high working voltage,2,3 these materials pose safety concerns
due to their flammability and susceptibility to thermal
runaway.4,5 To address these issues, researchers are developing
all-solid-state batteries (ASSBs) with inorganic solid electro-
lytes (SEs) to provide a sustainable solution for energy storage,
exploiting their expected longer lifespan and improved energy
efficiency.6,7 Many families of SEs have been considered and
studied during these years.8−10 Sulfides are recognized as
uniquely promising materials due to their remarkable
mechanical stability and room-temperature ionic conductiv-
ity.11−16 In particular, the family of lithium thiophosphates
(LPS), with its archetypal Li3PS4 compound, is widely
recognized as one of the most promising families of sulfide
electrolytes, and it has been the subject of many experimental
and computational studies.1,17−27

Li3PS4 has three main polymorphs: α-Li3PS4 (with space
group Cmcm28), β-Li3PS4 (Pnma), and γ-Li3PS4 (Pmn21,
Figure 1). Whereas the γ polymorph is the most stable at
room temperature, it also exhibits low room-temperature ionic
conductivity (≈ 3 × 10−7 S cm−1, see ref 20). The system

transforms into the metastable β-polymorph at 573 K and then
into the α-polymorph at 746 K.20 Despite their great relevance,
in the past years computational studies have been limited by
the use of empirical potentials23 ,24 and ab initio molecular
dynamics (AIMD),22 based on density functional theory
(DFT) with generalized gradient approximation (GGA).29,30

The former can provide useful mechanistic insights but fail to
correctly predict the activation energies of the conductive
phases23 and are inherently limited in their accuracy and
transferability. Quantum mechanical approaches, on the other
hand, are more accurate, but they are burdened by a higher
computational cost, which hinders their applicability to realistic
systems. For example, recent studies based on AIMD-PBE
simulations attributed the superionic conductivity of glassy
75Li2S−25P2S5 and that of bulk β-Li3PS4 to the presence of
fast cation−polyanion correlations�the so-called paddlewheel
effect.31,32 While providing evidence of this effect, the
simulations carried out in these works are clearly limited in
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the simulation times and system sizes that they can achieve,
potentially leading to unphysical outcomes.
In the past decade, the advent of machine learning has

allowed the construction of interatomic potentials possessing
quantum mechanical accuracy at a cost that is only marginally
higher than that of classical force fields.33−45 Machine learning
potentials (MLP) rely on the construction of physically
motivated representations to predict a given target property.
In particular, representations of atomic configurations should
preserve key physical symmetries: global translational and
rotational invariance, as well as invariance with respect to the
permutation of atoms of the same chemical species.46 Among
the numerous potential representations, the Smooth Overlap
of Atomic Positions (SOAP)47 used in combination with
appropriate regression schemes has facilitated the development
of ML potentials for simulating a variety of materials properties
via extensive finite-temperature thermodynamic sam-
pling.25,26,48−58 Notable examples of the use of MLPs to
study the ionic conductivity in solid-state electrolytes are the
Gaussian Approximation Potential (GAP) for lithium thio-
phosphate developed by Staacke et al.26 and the Deep Neural
Network (DNN) for Li10GeP2S12-type compounds developed
by Huang and co-workers.59 Both of these studies were able to
characterize the diffusion properties of their respective target
compounds and overcome some known limitations of AIMD,
namely, the small size and the short simulation times that are
accessible by this type of modeling. Despite these important
breakthroughs, two main aspects are still missing to provide a
comprehensive study of transport properties in this class of
materials. First, the accuracy of the aforementioned potentials
is limited to the GGA level of theory due to the choice of the
reference DFT functional (PBE and PBEsol) for the
calculation of the training set structures. While this is a
standard choice for performing first-principles calculations in
solids, the relatively small number of reference single-point
calculations (usually a few thousands) that are needed to reach
the desired target ML accuracy enables the use of more
accurate references, like meta-GGA and hybrid functionals.60,61

To our knowledge, no systematic study comparing different
DFT references exists to date for this class of materials.
Second, these studies neglect the contribution of interionic

correlations to the electrical conductivity and its relation with
polyanion rotations.
In this work, we train three MLPs to investigate the physical

mechanisms of charge transport in Li3PS4 and their effect on
the electrical conductivity of its stable polymorphs. Each
potential is trained over data sets computed at a different level
of theory: GGA, metaGGA, and hybrid functionals. In
particular, we use the Perdew−Burke−Ernzerhof functional
revisited for solids (PBEsol),29,62 the regularized version of the
strongly constrained and appropriately normed (r2SCAN)
functional,63 and the PBE0 functional.64 We explore the
temperature dependence of the ionic conductivity of Li3PS4
showing that different functionals predict different critical
temperatures for the onset of the conductive regime, which is
roughly associated with the onset of a structural phase
transition. We also elucidate the importance of including the
effects of the interionic correlation in the conductivity, by
computing it with the full Green−Kubo (GK) theory of linear
response,65,66 instead of the Nernst−Einstein approximation
commonly employed in the literature. Overall, we find that the
PBE0 functional gives the best quantitative agreement with
existing experimental measurements of the ionic conductivity
of β-Li3PS4. Furthermore, we relate the onset of the superionic
phase of the Li3PS4 compound with the PS4 flipping dynamics
and find that discrete P−S flips induce a structural phase
transition from the nonconductive γ to a mixture of the β and
α structures, that cannot be fully resolved at the size and time
scale of these simulations. This structural change determines a
drastic decrease of the slope of the Arrhenius curve and thus a
significant reduction of the activation energy of Li-ion diffusion
(by a factor of 6 compared to the γ phase). Finally, we detect a
second transition to a disordered phase with freely rotating
polyanions at even higher temperatures that we attribute to
melting of the PS43− sublattice. Both the transition to the
conductive phase and the Li3PS4 melting appear as peaks of the
heat capacity and are thus associated with separate first-order
phase transitions of this material.

II. METHODS
II.A. Training Set Construction and Validation of the ML

Models. We constructed the training set for the ML models in an

Figure 1. Sketch of the α, β, and γ phases of Li3PS4, showing the difference of the relative alignment of the PS4 tetrahedra along reference (010)
crystallographic planes (here numbered between 1 and 6 for clarity). The γ structure has all tetrahedra aligned along the [100] direction for all of
this set of planes, while the β structure has the tetrahedra aligned along both the [100] direction and the [1̅00] across each plane. Finally, the α
phase has a staggered ordering: the tetrahedra are aligned along [100]/[1̅00] for the planes that are numbered with even/odd numbers.
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iterative fashion. A starting data set of structures is generated by
running NVT Car−Parrinello Molecular Dynamics67 with the PBEsol
functional62 as provided by the QUANTUM ESPRESSO package,68−71

for a set of selected temperatures (250, 500, and 1000 K) and
volumes. This initial data set is then computed via more converged
single-point DFT calculations with the PBEsol functional. Further
details can be found in the Supporting Information.
As a next step, we fit a preliminary MLP on this data set and run

finite-temperature Molecular Dynamics (MD) with i-PI72 over the
entire temperature range of interest (between 200 and 1000 K).
Among the uncorrelated structures generated in the resulting
trajectories, only a subset consisting of the most diverse ones
according to the Farthest-Point Sampling (FPS) method73 is selected
and recomputed using DFT. This active-learning loop, consisting of
the regression of an MLP, MD simulations, and recalculation of a set
of structures by DFT, allows us to extend the data set until the model
is deemed sufficiently accurate and robust. In order to generate data
sets for the ML-SCAN and ML-PBE0 models, we select via FPS a
subset of snapshots out of the whole PBEsol data set and we use a
two-level machine learning (2LML) scheme74 to train accurate
potentials from a minimal number of expensive r2SCAN or PBE0
calculations. The 2LML is a specific case of the general multilevel
machine learning scheme and consists of training a ML model on the
large PBEsol data set, then computing energy and forces at the
r2SCAN (PBE0) level, and finally training a new ML potential on the
difference between the ML-PBEsol predicted energies and forces and
the true r2SCAN (PBE0) references.74,75 The final data sets consist of
2400 structures for the ML-PBEsol model, 740 structures for the ML-
r2SCAN model, and 790 structures for the ML-PBE0 model. Within
these data sets, a subset of 100 randomly selected structures is used as
a test set for the ML-PBEsol model, while a subset of 40 structures is
used for both the ML-r2SCAN and the ML-PBEsol model. PBEsol
calculations are performed with QUANTUM ESPRESSO, while r2SCAN
and PBE0 calculations are performed with VASP.76−78 The training of
all of the models is performed targeting the cohesive energies to avoid
offset issues induced by different pseudopotentials. Figure 2 shows the
parity plots for the forces of the three models over their respective test
sets. Table 1 contains the root-mean-square-errors (RMSEs) for all
models, showing that our model can achieve errors similar (or better)
than those obtained in other similar works.25,26,59 The learning curves
for each of these models are reported in the Supporting Information
(Section I). The Supporting Information also reports results from
kernel principal component analysis79 (Section II) and the newly
introduced local prediction rigidity80 (Section III) to check the
distribution of the environments in our data set and along the MD
trajectories, and to verify that our training set can reliably represent

the complex local environments that occur during PS4 flips.
Dynamical properties, like the mean square displacement and atomic
diffusivity of Li ions, also appear to be properly reproduced by our
ML potentials, as we have directly tested via MD simulations of the α
phase at high temperature, obtained with PBEsol ab initio potential
and with its corresponding ML model, as reported in Section IV of
the Supporting Information.
II.B. Collective Variables for Li3PS4. The three main

polymorphs of Li3PS4 are differentiated by the relative orientation
of PS4 tetrahedra. In order to distinguish them and identify phase
transitions in MD simulations, we construct two collective variables
(CVs), based on the alignment, along the [100] direction, of the
tetrahedra of the (010) planes (Figure 1). To this aim, we first
compute the polar angle θSP, spanned by the vector rSP ≡ rS − rP that
connects, for any PS4 group, a given S atom with the central P atom,
with respect to the x-axis shown in Figure 1:
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One can then define an order parameter that measures the average
alignment of PS4 tetrahedra within each (010) plane, as follows:
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where C = 1, ..., 6 labels the (010) planes as shown in Figure 1, NPC =
16 is the number of P atoms in each plane, and ⟨s, p⟩ represents the S
atoms that are first nearest neighbors of P atom p. In other words, the
outer sum runs over P atoms that belong to a given crystallographic
plane, while the inner sum runs on the four S atoms that belong to the
tetrahedron centered around atom p. Whenever one tetrahedron is
perfectly aligned along ±x, the cosine of one P−S angle is close to ±1,
while the remaining three have a value of cos(109.5°) ≈ −0.3338 or
cos(70.5°) ≈ +0.3338 for +x and −x, respectively, due to tetrahedral
symmetry. We thus raise the cosine to the fifth power in eq 2, so that
the result of the inner sum will be approximately equal to ±1. While
any odd power greater that 1 would serve this scope, the fifth power
gives the best results on preliminary tests. [Note: This observation
stems from the symmetry of the tetrahedra, ∑⟨s,p⟩cos(θsp) = 0.]
Since the final aim is to define a global measure of the relative

alignment across planes, so as to capture the staggered ordering of the
α structure, we construct two intermediate order parameters seven and
sodd, by averaging sC for even and odd values of C, and a total of NC =
6 planes. We finally construct the following pair of collective variables:
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In Section III.B we demonstrate that s1 completely distinguishes
the three polymorphs, as it takes on values close to +1 when the
structure is similar to the perfect γ, −1 when it is similar to α, and 0
when the structure is close to β or fully disordered. s2 instead
measures a global alignment of the entire structure and does not
resolve the β and α structure, as they both contain mixed PS4
orientations in equal proportions. Still, this CV is meaningful when

Figure 2. Parity plot of the atomic forces for each model: (a) PBEsol;
(b) r2SCAN; and (c) PBE0.

Table 1. Root-Mean-Square-Error (RMSE) of the Energy
(Second Column) and Forces (Third Column) for All of the
Modelsa

model RMSE [meV/atom] RMSE (%RMSE) [meV/Å]

PBEsol 7.0 120 (14.8%)
r2SCAN 6.5 141 (15.8%)
PBE0 6.5 165 (17.2%)

aIn the third column, the number in parentheses indicates the %
RMSE relative to the standard deviation of forces within the test set.
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combined with s1 as it carries information about the relative number
of tetrahedra that are aligned along the positive and negative
directions of the x-axis. For instance, it can distinguish between two
perfect γ structures that are mirror-symmetric with respect to a (100)
plane.
II.C. Green−Kubo Theory. The Green−Kubo (GK) theory of

linear response65,66 provides a rigorous and elegant framework to
compute transport coefficients of extended systems in terms of the
stationary time series of suitable fluxes evaluated at thermal
equilibrium with MD. For an isotropic system of N interacting
particles, the GK expression for the electrical conductivity reads:

= ·
k T

tJ J
3

( ) ( ) d
B

q t q0
0

(5)

where kB is the Boltzmann constant, T the temperature, and Γt
indicates the time evolution of a point in phase space from the initial
condition Γ0, over which the average ⟨·⟩ is performed. Jq is the charge
flux, that can be easily computed from MD, knowing the velocities of
the atoms, vi, and their charges, qi:

= e qJ vq
i

i i
(6)

Here, the sum runs over all the atoms, e is the electron charge, and the
qi are equal to the nominal oxidation number of the atoms:

81 in the
absence of electronic conductivity due to conduction electrons or
polaronic states, the overall electrical conductivity coincides with that
obtained from eq 6 using integer, time-independent ionic charges.82

A commonly used approximation of eq 5 is the Nernst−Einstein
(NE) equation:

=
e q N

k T
D

B
NE

2
Li
2

Li
Li (7)

where DLi and NLi represent the diffusion coefficient and the total
number of the lithium atoms respectively. Equation 7 is widely used in
practice to estimate the ionic conductivity, due to the high statistical
accuracy with which atomic diffusion coefficients can be computed
from numerical simulations.83 Nevertheless, its application to solid-
state-electrolytes (SSEs) is burdened by systematic errors:84 in fact,
the large interatomic dynamical correlations, both between carriers
(Li+) and the solid matrix (PS43−) and among the carriers themselves,
which is typical in systems with a high carrier concentration like SSEs,
is completely neglected by eq 7. The discrepancy between σ and σNE
can be quantified by the Haven ratio:84−86

=HR
NE

(8)

We redirect the reader to Section III.D for a thorough comparison
between σ and σNE in the different polymorphs of Li3PS4.
From a methodological standpoint, eq 5 can be expressed in an

equivalent formulation, called the Helfand−Einstein (HE) formula,
which exhibits better statistical behavior:87
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The Li diffusivity appearing in eq 7 is obtained from the asymptotic
slope of the mean square displacement of the Li ions:
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In this case, care has to be taken to compute DLi in the reference
frame where the solid matrix is fixed to avoid nonphysical
contribution to the calculations of the electrical conductivity. These
spurious effects arise for simulations run in the barycenter reference
frame, where the position of the center of mass of the entire system is
fixed. In practice, the difference between DLi computed in these two
reference frames vanishes when the box size is increased.88

Due to its very general formulation, the GK expression of eq 5 can
be used to investigate, with minimal variations, other characteristic
properties of Li3PS4. In Section III.C we will characterize the
rotational properties of the PS4 polyanions at high temperature by
computing a rotational diffusion coefficient as follows:

= ·
=

D
N

t t1
3

( ) (0) d
j

N

j j
PS 1 0

PS

(11)

In this equation j runs over every P−S bond of each PS4
tetrahedron and ωj(t) represents the time series of its angular velocity:

×
| |

t
r r v v

r r
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j j j j

j j
P S P S

P S
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where rP,Sj (t) and vP,Sj (t) are the positions and the velocities of the P
and the S atom belonging the jth bond.
II.D. ML-MD Computational Details. We use the MLPs

constructed in Section II.A to investigate the physics of Li3PS4 via
constant-temperature MD simulations using a combination of i-
PI,72,89 LAMMPS,90,91 and LIBRASCAL.92 In order to simulate the phase
transitions and the charge transport in Li3PS4, we perform MD
simulations in the NpT ensemble of a quasi-cubic 768-atom cell in all
stable α, β, and γ phases with a constant isotropic pressure of p = 0
atm for a set of temperatures between 200 and 1000 K. The system’s
center of mass is kept fixed during the simulations. A generalized
Langevin equation (GLE) thermostat93,94 is used to equilibrate the
cell volume, while a stochastic velocity rescaling (SVR) thermostat95

is used to thermalize the velocity distribution of the atoms without
affecting significantly the dynamical properties. The characteristic
times of the barostat, the SVR thermostat, and the MD time step are
set to 1 ps, 10 fs, and 2 fs, respectively. We run these simulations long
enough to ensure statistical convergence of the ionic conductivity (see
Section II.C). Specifically, we run the weakly conductive simulations
of the γ phase for ∼6 ns, the β phase for ∼4 ns, and the α phase for
∼2 ns. As discussed in Section III.B, this setup ensures that the system
can sample configurations within the range of stability of each phase
without explicitly requiring a quantitative prediction of the temper-
ature-dependent phase diagram of Li3PS4. A validation of the setup via
a heat-quench simulation in the NST ensemble is found in the
Supporting Information (Section VII).

III. RESULTS
In this section, we compare the results obtained with the
PBEsol, PBE0, and r2SCAN functional and the corresponding
ML models, as described in Section II. In Section III.A, we
compute the electronic band structure of the β polymorph
using DFT and show that the band gap predicted by the PBE0
functional is in good agreement with experiments, while
PBEsol and r2SCAN considerably underestimate it. In the
following sections, we investigate the finite-temperature
predictions of the ML models. First, in Section III.B, we
analyze the MD simulations of the Li3PS4 polymorphs using
the collective variable introduced in Section II.A and discuss
the onset of a phase transition from the γ structure to a
structure with a mixed α and β arrangement by increasing the
temperature. In Section III.C, we investigate the rotational
dynamics of PS4 tetrahedra and relate the occurrence of phase
transitions with the thermal activation of correlated polyanion
flips. Furthermore, we detect the presence of a high-
temperature liquid phase characterized by freely rotating
polyanions. In Section III.D, we compute the ionic
conductivity from MD NpT simulations using both the NE
and HE expressions introduced in Section II.C and the Haven
ratio of Li3PS4. Finally, in Section III.E, we discuss the role of
spatial correlations and their effect on the calculated ionic
conductivity.
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III.A. Electronic Band Structure. The Generalized
Gradient Approximation (GGA) functionals offer a good
compromise between accuracy and computational efficiency,
making them a practical choice for a broad range of materials
and systems. It is known, however, that they often fall short
when it comes to accurately characterizing critical electronic
properties, such as the electronic band gap, which is frequently
underestimated in GGA, and the density of states.98−100 In
order to solve this problem, different functionals have been
developed, such as meta-GGA60 and hybrid functionals,61 that
offer more accurate approximations of the exchange-
correlation functional and are able to better describe long-
range electron−electron interactions. These new functionals
have enabled more accurate predictions of electronic proper-
ties in a variety of different materials101−106 and notably solid-
state electrolytes.107−109 In Figure 3 we compare the band
structure and the density of states (DOS) for the β phase
computed with the PBEsol (GGA), r2SCAN (meta-GGA), and
PBE0 (hybrid) functionals. [Note: The results for the γ phase
can be found in the SI.] Since in the β phase the Wyckoff sites
of the Li atoms have partial occupations, we perform the
calculation using one (B3C1108) of the known configurations
with minimum energy, since the electronic bands and the gap
are only weakly dependent on this choice.108 Furthermore, in
Table 2 we compare the band gaps predicted by the different
functionals in the γ and β phases and recent experimental
measurements. We note that both PBEsol and r2SCAN
considerably underestimate the electronic band gap, while
PBE0 shows a remarkably good agreement, thus further
motivating the use of this functional as a reference for the
training of a dedicated ML model. [Note: We remark that the
reported experimental value from ref 97 is obtained as the
electrochemical window and, as such, represents an upper limit
of the band gap.]
III.B. Structural Phase Transitions. We used the pair of

CVs s1 and s2, introduced in Section II.B, to investigate the
presence of structural phase transitions appearing in the MD
trajectories. As anticipated, s1 characterizes the mutual

orientation of adjacent (010) planes (i.e., even and odd
numbers in Figure 1) along the [100] direction. Consequently,
s1 = −1 for the α phase, where the PS4 orientation of adjacent
planes is antiparallel, s1 = 0 for the β phase (each plane has no
net orientation of PS4 units), and s1 = +1 for the γ phase, where
adjacent planes share the same orientation of PS4 tetrahedra
along the positive x axis. Conversely, s2 measures the global
orientation of PS4 tetrahedra and vanishes for both the α and β
phases, while it is equal to 1 for the γ phase. Figure 4 displays,
with red dots, the evolution of the CVs across a set of MD
simulations run with the ML-PBE0 model at different
temperatures, T, and initialized in the γ phase. The green
markers of three different shades represent reference points
sampled from MD simulations in the α, β, and γ phases below

Figure 3. Electronic bands and density of states of Li3PS4 for the β-
phase.

Table 2. Energy Band Gap with Different Models for the γ
and β Phasesa

Egγ [eV] Egβ [eV]

PBEsol 2.649 2.706
r2SCAN 3.088 3.155
PBE0 4.566 4.601
exp.96,97 - 5

aThe PBE0 values are in best agreement with the reported
experimental value from ref 97.

Figure 4. Evolution of the collective variables of γ-Li3PS4 (red points)
sampled over a set of MD trajectories generated with the ML-PBE0
model. Green markers of three different shades represent a sample of
reference points extracted from all MD simulations in the α, β, and γ
phase below Tc = 750 K where no phase transitions are observed. The
purple markers in the top panel indicate the CVs for the ideal
crystalline structures.
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Tc = 750 K, and are used as a guide to interpret the T-
dependent results. For T < Tc, the red dots are all concentrated
in a region around (s1, s2) = (1, 1), which is typical of the pure
γ phase, the small deviations being due to the thermal motion
of the atoms only. As T is raised above ≈Tc, a structural
transition occurs, and the CVs approach a region between the
α and β phases. Although the total time scale and size of the
simulations are not sufficient to allow for a complete transition
of the γ phase to a specific polymorph, but only to intermediate
configurations, our MD simulations capture the microscopic
driving mechanism, i.e., the onset of concerted reorientations
of PS4 tetrahedra.
Figure 5 shows a typical example of this phenomenon,

occurring during an ≈15 ps segment of a MD trajectory: the
starting (ending) configuration is depicted in red (blue). The
color fades from red to blue (with an RWB scheme) in a
continuous manner as the transition occurs. The trajectories of
the S atoms lying at the vertices of the PS4 tetrahedra clearly
indicate that the reorientation of the entire row occurs
coherently and not as a collection of individual, decorrelated
flips. Figure 5 also shows that the transition is purely
orientational and does not occur through the hopping of S
anions between adjacent PS4 groups. Additional information
and a comparison of this mechanism with a heat-quench
simulation showing a similar behavior can be found in the
Supporting Information (Sections VII and VIII).
III.C. PS4 Rotational Dynamics and Heat Capacity.

Further insights into the rotational reorientation of PS4 planes
and their relation with structural transitions can be obtained by
a direct investigation of the rotational dynamics of PS4
tetrahedra and specifically those that form [100] rows. Figure
6 shows the dynamics of the polar angles θSP, as defined in eq
1, for a set of four tetrahedra (row panels) that belong to the
same [100] row in NpT simulations run with the ML-PBE0
model. [Note: The ML-PBEsol and the ML-r2SCAN models
give the same qualitative behavior of the ML-PBE0 model.
Notably, all of them display the same phase transitions, albeit
at different temperatures (see also Figure 7).] We also
compare three trajectories initialized in the γ phase and equilibrated at T = 725 K, i.e., just below Tc = 750 K (left

column); at T = Tc (central column); and above melting, at T
= 900 K (right column). The four lines in the plots correspond
to the dynamics of the four bonds that constitute each PS4
tetrahedron.
At 725 K, only small angular fluctuations occur with no

reorientation of the tetrahedra. The average angles of the P−S
bonds define the mean orientation of each tetrahedron: as one
of the P−S bonds always has an average value that is close to 0,
the orientation is along the positive x-axis (+x) during the
entire simulation time, which is typical of the γ phase. Instead,
the angles of the other three bonds oscillate around θ0 =
109.5° (black dashed line), corresponding to the P−S bond
angles in a perfect tetrahedral geometry. The jump observed in
the central panel of the left column corresponds to a rotation
of the tetrahedron, that does not involve a reorientation toward
the negative x-axis.
Instead, at the transition temperature (Tc = 750 K),

simultaneous flips of one P−S bond from 0 to 70.5° and
another P−S bond from 109° to 180° correspond to the
reorientations of the tetrahedra from +x to −x, consistently
with the mechanism shown Figure 5. Notably, these flips occur
at the same instants of time for every tetrahedron in a row (see,
e.g., the central column of Figure 6 between 1 and 2.5 ns),

Figure 5. Transition corresponding to the reorientation of one line of
PS4 tetrahedra. Tetrahedra colored red and blue correspond to
snapshots of the solid matrix taken over the transition for one
trajectory at 750 K starting from the γ structure and run with the ML-
PBE0 model. The trajectory of two vertices of each tetrahedron is
displayed with lines, that are colored with an RWB scheme and with a
smoothening window of 2.5 ps. The red end of these lines
corresponds to t0, while the blue end corresponds to t1 = t0 + 15 ps.

Figure 6. Sketch of the rotational dynamics of the PS4 groups: low
temperature (panel a), where only small librations with respect to the
initial configuration occur, at intermediate temperature (panel b)
where PS4 flips determine the structural transition observed in Figure
4 and at high temperature (panel c) where the system is melted. The
lower plots show the time evolution of the polar angle θSP as defined
in eq 1 (angle with respect to the x-axis) for a set of three distinct
tetrahedra, forming a [100] row. Each panel represents the dynamics
of the four PS bonds forming each tetrahedron. Rows correspond to
different tetrahedra, while columns correspond to different NpT
trajectories at T = 725, 750, and 900 K. Horizontal dashed black lines
indicate the position of the ideal tetrahedral angles at 70.5° and
109.5°, while gray dotted lines mark the extremes of the domain of θSP
(i.e., 0° and 180°).

Chemistry of Materials pubs.acs.org/cm Article

https://doi.org/10.1021/acs.chemmater.3c02726
Chem. Mater. 2024, 36, 1482−1496

1487

https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c02726/suppl_file/cm3c02726_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c02726?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c02726?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c02726?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c02726?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c02726?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c02726?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c02726?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c02726?fig=fig6&ref=pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.3c02726?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


confirming that they are highly correlated across [100] rows.
This effect is the basis of the phase transition observed in
Figure 4 as it modifies the relative orientation of tetrahedra
across (010) crystallographic planes. It is crucial to note, in this
respect, that the spatial correlation of these flips at the
transition extends up to the edge of the simulation box,
potentially leading to finite-size effects. Specifically, we expect
this transition to manifest in larger boxes by nucleation of
ordered clusters with opposite orientation as a result of the
formation of defects with sudden changes of the PS4
orientation. We also note from panels (b) of Figure 6 that
the time lag between subsequent flips is of the order of 1 ns. As
we will see in Section III.D, the presence of this long time scale
will be important to elucidate the mechanism of charge
transport in this material.
At 900 K, the dynamics of the tetrahedra changes

dramatically, and a second phase transition occurs. In
particular, all PS bonds across every tetrahedron span the
entire range of angles between 0° and 180°. This suggests that
unlike the phases observed at lower temperatures, the
tetrahedra are freely rotating in the simulation box. A direct
inspection of the simulations indicates that this behavior is
accompanied by a melting of the system into a mixture of Li+
cations and PS43− anions (see also the P−P and P−S radial

distribution functions shown in the Supporting Information,
Figure S9).
The onset of these two phase transitions, from the

nonconductive γ phase to the superionic β-α hybrid phase
and the melting of Li3PS4, can be quantitatively investigated for
all ML models by computing the temperature dependence of a
set of relevant quantities. Panel (a) of Figure 7 shows, for each
of the ML models, the isobaric heat capacity Cp(T) computed
from the finite-difference derivative, with respect to T, of the
mean enthalpy collected in the NpT simulations. Panel (b)
shows the temperature dependence of the mean squared
fluctuation of the polar angle θSP as defined in eq 1 and further
averaged over every P−S bond. Panel (c) shows the PS4
rotational diffusion coefficient Dω, defined in eq 11, and panel
(d) the linear diffusion coefficient of the P atoms, DP.
Cp(T) displays two distinct peaks, characteristic of the phase

transitions observed in Figure 6, while the associated critical
temperatures depend on the specific functional. We can
characterize more clearly the position of these peaks by
analyzing their relation with the microscopic quantities shown
in panels (b), (c), and (d). Since the first transition is
associated with discrete PS4 flips, the increase of Cp is
accompanied by a sudden change of slope of the angular
fluctuations. Conversely, the transition to the molten phase
occurs with a dramatic increase of both Dω and DP by one and
2 orders of magnitude, respectively. In other words, the action
of thermal fluctuations at this high temperature destroys the
periodic arrangement of P atoms, while the tetrahedra are still
intact and can freely rotate at a rate given by Dω. Notably, the
transition temperature to the molten salt as predicted by the
ML-PBE0 model is in agreement with a previous experimental
measurement of the binary phase diagram of β-Li3PS4−
Li4GeS4 solid solutions obtained through differential thermal
analysis.110 More specifically, the transition point upon heating
is reported to be 600 °C when the concentration of β-Li3PS4 is
equal to 98% (P-rich regime), which is compatible with our
PBE0 estimate.
We stress that the angular deviations of panel (b) can be

defined only with respect to a local equilibrium for each P−S
bond and are thus meaningful only in the low-T phase.
Conversely, the diffusion coefficients of panels (c) and (d) are
physically meaningful when the simulations sample sufficiently
many configurations with displaced P atoms and rotated PS4
anions. They are thus not well-defined if the MD simulations
are not fully ergodic.111 In Figure 7, we display each of the
quantities with solid lines in the regions where they are well-
defined; otherwise, they are shown with dotted lines. The
phase transitions investigated so far have strong implications
on electrical conduction, as we describe in the following
section.
III.D. Ionic Conductivity and Haven Ratio. The ionic

conductivity, σ, is a crucial property to identify promising
solid-state electrolytes. As discussed in Section II.C, the GK
theory of linear response in its HE formulation gives us an
efficient and statistically robust method to obtain an estimate
of σ from equilibrium MD simulations at any target
temperature.
The upper panels of Figure 8 show the temperature

dependence of the ionic conductivity at zero pressure for a
set of NpT simulations that start from the ideal α, β, and γ
polymorph. Imperfect ergodicity, and the constraints on cell
shape, make simulations dependent on the initial conditions.
Even though simulations can only be considered converged

Figure 7. (a) Heat capacity (Cp), (b) fluctuations of the P−S polar
angle averaged over all bonds of every PS4 tetrahedron in the

simulation box ( 2 ), (c) PS4 rotational diffusion coefficient
(Dω), and (d) the linear diffusion coefficient of the P atoms (DP) as a
function of the simulated temperature. Solid/dashed lines represent
each quantity in the temperature regime, where it is well/ill-defined.
The dashed black line of panel (a) represents the Dulong−Petit limit,
3kB.
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within the stability range of each phase and target functional,
results outside this range still report useful information about
their behavior when metastable. Thus, results are shown for
every target functional and for all temperatures where the ionic
conductivity is nonzero within the errorbars.
All of the ML models predict the γ(α) phase to be the least

(most) conductive, while the β phase has intermediate values
of σ over a wide temperature window (up to 600−800 K
depending on the model). This result is in agreement with
previous computational studies26,112 and experimental meas-
urements of the ionic conductivity20,28 on the known
crystalline phases of Li3PS4. The negative slope of the profiles
of σ with respect to the inverse temperature is typical of
Arrhenius plots. In fact, since lithium-ion diffusion occurs via
thermal activation, one can mathematically relate the Nernst−
Einstein conductivity σNE with the activation energy of the Li-
hopping process. In particular, higher negative slopes
correspond to higher activation energies. The γ (α) phase is
thus not only the least (most) conductive phase but also the
one that has the largest (smallest) activation barrier for lithium
diffusion.
The high-temperature ends of the conductivity profiles of

Figure 8 (for T < 670 K for ML-PBEsol, T < 880 K for ML-
r2SCAN, and T < 770 K for ML-PBE0) give us additional
insights. While the curves related to the three phases clearly
span different conductivity ranges and show different slopes at
low temperatures, this difference is not noticeable any more at
high temperatures, and the conductivity and the activation
energies all approach the values of the α phase, with a
characteristic kink that is most visible for simulations initialized
in the γ phase. The critical temperature at which this kink
occurs depends on the reference functional. This is a clear
effect of the structural transition studied in Section III.B and
further investigated in Section III.C by an analysis of the PS4
rotational dynamics. In other words, the PS4 flips that induce
the transition from the γ polymorph to the partly ordered β−α
structure are responsible for the changes of the ionic

conductivity due to the larger availability of hopping sites for
Li-ions,20 as well as a reduction of the Li-hopping activation
barrier. This conclusion is also highlighted by simulations of
the β and α phases at low temperatures, that show large σ
although PS4 flips are suppressed and librations are weak. To
quantify the reduction of the activation energy due to the
structural transition, in Table 3, we report the activation
energies that are fit to the Nernst−Einstein conductivities
below and above the transition temperatures of each model
(see Section X of the Supporting Information for additional
details). The effect of the transition is remarkable, as we
observe a reduction of the activation energies of up to a factor
of 6 depending on the reference DFT functional. Furthermore,
the activation energies are very small above the transition, with
values ranging between 0.25 and 0.32 eV. These values are very
close to the values observed for the α phase and smaller than
those for the β phase (see Table 4), indicating superionic
behavior. In contrast, we note that the transition to the molten
salt that we observed for T > 800 K in Section III.C has
practically no effect on the conductivity profiles.
This analysis, combined with the results of Sections III.B

and III.C, also allows us to rule out any paddle-wheel effect,

Figure 8. Temperature dependence of σ and Haven ratio. Panels (a), (b), and (c) show a comparison between the ionic conductivities predicted by
the ML models as a function of the inverse temperature, computed via the Green−Kubo relation. Panels (d), (e), and (f) show the behavior of the
Haven ratio, HR = σNE/σ, as a function of the inverse temperature. Error bars obtained from standard block analysis over eight blocks are displayed.
Vertical dashed lines indicate the experimental stability boundaries for the three phases.

Table 3. Activation Energies for Li-Ion Diffusion for the
Simulations Initialized in the γ Phase for Temperatures
below the Phase Transition Temperature (T > Tc) Observed
in Section III.C and above Tc

a

model EA(T < Tc) (eV) EA(T > Tc) (eV) ratio

ML-PBEsol 0.93 ± 0.07 0.249 ± 0.004 3.4 ± 0.3
ML-r2SCAN 1.64 ± 0.05 0.32 ± 0.01 5.1 ± 0.2
ML-PBE0 1.43 ± 0.06 0.269 ± 0.007 5.3 ± 0.3

aSee the SI for details on the computation of the activation energies.
The last column is the ratio between the EA(T < Tc) and EA(T > Tc)
and quantifies the reduction of the Li-diffusion activation energy due
to the phase transition.
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whereby PS4 motion is time-correlated with Li-hopping and
increases Li-ion diffusion. In fact, due to the different rates of
PS4 flipping (≈ one every nanosecond) and Li-ion hopping (≈
one every picosecond) even at large temperature right below
melting, the two mechanisms cannot be related. This point is
strengthened in Figure S12 of the Supporting Information,
showing the fast and linear increase of the mean square
displacement of lithium ions in the simulation at 750 K of
Figure 5 over a 30 ps time window. Instead, the interaction
between Li-ion diffusion and PS4 libration, which share the
same time scale, may be important, as we have directly
inspected in Section III.E by analyzing the local contributions
to σ stemming from the interaction between Li and S ions.
The lower panels of Figure 8 show the temperature

dependence of the Haven ratio, HR, computed by using eq 8.
As anticipated in Section II.C, this coefficient quantifies the
discrepancy between σ and σNE. HR < 1 for almost every
temperature and only for the γ phase it approaches one at low
temperatures, where the system is weakly conductive. This
indicates the presence of interatomic correlations in the ionic
conductivity, both between carriers (Li+) and the solid matrix
(PS4), that cannot be captured by the NE approach (see eq 7),
as the latter only estimates the conductivity based on the self-
diffusion of the lithium ions. This effect is most pronounced in
the α phase, where HR ≈ 0.4 below melting, meaning that the
NE estimate underestimates the GK conductivity by more than
a factor of 2. At high temperatures, the Haven ratio slightly
increases, indicating that the material becomes disordered.
This might be a result of the phase transformations of the solid
matrix, which we expect weaken the interionic correlations.
Still, the Haven ratio never exceeds 0.8, even at 1000K for any
of the ML models studied.
In Table 4 we quantitatively compare the activation energies

and the ionic conductivities predicted by our ML models with
recent experimental measurements28,96 and with computa-
tional studies based on AIMD at the PBE level.22,114,115 The
first two columns of Table 4 compare the activation energies in
the β and α phases, while the remaining three report the
estimates of the ionic conductivity of the β phase at 298 K and
500 K and the ionic conductivity of the α phase at 298 K.
[Note: This value is extrapolated from a fit of the temperature
profiles of the β structure (see Figure 8) for each ML model;
see SI for details on the computation of the activation
energies.] The ML-PBEsol model predicts activation energies
in agreement with previous AIMD for both the β and the α
structure. In the case of the β phase, ML-r2SCAN and ML-
PBE0 predict an activation energy that is greater than the one
computed with the ML-PBEsol model, but overall the values
are close to the experimental results. For the α phase, the
activation energies are particularly close to the experiment.
These last results are remarkably good in particular when
comparing them with the prediction of the classical empirical

potential recently introduced by Forrester et al.23 For this
model, the activation energy for stoichiometric α-Li3PS4 is
much larger (0.40 eV) than the experimental result and similar
to the value of the β phase. The empirical potential also
predicts the α phase to be slightly more conductive than the β
phase for all temperatures.
In conclusion, our analysis shows that the ML potentials are

the only possible solution to accurately predict the properties
of Li3PS4, given the unreliability of empirical potentials and the
prohibitive cost of ab initio simulations, in particular at the
PBE0 level.
III.E. Spatial Correlations. In this last section, we

investigate the role of local correlations in determining the
full ionic conductivity by computing the spatial dependence of
the integral of the partial cross-correlation functions, ILiA,
between lithium atoms and other atomic species A = Li, P, and
S. However, before we start this analysis, it is necessary to
make a few technical considerations. While the total
conductivity does not depend on the frame of reference, due
to the charge neutrality of the simulation cell, the value of any
partial correlation does depend on it, as we show in the SI. For
instance, in the reference frame of the matrix, all the Green−
Kubo integrals of the partial correlation between Li and the
other species (P and S) vanish. In contrast, in the reference
frame of the center of mass of the entire system, the solid
matrix recoils due to the diffusion of the center of mass of Li
atoms (see SI). To carry out our analysis, we choose the
reference frame where the center of mass of the PS solid matrix
remains stationary, e.g., ∑i∈P,Svi = 0 at every instant. This
choice is motivated by the fact that this reference frame is in
principle the same in which the lithium diffusivity, entering the
NE relation, eq 7, should be computed. Moreover, this is the
most natural choice for a battery, since in this reference frame
the solid matrix of the battery is not moving.
To study the spatial dependence of the integral of the

correlation functions we perform a Gaussian kernel density
estimation (KDE)116 of the correlation functions:
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where i runs over all Li atoms and j runs over all the atoms of
type A; wij(t, r) is a Gaussian weight with width ς, which we set
to 0.33 Å; and w̅ij(r) is the time average of wij(r) over the
whole trajectory. The connection between eq 13 and the ionic

Table 4. Comparison between the Predicted Activation Energies and Conductivities (Computed at 500 K and Extrapolated at
Room Temperature; See SI for Details) of the β and α Phases with Both Experimental References28,96 and Previous ab initio
MD Studies22,114,115

EAβ (eV) EAα (eV) σ298Kβ (S cm−1) σ500Kβ (S cm−1) σ298Kα (S cm−1)

PBEsol 0.38 0.17 7.7 × 10−4 2.8 × 10−1 1.9 × 10−1

r2SCAN 0.57 0.21 2.1 × 10−5 5.1 × 10−2 9.2 × 10−2

PBE0 0.62 0.19 8.7 × 10−6 3.9 × 10−2 1.6 × 10−1

exp. 0.47 [96], 0.36 [28] 0.22 [28] 8.9 × 10−7 [96,113] 3.0 × 10−2 [20]
AIMD-PBE 0.40 [22] 0.18 [114] 8.0 × 10−2 [114]
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conductivity of eq 5 is readily established. In fact, within the
KDE,

N N
w r r g r( ) 4 ( )

i j A
ij A

Li A Li
0

2
Li

(16)

where gLiA(r) is the radial distribution function between the Li
and the species A. Therefore, the integral over r of ILiLi(r) plays
the role of the correction to the NE relation that is needed to
recover the full GK conductivity:

I r g r r r( ) ( )4 dNE
0

LiLi LiLi
2

(17)

Figure 9 shows ILiA(r) for different values of r. The most
relevant correlations come from the Li−Li and Li−S
interactions, while the correlations with the P are compatible
with zero for any r. As expected, for large r values, all of the
correlations become compatible with zero. The oscillations in
the correlations functions follow, as expected, the peaks in the
radial distribution function gLiA(r) (lower panel) and show that
only the first shell of Li atoms and the first two of S atoms are
important for the conductivity. The correlation of the first shell
of Li is strongly positive in agreement with ref 117, where it
was shown that the hopping of Li atom in one direction
facilitates the movement of the other Li in the same direction.

IV. CONCLUSIONS
In this work, we have presented a computational study of
lithium ortho-thiophosphate via multiple machine learning
models, targeting DFT references of increasing accuracy and
elucidating the critical role of PS4 flips and phase transitions in
determining the observed superionic behavior of Li3PS4. We

find that all the ML models predict two distinct phase
transitions. First, we observe a transition from the γ to a partly
ordered phase with both β and α alignments that cannot be
fully resolved at the time and length scale of the MD
simulations. While this limitation does not allow us to provide
a prediction of the full phase diagram of Li3PS4, we identify the
presence of collective PS4 flips as the driving mechanism.
Second, we observe the melting of the system into its
constituent Li+ cations and PS43− polyanions at elevated
temperatures (>800 K). Both of these transitions are
associated with drastic changes in the rotational dynamics of
the PS4 groups as a function of the temperature and appear as
distinct peaks of the heat capacity.
We also compute the ionic conductivity of Li3PS4 in all its

stable polymorphs and elucidate the importance of including
the effects of interatomic correlations by computing it with the
full Green−Kubo theory of linear response and with the
Nernst−Einstein approximation. We find that the interionic
correlations account for considerable deviations between the
NE and the GK estimates, as quantified by a Haven ratio that is
smaller than one in every polymorph at all temperatures,
except for the weakly conductive γ structure at low
temperatures. Notably, the Haven ratio reaches values of 0.4
in the highly conductive α-phase, suggesting that a pure NE
approach can result in the underestimation of the conductivity
by more than a factor of 2. From a spatially resolved analysis
performed in the reference frame of the solid matrix, we find
that most of these interionic correlations come from the first
shell of Li−Li neighbors, thus indicating that a concerted Li-
ion hopping is a key aspect of charge transport in this material,
in agreement with ref 117.
Finally, we investigate how the observed phase transitions of

Li3PS4 affect the ionic conductivity. We find that the
occurrence of correlated PS4 flips results in a dramatic decrease
of the activation energy (up to a factor of 6) when the system
transitions from the γ to a mixed β−α phase. Furthermore, we
show that subsequent PS4 flips occur at the time scale of
nanoseconds, that is much larger than the typical time laps
between two subsequent lithium ion hoppings, in agreement
with ref 117. We thus conclude that the sudden change in the
PES of the lithium ions that is due to the rearrangement of the
PS4 tetrahedra is the physical mechanism for the observed
superionic behavior of Li3PS4. Crucially, this mechanism is
fundamentally different from the one proposed in ref 31.
There, a characteristic paddlewheel effect was observed in
AIMD-PBE simulations at elevated temperatures and invoked
to explain the neutron diffraction measurements showing
polyanion reorientational disorder. The AIMD simulations
were however limited in size and thus showed much larger
finite-size effects than the ones we observe in this work,
including an artificial stabilization of the solid phase up to
temperatures (1200 K) that are much larger than the nominal
melting point of Li3PS4. We also stress that the paddlewheel
effect itself was observed in AIMD simulations at these very
high temperatures, thus likely making it an artifact of the small
simulation box that was used there. The ML models that we
present in this work overcome these limitations and offer a
more natural interpretation of the experimental results. This
finding also suggests additional directions of research in the
quest for a promising solid electrolyte and potentially a way to
design new target compounds. In particular, we expect that
tentative modifications of Li3PS4 to stabilize its superionic
phases at room temperature, by, e.g., atomic substitution and

Figure 9. (Upper panel) Integrals of the cross correlation functions as
defined in eq 13, for different pairs of atomic species and as a function
of r. All of the velocities are computed in the system of reference of
the center of mass of the solid matrix of the battery. The shaded area
indicates the uncertainty on the mean value, obtained from block
analysis on 10 blocks. (Lower panel) Radial distribution function
between the Li and all the other atomic species. The data reported in
the figure are obtained from 190 ps of a simulation of the α-phase at
650 K.
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amorphization, should be accompanied by a reduction of the
polyanion rotational free energy barrier, that limits the spatial
extension of the PS4 fluctuations. Further developments of this
work thus imply a detailed thermodynamic study of the phase
transitions observed here and a comparison of multiple
different SE compounds with the aim of suggesting a target
compound for experimental synthesis.
While providing these useful mechanistic insights, our ML

models show remarkable agreement with experiment in the
prediction of a number of independent quantities. Specifically,
the PBE0 functional provides the best agreement on the
prediction of the electronic band gap, while the associated ML-
PBE0 model reaches overall the best accuracy on the
prediction of lithium activation energies in the β and α
phase, the ionic conductivities at 298 and 500 K, and the
melting temperature. In particular, our results proved to be
much more accurate than empirical potentials,23 that are often
used to overcome the high computational cost of AIMD.
These results and the observed dependence of the finite-
temperature predictions of the ML models on the DFT
reference indicate the necessity of using more accurate
functionals for the description of transport properties in solid
electrolytes, than state-of-the-art GGA functionals. Machine
learning becomes then a necessary step in modeling this class
of materials, as ab initio studies with the PBE0 functional are
far beyond reach because of their very high computational cost.
In conclusion, we have shown how the use of machine

learning potentials for a prototypical solid electrolyte captures
the mechanisms of the transition to its superionic phase and
the quantitative values of the ionic conductivity, while also
allowing us to investigate the role of interionic correlations.
This work thus opens up a new frontier in the exploration of
superionic materials, as it allows their large-scale simulations at
hybrid-DFT accuracy for hundreds of nanoseconds. This will
offer crucial insights into the fundamental properties of solid
electrolytes as well as guidance for the experimental realization
of new candidate compounds.
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Fédérale de Lausanne, Lausanne 1015, Switzerland;
orcid.org/0000-0001-7229-6101

Federico Grasselli − Laboratory of Computational Science
and Modeling, Institut des Matériaux, École Polytechnique
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