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ABSTRACT Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr 
virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the 
transcription factor signal transducer and activator of transcription 3 (STAT3). To better 
understand the role of STAT3 during gammaherpesvirus latency and the B cell response 
to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). 
Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency 
approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered 
germinal centers and heightened virus-specific CD8 T cell responses compared to 
wild-type (WT) littermates. To circumvent the systemic immune alterations observed 
in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, 
we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knock
out B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells 
compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing 
of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature 
toward proliferation and away from type I and type II IFN responses. Loss of STAT3 
largely reversed the virus-driven transcriptional shift without impacting the viral gene 
expression program. STAT3 promoted B cell processes of the germinal center, including 
IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or 
EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency 
determinant in B cells for oncogenic gammaherpesviruses.

IMPORTANCE There are no directed therapies to the latency program of the human 
gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host 
factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers 
caused by these viruses. We applied the murine gammaherpesvirus pathogen system to 
explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion 
in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated 
chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed 
to support virus latency compared to normal B cells from the same infected animal. Loss 
of STAT3 impaired B cell proliferation and differentiation and led to a striking upre
gulation of interferon-stimulated genes. These findings expand our understanding of 
STAT3-dependent processes that are key to its function as a pro-viral latency determinant 
for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.

KEYWORDS gammaherpesvirus, human herpesviruses, Kaposi sarcoma-associated 
herpesvirus, latent infection, host-pathogen interactions, STAT transcription factors

T he human gammaherpesviruses (GHVs), Epstein-Barr virus (EBV, human herpesvirus 
4) and Kaposi sarcoma herpesvirus (KSHV, human herpesvirus 8), are the etiologic 
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agents of numerous lymphomas and carcinomas that are a significant clinical burden 
to immune-compromised individuals, including people living with HIV. Even in 
immune-competent individuals, infection with EBV may manifest as infectious mononu
cleosis and increase the risk for the development of multiple sclerosis, an autoimmune 
disorder involving inflammation and neurodegeneration in the central nervous system 
(1). B cells are a long-term reservoir for GHV, and these viruses usurp host processes such 
as proliferation and differentiation to facilitate chronic infection (2–5). The identifica-
tion of host factors that support latency and facilitate the emergence of GHV-driven 
malignancies is paramount as there are currently no treatments that directly target the 
latent phase of infection.

A hallmark of GHV infection and GHV cancers is the rapid and persistent activation of 
signal transducer and activator of transcription 3 (STAT3) (6). STAT3 is a master regulator 
of multiple cellular processes such as proliferation, apoptosis, and metastasis (7, 8). 
Constitutive STAT3 activation is reported in multiple human cancers (9, 10). Cytokines are 
potent activators of STAT3 in both cancer and immune cells. For instance, IL-6 induces the 
expression of STAT3-target genes responsible for proliferation and survival supporting 
tumorigenesis, while IL-10 reduces immune cell function and inflammation in some 
contexts (11, 12). The human GHVs use diverse strategies to promote STAT3 activation (6). 
EBV transmembrane protein LMP1 activates NF-κB through recruitment of cytoplasmic 
signaling adaptors leading to IL-6-driven STAT3 activation and cell survival (13, 14). 
EBV LMP2A activates STAT3 through multiple host factors to promote proliferation and 
survival (15, 16). The viral homologs of host cytokines, EBV vIL-10 and KSHV vIL-6, and the 
KSHV vGPCR also activate STAT3 (17–21).

Due to their narrow host range, the study of EBV and KSHV is largely restricted 
to cell culture and humanized mouse models. For that reason, murid herpesvirus 4, 
more commonly known as murine gammaherpesvirus 68 (MHV68), is used as a model 
pathogen. MHV68 is colinear with KSHV, encoding 64 direct homologs, establishes 
long-term latency in memory B cells, and induces lymphoproliferation in immunosup
pressed mice (5). The infection of mice with MHV68 is a genetically tractable system 
to study virus-host interactions in specific cell types during the acute or chronic phase 
of infection in a natural host. Viral and host factors such as NF-κB signaling pathways 
support the establishment and latency in B cell compartments (5, 22–27).

The interplay of viral and host factors aids in the establishment and expansion of GHV 
latency, taking particular advantage of B cell processes occurring during the germinal 
center (GC) reaction. The GC is the site within secondary lymphoid tissues where B cells 
undergo maturation and differentiation processes including somatic hypermutation and 
class switch recombination, leading to the production of high-affinity and long-lived 
memory B cell and plasma cell subsets (28, 29). GHVs both engage and circumvent 
the GC B cell selection process to promote access to the memory B cell long-term 
latency reservoir for EBV and likely for KSHV (30–33); events that transpire in the GC 
may contribute to B cell lymphomas with post-germinal center signatures (34–36). At 
the peak of latency establishment ~16 days post-infection (dpi), MHV68 is predominantly 
found in B cells bearing GC markers (22). T follicular helper cell production of IL-21 
is required to support MHV68 latency establishment in GC B cells (24), while Blimp-1 
is required to access the post-GC plasma cell compartment that is a source of virus 
reactivation (37). The MHV68 viral M2 protein promotes host IL-10 production through 
the nuclear factor of activated T cells (NFAT) pathway, promoting proliferation and 
differentiation, driving B cells to a plasmablast-like phenotype in vivo (38–40). MHV68 
RTA protein encoded by ORF50 acts synergistically with STAT3 to increase transcriptional 
activity in response to IL-6 (41). Given the critical role of STAT3-activating cytokines IL-10 
and IL-21 in MHV68 infection (24, 38) and the evolutionary investment by the GHVs to 
subvert STAT3 signaling, we sought to further dissect the role of STAT3 in GHV latency 
establishment in vivo.

We previously used a mouse model in which STAT3 is ablated specifically in the 
CD19+ B cell compartment to discover that STAT3 is a crucial host determinant of MHV68 
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latency establishment in B cells in vivo (42). In the present study, we more closely 
examined virus latency in GC subsets and virus-specific adaptive immune responses in 
two independent strains of CD19cre/+Stat3f/f mice to eliminate possible strain variation. We 
identified disordered GC architecture in B cell-specific STAT3 knockout (KO) mice, along 
with reduced virus-specific antibody production, concomitant with a heightened CD8+ 
T cell response. This aberrant immune response in the absence of STAT3 signaling in 
B cells led us to use a mixed bone marrow (BM) chimera approach wherein mice are 
reconstituted with hematopoietic cells from wild-type (WT) and B cell-specific STAT3 KO 
mice. Infection of mixed bone marrow chimeric mice revealed that B cells lacking STAT3 
could not compete with their wild-type counterparts to support GHV latency. To gain 
mechanistic insight into the transcriptional consequences of STAT3 loss, we sorted STAT3 
WT and KO GC B cells, with or without infection, and quantified gene expression profiles 
with RNA sequencing. We identified numerous host gene pathways altered by STAT3 that 
intersect processes of B cell biology and host response to infection.

RESULTS

Loss of STAT3 in B cells disrupts gammaherpesvirus latency and leads to 
abnormal GC structure

Mice with loxP-flanked exons of Stat3 (Stat3f/f) that are crossed with mice expressing Cre 
recombinase under the control of the endogenous CD19 promoter exhibit loss of STAT3 
only in CD19+ B cells (43). Our lab previously reported that the conditional knockout 
of STAT3 in B cells led to a severe defect in the establishment of MHV68 latency in the 
spleens of mice after intranasal or intraperitoneal (IP) infection (42). In this study, we 
compared MHV68 latency in two strains of B cell-specific STAT3 knockout mice that differ 
by the location of loxP sites that flank exons of the Stat3 gene (Fig. 1A) (44, 45). Consistent 
with our previous report for the CD19cre/+Stat3f/f-1 mice, the CD19+ B cell population 
of the CD19cre/+Stat3f/f-2 mice lacked detectable levels of STAT3 protein by immunoblot 
(Fig. 1A). For brevity, Stat3f/f mice will be referred to as WT mice, and their littermate 
CD19cre/+Stat3f/f mice will be referred to as B cell-STAT3 KO mice. STAT3 tyrosine 705 (Y705) 
phosphorylation is the classical indicator of STAT3 activation, and this activation has 
been demonstrated in response to human GHV infection in cell culture with endothelial, 
dendritic, and B cell models (46–49). We used intracellular flow cytometry staining of 
splenocytes from infected mice to reveal a higher level of STAT3-Y705 phosphorylation 
in B cells from the spleens of infected WT mice compared to the infected littermate B 
cell-STAT3 KO mice (Fig. 1B).

We previously reported that the loss of STAT3 in B cells did not affect acute replication 
of MHV68 in the lungs of mice after intranasal infection but led to such a profound defect 
in latency establishment in the spleen that infected B cells were barely at the limit of 
detection (42). Here, we aimed to investigate the phenotype of infected B cells in the 
absence of STAT3, requiring us to use the more permissive IP route of infection to enable 
sufficient infected cells for analysis. At 16 dpi, the peak of the early phase of splenic 
latency, infected mice exhibit an enlargement of the spleen that follows colonization 
of that tissue with MHV68 (5). Spleens from both strains of B cell-STAT3 KO mice were 
significantly reduced in mass upon infection compared to the fourfold increase in mass 
observed upon infection of WT animals (Fig. 1C). The MHV68-H2bYFP recombinant virus 
utilizes a CMV immediate early promoter, driving constitutive expression of a histone 
2b-YFP fusion protein and enabling direct analysis of infected cells (22). Consistent with 
the defect in splenomegaly, the frequency of B cells that expressed the YFP viral reporter 
gene determined by flow cytometry was reduced by three- and twofold in the spleens of 
the strain 1 and strain 2 B cell-STAT3 KO mice, respectively, when compared to their WT 
littermates (Fig. 1D). This defect in latency was confirmed by a limiting dilution nested 
PCR assay to quantify the frequency of B cells harboring the viral genome. A 6.6-fold 
defect in the frequency of infected splenocytes that harbor the MHV68 genome was 
observed for CD19cre/+Stat3f/f-2 mice (1 positive event per 1,688 cells, 1/1,688) compared 
to Stat3f/f-2 WT mice (1/256) (Fig. 1E). Furthermore, in a limiting dilution reactivation 
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FIG 1 STAT3 is necessary for the efficient establishment of latency in B cells of infected mice. (A) Schematic of loxP-flanked exons of the Stat3 locus in two strains 

of CD19cre/+Stat3f/f mice. Immunoblot confirmation of STAT3 loss in CD19+ B cells of CD19cre/+Stat3f/f-2 mice, but not CD19- non-B cells, as previously described 

for CD19cre/+Stat3f/f-1 mice (42). (B–F) Stat3f/f and CD19cre/+Stat3f/f mice were infected with 1,000 PFU MHV68-H2bYFP by intraperitoneal inoculation and evaluated 

at 16 days post-infection. (B) Intracellular staining of STAT3-Y705 phosphorylation in B220+ B cells of naive or infected mice evaluated as frequency of pSTAT3+ 

B220+ cells (left panel) and mean fluorescence intensity (MFI, right panel). (C) Weights of spleens from naive or infected mice. (D) Flow cytometry gating strategy 

(left panel) of infected (YFP+) B cells (CD19+CD3−) and enumeration of frequencies in each strain of mice (right panel). For B–D, each symbol represents an 

individual mouse; bars represent mean ± SD. Data shown represent two to three independent experiments performed with three to seven mice per infected 

group and one to two mice for naive groups. (E) Single-cell suspensions of spleen cells were serially diluted, and the frequencies of cells harboring an MHV68 

genome were determined using a limiting dilution PCR analysis. (F) Reactivation frequencies were determined by ex vivo plating of serially diluted cells on an 

indicator monolayer. Cytopathic effect (CPE) was scored 3 weeks post-plating. For the limiting dilution analyses (E, F), curve fit lines were determined

(Continued on next page)

Research Article mBio

February 2024  Volume 15  Issue 2 10.1128/mbio.02998-23 4

https://doi.org/10.1128/mbio.02998-23


assay, a 10- and 20-fold defect in spontaneous reactivation was observed upon explant 
of splenocytes from strain 1 and strain 2 of B cell-STAT3 KO mice compared to their WT 
counterparts, respectively (Fig. 1F). This reactivation defect largely mirrors the differences 
in latency at 16 dpi. A time course analysis of YFP+ B cells spanning 10–15 dpi was 
performed in strain 2 B cell-STAT3 KO mice. The absence of STAT3 led to a trend in 
decreased splenomegaly and a significant reduction in B cell infection as early as 12 dpi 
compared to WT counterparts (Fig. S1). These results confirm the importance of STAT3 in 
B cells for the efficient establishment of MHV68 latency in two strains of CD19cre/+Stat3f/f 

mice.
The GC reaction represents an anatomical structure within secondary lymphoid 

organs in which activated B cells undergo clonal selection and affinity maturation. 
Additionally, most MHV68-infected cells express GC B cell markers at the peak of latency 
(22). Thus, we further examined GC B cell infection and latency in B cell-STAT3 KO 
animals. Compared to WT littermates, B cell-STAT3 KO exhibited increased frequencies 
of GC B cells (defined here as GL7+CD95hi of CD19+ cells) at 16 dpi (Fig. 2A). Although 
there was a reduction in the frequency of YFP+ B cells in B cell-STAT3 KO mice (Fig. 1D), 
we observed no significant difference in the frequency of YFP+ cells that displayed a 
GC phenotype (Fig. 2B). GC B cells can be roughly subdivided into rapidly proliferating 
centroblasts (CXCR4+CD86−) that are found in the dark zone and mature, non-dividing 
centrocytes (CXCR4− CD86+) in the light zone. By flow cytometry, infected WT mice had 
a 2:1 ratio of respective centroblast:centrocyte populations (Fig. 2C). However, in the 
absence of B cell-STAT3, we observed decreased frequencies of centroblasts in both GC B 
cells and YFP+ GC B cell populations that resulted in a ratio closer to 1:1 (Fig. 2C).

To further explore the increase in GC B cells of infected mice lacking B cell-STAT3, 
we examined GC architecture in the spleens by immunofluorescence (Fig. 2D). MHV68 
infection of WT mice has previously been shown to result in the formation of visible, 
compact GCs within the splenic follicles (22). Interestingly, the B cell follicles appeared 
smaller and more diffuse in B cell-STAT3 KO mice than in WT spleens, even in uninfected 
animals. Upon infection, GC B cells did not remain in characteristic compact foci in B 
cell-STAT3 KO mice, instead appearing dispersed throughout the follicle and overlapping 
extensively with the follicular dendritic cell (FDC) network. In both WT and B cell-STAT3 
KO mice, most of the YFP+ cells also expressed the GC marker GL7. These data indicate 
that STAT3-KO in B cells alone led to a significantly altered splenic architecture.

B cells typically exit the GC as class-switched, long-lived memory B cells or antibody-
secreting plasma cells. STAT3 coordinates the upregulation of Prdm1, encoding Blimp-1, 
a master regulator of B cell differentiation into plasma cells in response to IL-21 (50, 
51). Plasma cells are a source of MHV68 reactivation in the spleen (52). Therefore, we 
examined plasma cell frequency and infection in the B cell-STAT3 KO mice (Fig. 2E). The 
frequency of B220loCD138+ plasma cells between WT and B cell-STAT3 KO mice was 
similar (Fig. 2E), but we observed a marked reduction (>50%) in YFP+ B cells with a 
plasma cell phenotype in the B cell-STAT3 KO mice (Fig. 2F). Together, the increase in GC 
cells, the altered GC structure, and decrease in YFP+ plasma cells clearly indicate that 
broad GC defects occur in the absence of B cell-STAT3. Collectively, this deeper analysis 
of two strains of B cell-STAT3 KO mice confirmed the requirement for STAT3 to promote 
B cell latency and revealed shifts in B cell subsets of the GC at 16 dpi. Because we 
observed similar latency and immune responses in both strains of mutant STAT3 mice, 
we proceeded with CD19cre/+Stat3 f/f-strain 2 mice for the remainder of the study.

FIG 1 (Continued)

by non-linear regression analysis; frequency values were determined by Poisson analysis, indicated by the dashed line. Symbols represent the mean ± SEM. 

Statistical significance was evaluated by two-tailed unpaired t test (B, C, D) or paired t test of the calculated frequencies (E, F). *P < 0.05; **P < 0.01; ***P < 0.001; 

****P < 0.0001.
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FIG 2 STAT3 loss in B cells leads to an aberrant germinal center response upon infection. Stat3f/f (WT) and CD19cre/+Stat3f/f 

(B cell-STAT3 KO) mice were infected with 1,000 PFU MHV68-H2bYFP by intraperitoneal inoculation and evaluated at 16 dpi. 

(A) Flow cytometry gating strategy (left panel) and quantitation (right panel) of the frequencies of GC B cells (GL7+ CD95+ 

of CD19+ CD3−). (B) Flow cytometry gating strategy (left panel) and quantitation (right panel) of the frequencies of infected 

YFP+ cells bearing GC markers. (C) Flow cytometry gating strategy (upper panel) of dark zone centroblasts (CXCR4+ CD86−) 

and light zone centrocytes (CXCR4− CD86+) as a frequency of GC B cells from naive or infected mice, and infected YFP+ B 

cells from infected mice. Quantitation of the frequencies of centroblasts of GC B cells from naive or infected mice, and infected 

YFP+ B cells (lower panel). (D) Confocal microscopy of frozen spleen sections from naive mice (left panels) or infected mice

(Continued on next page)
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Absence of STAT3 leads to dysregulated B and T cell responses at 42 dpi

Due to observed immune perturbations in B cell-STAT3 KO mice at the early phase of 
chronic infection, we analyzed the B and T cell responses at a later 42 day timepoint. 
Mice produce virus-specific antibodies in response to MHV68 infection through a CD4+ 
T cell-dependent process (53, 54). The serum IgG levels were comparable between WT 
and B cell-STAT3 KO mice (Fig. 3A), but there was a significant decrease in virus-specific 
IgG in the serum of B cell-STAT3 KO mice (Fig. 3B). Accompanying this decrease, serum 
from B cell-STAT3 KO mice had a significantly reduced neutralization capacity by plaque 
reduction assay (Fig. 3C).

We previously reported that the latency defect in B cell-STAT3 KO mice was main
tained even during the maintenance phase of infection at 42 dpi (42), and we confirmed 
this for CD19cre/+Stat3f/f-2 mice (Fig. S1). T cells and effector cytokines such as interferon 
(IFN)-γ control viral load during chronic infection with MHV68 (55). Activated, antigen-
stimulated CD8+ T cells proliferate and differentiate into short-lived effector T cells or 
memory precursor effector T cells in response to infection. The B cell-STAT3 KO mice had 
an increase in short-lived effector T cells by both percentage and total numbers when 
compared to their WT littermates 42 dpi (Fig. 3D through E). We quantified the number 
of CD44hiCD8+ T cells binding to MHC class I tetramers presenting the immunodominant 
epitope p79 derived from MHV68 ORF61 (Fig. 3F). The spleens of B cell-STAT3 KO mice 
had twice the number of p79-specific CD8+ T cells (Fig. 3G), and a greater proportion of 
these virus-specific T cells were short-lived effector T cells compared to WT mice (Fig. 3H). 
These unexpected aberrations in both the humoral and cell-mediated immune response 
confounded further mechanistic studies of B cell-STAT3 as a latency determinant and led 
us to develop an alternative mouse model to identify the B cell-intrinsic roles for STAT3.

Infection of a mixed bone marrow chimeric mouse model reveals B cell-intrin
sic role for STAT3 in GHV latency establishment

Application of mixed BM chimeras to MHV68 infection has yielded important insight 
into the effects of B cell host determinants on infection (24, 26, 56). To better define 
the B cell-intrinsic role of STAT3, we generated mixed BM chimeras to analyze MHV68 
latency in the context of the same adaptive immune response within each animal. To 
do this, CD45.2+ BM from Stat3f/ftdTomatostopf/f mice (WT STAT3 B cells) and from CD19cre/

+Stat3 f/ftdTomatostopf/f mice (STAT3 KO B cells) was mixed 1:1 and transferred into CD45.1+ 
recipients that had been irradiated for myeloablation (Fig. 4A). The tdTomatostopf/f reporter 
results in tdTomato red fluorescent protein production after Cre recombinase expres
sion. In the CD19cre/+Stat3 f/ftdTomatostopf/f mice, tdTomato expression marks B cell with 
STAT3 deletion, allowing for discrimination of STAT3 WT B cells and KO B cells. Sorted 
tdTomato+ B cells were analyzed by immunoblot to confirm the loss of STAT3 protein 
specifically in the CD19+ tdTomato+ B cell population from CD19cre/+Stat3 f/ftdTomatostopf/f 

mice but not Stat3f/ftdTomatostopf/f WT B cells that lack Cre recombinase expression (Fig. 
S2A). TdTomato expression from CD19+ B cells (Stat3f/ftdTomatostopf/f) and CD19 haploin
sufficiency (CD19cre/+) did not impact MHV68 latency (Fig. S2B through D), and the CD19cre/

FIG 2 (Continued)

(right panels) with STAT3 (Stat3f/f-2, top panels) or without B cell STAT3 (CD19cre/+Stat3 /f-2 mice, bottom panels) at 16 dpi to 

identify stromal cells (ERTR7, red), follicular dendritic cells (FDCs, blue), B220+ B cells (magenta), GC B cells (GL7, white), and 

MHV68-H2bYFP infection (green). Scale bars = microns. (E) Flow cytometry gating strategy (left panel) and quantitation (right 

panel) of the frequencies of plasma cells (CD138hiB220lo gated on CD3−). (F) Flow cytometry gating strategy (left panel) and 

quantitation (right panel) of the frequencies of infected YFP+ cells with plasma cell markers. Data shown represent the mean 

± SD of two to three independent experiments performed with four to seven mice per infected group and one to two mice 

for naive groups. Each symbol represents an individual mouse. Square symbols represent CD19cre/+Stat3f/f-1 mice, while circle 

symbols represent CD19cre/+Stat3f/f-2 mice. Statistical significance was evaluated by two-tailed unpaired t test. ***, P < 0.001; 

****, P < 0.0001.
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+Stat3 f/ftdTomatostopf/f reproduced the latency defect (Fig. S2E and F) observed for the 
CD19cre/+Stat3f/f models (Fig. 1).

At 16 dpi, CD45.2+ splenocytes from the mixed BM chimeras were sorted to isolate 
tdTomato+ (STAT3 KO) and tdTomato− (STAT3 WT) B cells. Based on a limiting dilu
tion, nested PCR for MHV68, KO B cells had a fivefold decrease in the frequency of 

FIG 3 Reduced antibody response and heightened T cell response to MHV68 infection in B cell-STAT3 knockout mice. Stat3f/f (WT) and CD19cre/+Stat3f/f-2 

(B cell-STAT3 KO) mice were infected with 1,000 PFU MHV68-H2bYFP by intraperitoneal inoculation and evaluated at 42 dpi. (A–B) Total serum IgG (A) or 

virus-specific IgG (B) from naive or MHV68-infected Stat3f/f and CD19cre/+ Stat3f/f mice measured by ELISA. (C) Virus neutralization in serum as determined by 

a plaque reduction assay. The PRNT50 value is the dilution of serum to reach 50% neutralization of plaques. Symbols represent samples pooled from three 

independent experiments as biological replicates, each performed in technical triplicate. (D) Flow cytometry gating strategy for phenotyping short-lived effector 

CD8+ T cells (SLECs). (E) KLRG1+CD127− (SLEC) of CD8+ TCRβ+ T cells by percentage of splenocytes (left panel) and total numbers per spleen (right panel). 

(F) Flow cytometry gating strategy for p79 tetramer+CD44+ (virus-specific) SLECs. (G) Total p79 tetramer+ CD44+ (virus-specific) of CD8+ TCRβ+ per spleen. 

(H) Analysis of virus-specific SLECs by percentage of spleen (left panel) and total numbers per spleen (right panel). Data shown represent the mean ± SD (A, B, E, 

G, and H) of two to three independent experiments performed with four to seven mice per infected group and one to two mice for naive groups. For A, B, E, G, 

and H, each symbol represents an individual mouse. Statistical significance was evaluated by two-tailed unpaired t test (A–C, E, G, H). **, P < 0.01; ****, P < 0.0001.
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FIG 4 Mixed bone marrow chimera models reveal intrinsic requirement for STAT3 in B cells for efficient establishment of latency with MHV68. (A) Schematic 

depiction of the generation and infection of mixed BM chimera set 1 generated by reconstitution of CD45.1+ C57/BL6-recipient mice with bone marrow from 

CD45.2+ Stat3f/ftdTomatostopf/f (WT) and CD19cre/+Stat3 f/ftdTomatostopf/f mice (B cell-STAT3 KO). (B-C) Mixed BM chimeric set 1 mice were infected with 1,000 PFU 

MHV68-H2bYFP by intraperitoneal (i.p.) inoculation and evaluated at 16 dpi. (B) Single-cell suspensions of sorted tdTomato− (WT) and tdTomato+ (STAT3 KO) B 

cells were serially diluted, and the frequencies of cells harboring MHV68 genomes were determined using limiting dilution PCR. (C) Reactivation frequencies were 

determined by ex vivo plating of serially diluted sorted tdTomato− (WT) and tdTomato+ (STAT3 KO) B cells on an indicator monolayer. Cytopathic effect (CPE) 

was scored 3 weeks post-plating. For the limiting dilution analyses (B, C), curve fit lines were determined by non-linear regression analysis; frequency values were 

determined by Poisson analysis, indicated by the dashed line. Symbols represent the mean ± SEM of three independent experiments performed with six mice per 

infected group. (D) Schematic depiction of the generation and infection of mixed BM chimera set 2 mice generated by reconstitution of CD45.1+

(Continued on next page)
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genome-positive cells (average of 1/219) compared to their WT counterparts (average of 
1/44) (Fig. 4B). The limiting dilution explant reactivation assay confirmed this decrease in 
latency establishment, but the frequency of spontaneous reactivation was not reduced 
further (Fig. 4C). These findings reinforce our initial findings (Fig. 1) and more rigorously 
demonstrate a B cell-intrinsic requirement for STAT3 in B cells for the efficient establish
ment of MHV68 latency.

To control for the haploinsufficiency of CD19 on the surface of CD19cre/+ B cells, a 
second mixed BM chimera model was generated using donor CD19cre/+Stat3+/+ BM in 
combination with BM from CD19cre/+Stat3 f/ftdTomatostopf/f mice (Fig. 4D). Flow cytometric 
analysis of the chimeras revealed an eightfold reduction in the frequency of MHV68-
infected, YFP+ STAT3 KO B cells compared to their paired WT B cell counterparts (0.06% 
versus 0.51%) in the same animal at 16 dpi (Fig. 4E). Confocal microscopy of frozen 
tissue sections of infected spleen sections from mixed BM chimeras identified STAT3 
WT (tdTomato−) and KO (tdTomato+, red) B220+ B cells interspersed throughout the 
tissue (Fig. 4F). The ratio of STAT3 WT:KO B cells was consistent with the mean 39:61 
ratio of reconstitution for the respective WT:KO B cells determined by flow cytometry. 
TdTomato+ KO B cells were rarely detected in the YFP+ population, in contrast to 
frequent detection of YFP+ tdTomato- WT B cells. This is consistent with the failure of 
KO B cells to support latency in the splenic follicle based on limiting dilution PCR (Fig. 
4B) and flow cytometric analysis of splenic single-cell suspensions (Fig. 4E). In contrast 
to the GC phenotype observed upon infection of mice that lacked STAT3 in all CD19+ 
cells (Fig. 2A), there was no difference in the frequency of GC B cells between the STAT3 
WT and KO populations in the mixed BM chimera model (Fig. 4F and G; Fig. S2G and 
H). These findings substantiate STAT3 as a B cell-intrinsic latency determinant for GHV 
latency establishment in an in vivo model of infection wherein STAT3 WT and KO B cell 
populations reside in the same animal.

The STAT3-dependent transcriptional landscape of GC B cell genes

STAT3 directly regulates host genes conducive to proliferation and plasma cell differen-
tiation in response to cytokines in the GC microenvironment, but the STAT3-dependent 
transcriptional landscape of GHV-infected GC B cells in the host has not been defined. 
Capitalizing on the ability to use flow cytometry to differentiate uninfected from YFP+ 
infected GC B cells, with and without STAT3 (tdTomato+), we sorted and collected 
specific subsets for RNA-sequencing. The CD45.2+ donor cells were gated on tdTomato 
to sort the STAT3 KO from WT B220+ B cells, followed by non-GC (GL7− CD95−) and GC 
(GL7+ CD95+) B cells (Fig. 5A). Last, the GC cells were sorted based on YFP to separate 
uninfected YFP− from infected YFP+ GC cells. In a principal component (PC) analysis, 
the non-GC and GC samples demonstrated the most difference along PC1, followed by 
separation of YFP− and YFP+ samples (Fig. 5B). The infected YFP+ WT GC segregated 
from the YFP+ STAT3 KO GC samples in PC2. Hierarchical clustering of the top 350 
variable genes across all samples revealed binodal clustering of genes based on their 
regulation in non-GC versus GC B cells (Fig. 5C).

FIG 4 (Continued)

C57/BL6-recipient mice reconstituted with bone marrow from CD19cre/+ and CD19cre/+Stat3 f/ftdTomatostopf/f mice. (E–G) Mixed BM chimera set 2 mice were infected 

with 1,000 PFU MHV68-H2bYFP by i.p. inoculation and evaluated at 16 dpi. (E) Flow cytometry gating strategy for infected (YFP+) STAT3 WT (tdTomato−) and 

STAT3 KO (tdTomato+) B cells (B220+ CD3−) followed by quantitation of the frequency of infected B cells from mixed BM chimeras. (F) Confocal microscopy of 

frozen spleen sections of spleens from chimeric mice harvested on day 16 post-infection. For immunofluorescence imaging, tdTomato+ STAT3 KO B cells are 

red; MHV68-YFP+ cells are green; FDCs are blue; and B220+ B cells are magenta. Top panels, lower magnification images; bottom panels, higher magnification 

images of top panels. Far left panels, all colors; middle left omits B220 for easier visualization of tdTomato+ B cells; middle right panel, gated on the tdTomato 

cells infected with MHV68; far right panel is same as middle right panel but masks MHV68 signal (green) for easier visualization of tdTomato+ B cells. Scale bars = 

microns. (G) Quantitation of STAT3 WT and STAT3 KO germinal center B cells of total B cells (left panel) or of YFP+ B cells (right panel) by flow cytometry. Data for 

E and G represent the aggregated data from three independent experiments performed with six to seven mice per infected group. Each group of paired symbols 

represents the WT and KO B cell populations from one chimeric animal. Statistical significance was evaluated by paired t test. *, P < 0.05; ****, P < 0.0001.
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FIG 5 RNA-sequencing of B cells from infected mixed BM chimeric mice reveals transcriptional differences intrinsic to STAT3-ablated B cells. (A) Schematic 

depiction of flow cytometry sorting strategy for B cell populations from mixed BM chimeric mice. YFP+ infected and YFP− uninfected GL7+ CD95+ germinal 

center cells were sorted and collected from tdTomato− and tdTomato+ populations 16 dpi. Non-GC (GL7− CD95−) cells were also collected for tdTomato− and 

tdTomato+ populations. (B) Principal component analysis to analyze the clustering of RNAseq samples from the indicated flow sorted populations, mixed BM 

chimeric set 2. (C) Hierarchical clustering of the top 350 differentially expressed genes (DEGs) across all samples, mixed BM chimeric set 2. (D–E) For each, volcano 

plots with significance cutoffs displaying log2 fold change versus –log10 adj P value. Heatmaps display genes with adjusted P value ≤0.05 and at least twofold 

change between indicated comparisons. Gene set enrichment analysis (GSEA) panels display HALLMARK gene sets with adjusted P value ≤0.05, |NES| ≥2. Size of 

dot represents fraction of genes from the gene set that are leading edge genes in the specified comparison. (D) Bioinformatic analysis comparing GC

(Continued on next page)
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A comparison of WT GC to WT non-GC B cells in a volcano plot that highlighted 
genes with a minimum twofold change and adjusted P value <0.05 identified the 
upregulation of GC-signature genes Aicda, Mki67, Cd80, and Fas, with downregulation 
of Foxp1 and Cd38 (57, 58). In a gene set enrichment analysis (GSEA), hallmark gene 
sets associated with proliferation, such as E2F targets, G2M checkpoint, MYC targets, and 
MTOR signaling, were positively enriched in the GC cells compared to the non-GC B cells, 
while interferon-α and IFNγ response pathways had a negative enrichment score (Fig. 
5D).

Next, KO GC cells were compared to their WT GC counterparts. Genes encoding B 
cell surface proteins IL-9R (Il9r) and CD23 (Fcer2a) were highly upregulated upon loss 
of STAT3, while known STAT3 target genes Socs3 and Prdm1 were downregulated (Fig. 
5E, upper left panel). Hallmark gene sets for G2M checkpoint, E2F targets, and MYC 
proliferative pathways were negatively enriched in the KO GC cells, in striking contrast 
to WT GC cells, and highlight the role of STAT3 as a driver of cell cycle and proliferation 
(Fig. 5E, lower left panel). Regarding upregulated gene sets, the IFNα and IFNγ response 
gene sets had the highest enrichment scores, indicating a heightened IFN profile in KO 
GC cells. An enhanced IFN response encompassed an increased transcript expression 
of IFNα and IFNγ receptors and downstream signaling molecules Stat1, Stat2, Irf9, and 
IFN-stimulated genes (ISGs) including Ebi3, Irf1, and Gbp10 in both mixed BM chimera 
data sets (Fig. 5E, right panels). In summary, the loss of the master regulator STAT3 led to 
significant changes in the transcriptional landscape of GC cells, marked by the downre
gulation of genes driving proliferation and cell cycle progression and an upregulation of 
genes driving a type I and type II IFN response in the mixed BM chimera model.

The impact of MHV68 infection and STAT3 on GC B cell gene expression

Viral gene expression was tightly restricted in GC B cells, with very low levels of 
expression across the viral genome (Table S1). Although viral gene expression was 
minimal in GC cells at 16 dpi, there was a greater than fourfold higher expression level 
of genes with functions in immune modulation (M3, mK3), viral gene transactivation 
(ORF57), and viral DNA replication (ORF6, ORF21, ORF59, and ORF61) compared to the 
mean expression level of all viral ORFs (Fig. 6A; Fig. S3). Notably, ORF6 and ORF61 are the 
source of immunodominant CD8 T cell epitopes in infected C57BL/6 mice (59). However, 
there were no significant changes in the viral gene expression profile of infected GC B 
cells in the absence of STAT3.

MHV68 infection of WT GC cells led to a multitude of host transcriptional changes. 
Hierarchical clustering of DEGs comparing infected KO and WT GC cells revealed four 
distinct clusters of genes that demarcate the combined impact of infection and the 
status of STAT3 (Fig. 6B; Table S2). Genes in cluster I were upregulated by the presence of 
the virus in WT GC but to a lesser degree in infected STAT3 KO cells; genes of this cluster 
encode Il10 and regulatory proteins, such as Pik3cb and Ret, in addition to mTOR pathway 
molecules Asns, Cdkn1a, Cth, and Trib3 (Fig. 6B and C). Gene expression in clusters II and 
III was positively or negatively regulated by STAT3, respectively. Genes in cluster II include 
STAT3-regulated genes Prdm1, S1pr1, and Socs3, while genes in cluster III include the 
regulatory factor Smad1 and the nucleotide biosynthetic molecule Upp1 (Fig. 6B and C). 
Cluster IV genes such as Fcer2a, Il9r, Aire, Vav3, Icos, and numerous interferon response 
genes were downregulated by the virus in WT infection, but this virus-driven decrease 
was blocked in the absence of STAT3 (Fig. 6B and C).

We and others previously reported a bias in the B cell immunoglobulin (Ig) repertoire 
in the context of MHV68 infection; infected B cells exhibited immunoglobulin heavy 
chain V gene usage that was non-overlapping with uninfected cells and displayed bias 

FIG 5 (Continued)

and non-GC B cells, mixed BM chimeric set 2. Heatmap (right panel) of differentially regulated GC-specific genes curated from Broad Institute GSEA gene sets. 

(E) Bioinformatic analysis comparing uninfected STAT3 KO GC B cells to uninfected STAT3 WT GC B cells, mixed BM chimera set 2. Heatmaps (right panels) of DEGs 

in replicate RNAseq data sets from mixed BM chimera sets 1 and 2; genes listed detail hallmark IFNα response and STAT3-regulated genes.
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FIG 6 Loss of STAT3 leads to a heightened interferon response in germinal center B cells. (A) Viral gene expression of infected YFP+ cells sorted from WT 

and KO GC B cells from the two mixed BM chimera experiments. Bars represent the mean of the median-scaled CPM TMM values for each group of samples. 

(B) Hierarchical clustering of differentially expressed genes (DEGs) from the comparison of infected STAT3 WT and infected STAT3 KO GC B cells in mixed BM 

chimera set 2, with the addition of uninfected GC B cells and separated into four distinct clusters of gene expression patterns. Output generated in Morpheus, 

https://software.broadinstitute.org/morpheus. These were filtered to retain only genes with adj P value ≤0.05 and at least twofold change comparing infected 

WT and infected KO GC B cells. (C) Heatmap visualization of select gene expression across uninfected and infected GC samples in mixed BM chimera set 2. Il10

(Continued on next page)
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in lambda light chain (34, 60). Here, comparison of infected with uninfected WT GC cells 
revealed the downregulation of multiple Ig heavy chain and light chain V genes (Fig. 6D, 
upper panel). The predominant IgH V genes were distinct in the infected GC compared to 
their uninfected WT counterparts from both sets of BM chimera models (Fig. S4A and B). 
Additionally, we confirmed that infected cells utilize lambda light chain more frequently 
(Fig. S4C and D).

Broadly, the comparison of infected to uninfected WT GC B cells by volcano plot 
revealed more host genes were downregulated (756 genes) than upregulated (426 
genes) (Fig. 6D, upper panel). Loss of STAT3 in B cells altered the infected GC profile, 
leading to upregulation of 362 genes and downregulation of 315 genes ((Fig. 6E, upper 
panel). GSEA identified positive enrichment for MYC targets, oxidative phosphorylation, 
and MTOR signaling upon MHV68 infection of WT GC B cells, highlighting the increased 
expression of genes involved in cell cycle progression and metabolism (Fig. 6D, lower 
panel), similar to reports for primary B cells newly infected with EBV (61). In contrast, 
MYC and MTOR gene sets were negatively enriched when comparing infected KO and 
infected WT GC cells, suggesting that signatures of proliferation in the infected B cells 
are dependent on STAT3 (Fig. 6E, lower panel). Consistent with the known impacts of 
MHV68 in blocking host IFN responses (62–67), there was a negative enrichment for 
genes involved in response to IFNα and IFNγ in the infected WT GC B cells (Fig. 6D). This 
includes the downregulation of signaling molecules Stat2 and downstream ISGs Gbps 2b, 
6, 8, and 10, Oasl2, Tap1, Usp18, and Trim21 (Fig. 6C; Fig. S5). STAT3 negatively regulates 
the type I IFN response by induction of the suppressor of cytokine signaling factor 3, 
Socs3, that suppresses STAT1 and STAT2, in addition to repression of Irf9 transcription and 
by direct binding of STAT1 partners (68–70). Socs3 was downregulated in the absence 
of STAT3 in sorted GC B cells (Fig. 6C and E), as validated by qRT-PCR in B cells from 
infected mice (Fig. S6). Consistent with decreased expression of Socs3, GSEA revealed an 
enrichment in genes associated with IFNα and IFNγ responses in infected KO compared 
to infected WT GC cells in mixed BM chimera samples (Fig. 6E; Fig. S5). Taken together, 
MHV68 infection reprograms GC B cells in vivo to upregulate networks that promote 
proliferation while impairing genes associated with IFN responses. This virus-induced 
signature is reversed in the absence of STAT3.

Reduction of CD23 expression on infected B cells is influenced by STAT3

A comparison of infected KO GC with infected WT GC cells uncovered significant changes 
in genes with functional links to biological processes of B cells in the absence of STAT3, 
including regulatory proteins (Socs3, Pik3b, Vav3, and Cdkn2a), transcription factors 
(Prdm1 and Aire), and cell surface proteins that mediate responses to the microenviron
ment to influence B cell differentiation (S1pr1, Il9r, and Fcer2a). (Fig. 6C and E, upper 
panel). Fcer2a encodes the low-affinity IgE receptor commonly known as CD23, a surface 
marker that has been reported to promote B cell activation and to function as a negative 
regulator of IgE responses (71–73). In agreement with RNAseq, Fcer2a transcript levels 
were markedly upregulated in KO B cells compared to WT B cells that were isolated 
from naive and MHV68-infected mice (Fig. S6C and D). Further validation was revealed 
by flow cytometric analysis of CD19+ B cell subsets. The frequency of CD23hi B cells was 
significantly reduced in WT-infected mice but only slightly diminished in B cell-STAT3 
KO mice (Fig. 7A, right panel). The WT B cells directly infected with MHV68 (YFP+) had 

FIG 6 (Continued)

and STAT3 target genes Socs3 and Prdm1 are included for reference. The remaining genes are DEGs from (B) or leading-edge genes common to both mixed 

BM chimera data sets. Leading edge genes from the hallmark IFNα response, IFNγ response, and mTOR signaling gene sets as revealed from pre-ranked GSEA 

of the infected KO GC versus infected WT GC B cell are noted, along with genes with roles in B cell biology and broader cellular processes. (D–E) Bioinformatic 

analysis comparing infected WT germinal center to uninfected WT GC B cells (D) and infected KO GC to infected WT GC B cells (E). Upper volcano plots display 

log2 fold change versus –log10P value for mixed BM chimera set 2. Hist1h2bg reflects the H2b-YFP fusion gene delivered by the recombinant MHV68-H2bYFP 

reporter virus. Lower GSEA panels display hallmark gene sets with adj P value ≤0.05, |NES| ≥1.5 that were common to both mixed BM chimera data sets. Size of 

dot represents fraction of genes from the gene set that are leading edge genes in the specified comparison.
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a threefold lower CD23hi expression compared to STAT3 KO cells (Fig. 7A). Next, we 
examined whether MHV68 infection of primary B cells ex vivo impacts CD23 surface 
expression via STAT3. Primary B cells from WT and B cell-STAT3 KO mice were infected 
and analyzed at 3 dpi. MHV68 infection led to an increase in STAT3-Y705 phosphorylation 
in the YFP+ subset, indicating that direct infection activates STAT3 (Fig. S7A). Infection 

FIG 7 IL-21-stimulated reduction of CD23 surface expression is dependent on STAT3. (A) Left panel, histogram depiction of surface CD23 expression on B cells 

from naïve mice compared to B cells or YFP+ B cells from infected WT (Stat3f/f) or B cell STAT3 KO (CD19cre/+Stat3f/f) mice at 16 dpi based on flow cytometric 

analysis. Middle and right panels are the quantitation of the frequency of CD23hi B cells from the indicated populations. Symbols represent individual mice ± SD 

from one (YFP+ B cells) to six (B cells from naïve and infected mice) independent experiments performed with three to seven mice per infected group and one 

to two mice per naive groups. (B) Frequency of Stat3f/f and CD19cre/+Stat3f/f B cells with CD23hi expression upon mock or MHV68 infection, 3 dpi. (C) Left panel, 

histogram depiction of CD23hi B cells from anti-CD40 MHV68-infected cultures treated concurrently without or with IL-21 for 3 days, as indicated. Right panel, 

gated histogram data summarized in bar graphs. (D) Histogram depiction of CD23 surface expression on EBV+ GM12878 lymphoblastoid B cell lines (LCLs) that 

express Cas9 in addition to control sgRNA or sgRNA targeting STAT3. Cells were mock stimulated or stimulated with IL-21 (100 ng/mL) for 6 days. Statistical 

significance was evaluated by one-way ANOVA followed by Sidak’s multiple comparisons or an unpaired one-tailed t test for the YFP+ cell analysis; ***, P < 0.001; 

****, P < 0.0001 ; ns, P > 0.05.
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also led to a twofold decrease in the frequency of WT B cells with CD23hi expression (Fig. 
7B) and a fourfold decrease in Fcer2a transcript levels (Fig. S6E), but no significant change 
was observed between uninfected and infected B cells lacking STAT3. Taken together, 
the repression of CD23 transcript and surface expression on murine B cells upon MHV68 
infection are mediated in part by STAT3.

IL-21 signaling in B cells is necessary for the efficient establishment of latency with 
MHV68 (24). IL-21 is a well-known activator of STAT3 (Fig. S7B) that promotes B cell 
activation and germinal center processes leading to plasma cell differentiation (74–
76). Consistent with previous reports (71, 77), activation of CD40 signaling led to the 
upregulation of CD23 from 37% to 94% of WT (Stat3f/f) B cells, while IL-21 in combination 
with α-CD40 significantly reduced CD23hi expression to 60% on WT B cells (Fig. S7C). 
This IL-21-stimulated downregulation was largely reversed in STAT3 KO B cells (CD19cre/+ 

Stat3f/f). In the context of MHV68 infection, IL-21 in combination with α-CD40 led to a 
twofold reduction in CD23hi WT B cells that was partially restored in the absence of 
STAT3 (Fig. 7C). The analysis of this STAT3-dependent IL-21 downregulation of CD23 was 
extended to an EBV+ lymphoblastoid B cell line (LCL), which highly expresses CD23 (78). 
Surface CD23 levels were greatly diminished on LCL GM12878 upon a 6-day treatment 
with IL-21. However, CRISPR-mediated knockout of STAT3 rendered two independent LCL 
cultures non-responsive to IL-21-induced loss of surface CD23 (Fig. 7D). These findings 
reveal a role for STAT3 in regulating the CD23 surface molecule on B cells in response to 
IL-21 in the context of GHV infection.

DISCUSSION

Here, we aimed to identify transcriptional and functional roles for STAT3 in B cells newly 
infected with a gammaherpesvirus in vivo. First, we verified a significant defect in latency 
establishment in two strains of B cell-STAT3 knockout mice. This decrease in virus latency 
was accompanied by an increase in GC B cells and a reduction of infected plasma 
cells. Our analyses identified altered GC architecture in B cell-STAT3 KO mice, along with 
reduced virus-specific antibody production, and a heightened CD8 T cell response. This 
perturbed immune response led us to develop a mixed BM chimera model wherein 
STAT3 KO B cells and WT B cells were both present as potential reservoirs of latency in the 
same host microenvironment. B cells lacking STAT3 were not able to compete with their 
wild-type counterparts to support GHV latency at 16 dpi. To dissect the transcriptional 
consequences of STAT3 loss, RNA sequencing was performed on sorted STAT3 WT and KO 
GC B cells, with and without MHV68 infection. Our analysis revealed that STAT3 targets 
pathways associated with proliferation and interferon responses in GC B cells infected 
with MHV68.

We previously reported a requirement of STAT3 to support the efficient establishment 
of latency in a B cell-STAT3 KO mice model (42). Briefly, infection of B cell-STAT3 KO 
mice led to a reduction in splenic latency and an increase in GC B cells 16 dpi. Here, 
we expand upon these results in a second strain of STAT3 KO mice and report new 
findings of alterations in the virus-specific immune response that call attention to the 
role for STAT3 in GC development after virus infection. Immunization of STAT3-KO mice 
with ovalbumin led to a notable decrease in GC B cells, short-lived GC structures, and a 
decrease in plasma cells (79). MHV68 infection resulted in an increase in total GC B cells 
in B cell-STAT3 KO mice, but immunofluorescence of infected spleen sections revealed 
smaller follicles with less organized GCs in B cell-STAT3 KO mice (Fig. 2D). MHV68 
infection of mice leads to an increase in highly proliferative centroblasts compared 
to centrocytes within the infected GC population, as well as the total GC population 
(22, 24). In the absence of STAT3, we observed a reduced frequency of centroblasts in 
naive mice, as well as those infected with MHV68, with the ratio further skewed toward 
centrocytes in the infected GC population (Fig. 2C). The aberrant GC architecture and the 
reduction in centroblasts at 16 dpi along with the reduction in virus-specific antibodies 
suggest that GC cycling between dark and light zones may be disrupted in GCs of mice 
lacking STAT3 in B cells. Recently, STAT3fl/flCD23Cre mice were reported to have defects 
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in GC organization due to aberrant light zone to dark zone recycling upon antigen 
immunization or influenza virus infection (80). In an analysis of the STAT3-regulated 
GC transcriptome, pathways involving Myc, E2F, and mTORC1 signaling were strongly 
enriched (80), demonstrating common biologic roles for B cell STAT3 identified from our 
analysis of MHV68-infected CD19cre/+Stat3f/f mouse models.

In the GC reaction, B cells differentiate and exit the GC as class-switched, long-lived 
memory B cells or antibody-secreting plasma cells. STAT3 coordinates the upregulation 
of Prdm1, encoding Blimp-1, which is a master regulator of B cell differentiation to 
plasma cells in response to IL-21 (50, 51). These plasma cells are a source of MHV68 
reactivation in the spleen (52), and long-lived plasma cells are a long-term latency 
reservoir in the bone marrow, which led us to examine plasma cells in the B cell-STAT3 KO 
mice. There was no difference in plasma cell frequency at 16 dpi, although there was a 
decrease in infected (YFP+) plasma cells in B cell-STAT3 KO mice. This phenotype was also 
reported for MHV68 infection of IL-21R KO mice, where IL-21 signaling is necessary for 
latency establishment (24). Regarding chronic infection at 42 dpi, there was a significant 
reduction in virus-specific IgG (Fig. 3B) and virus-neutralizing activity in serum (Fig. 3C) 
from B cell-STAT3 KO mice. We note that the defect in B cell infection was observed even 
earlier at 12 dpi, but the limited number of infected cells precluded an in-depth analysis 
of this population.

The latency-associated M2 protein of MHV68 is critical for viral latency establishment 
in mice (81, 82). M2 induces high levels of IL-10 secretion in B cells and drives B cells to 
differentiate into plasmablasts in vivo (38–40). IL-10 is an anti-inflammatory cytokine that 
suppresses natural killer and T cell effector responses (83). An increase in virus-specific, 
short-lived effector CD8+ T cells (SLECs) was noted in the B cell-STAT3 KO mice at 42 
dpi (Fig. 3H). The heightened virus-specific CD8+ T cell response may be a byproduct of 
the latency defect in B cell-STAT3 KO mice, driven by a reduction in MHV68 M2-driven 
production of the immunosuppressive cytokine IL-10. This finding is consistent with 
reports of increased virus-specific effector T cells in mice infected with a recombinant 
MHV68 virus that does not express the viral M2 protein (38).

Mixed BM chimeras have been employed to bypass immune defects caused by global 
deletion of signaling molecules CD40 and IL-21R or NF-κB p50 (24, 26, 56). Here, BM from 
STAT3 B cell-competent and -ablated mice was mixed to create an in vivo model wherein 
STAT3 WT and KO B cells are simultaneously evaluated for their ability to support latency, 
in the context of the same microenvironment and immune response to infection. This 
model reveals that the loss of STAT3 leads to a marked reduction in MHV68+ B cells (Fig. 
4B and E), confirming that STAT3 is required to promote B cell latency by GHV in the GC. 
This rigorous analysis supports STAT3 as a B cell-intrinsic host factor essential for latency 
establishment in primary B cells.

This is the first report of an unbiased transcriptional profile of MHV68-infected GC B 
cells. We capitalized on our ability to distinguish STAT3 KO B cells from WT counterparts 
based on Cre-inducible tdTomato expression in STAT3 KO B cells and the YFP reporter 
gene from MHV68-H2bYFP. Fluorescence-activated cell sorter (FACS) sorting for non-GC 
and GC subsets, with and without STAT3, with and without infection, followed by RNAseq 
enabled us to define the multitude of changes to the transcriptional landscape of GC B 
cells driven by the virus and those changes that are dependent on STAT3 (Fig. 5C). GSEA 
of GC B cells revealed a virus-driven enrichment for MYC targets and metabolic processes 
of oxidative phosphorylation and mTOR, while IFNα and γ responses are diminished. MYC 
plays a major role in GC processes, regulating GC B cell entry and cycling between dark 
and light zones (84). Absence of MYC leads to reduced numbers of affinity-matured B 
cells within the GC. The impairment of MYC leads to the collapse of established GCs (85). 
Comparing STAT3 KO and WT GC B cells, there was a negative enrichment for MYC target 
genes by GSEA, consistent with the role for STAT3 in MYC-driven proliferation (86, 87).

MHV68 encodes numerous proteins to bypass the IFN response and promote 
replication and latency. MHV68 ORF11 and ORF36 interfere with IRF3 binding, blocking 
the transcription of IFNβ (63, 66). In addition, MHV68 ORF54 induces degradation of 
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IFNAR1 to block IFN signaling (64), while the latency protein M2 impairs downstream 
IFN signaling by inducing the downregulation of STAT1 and STAT2 (62). We observed low 
transcript levels of these ORFs in YFP+ GC cells at 16 dpi (Fig. 6A). A consistent finding 
in the comparison of STAT3 WT and KO GC B cells was the positive enrichment for IFN 
response pathways in uninfected and infected STAT3 KO B cells. IFN responses restrict 
MHV68 latency through the induction of interferon-stimulated genes, which typically 
promote an antiviral state (5, 88–91). Host factors that restrict MHV68 infection include 
those that promote IFN production like IRF3 and IRF7, and those that respond to IFN to 
directly induce ISG transcription like IRF1, STAT1, and STAT2 (62, 65, 92–95). Mice lacking 
STAT1, IFN-αβ receptor, or combination IFN-αβ and IFN-γ receptors succumb to infection 
with MHV68 (96), stressing the importance of the IFN response in combating the virus. In 
the absence of STAT3, there was an upregulation of ISGs such as Oasl2 and the family of 
guanylate-binding proteins (GBPs). Many of these ISGs have known antiviral function; the 
human homolog of murine Gbp2b is human GBP1, and it was recently reported to block 
KSHV capsid transport by disrupting cytoskeletal actin networks (97). However, ISGs such 
as Usp18 and Trim21 that negatively regulate the IFN response were also upregulated 
(98, 99). A subset of patients with autosomal dominant hyper-IgE syndrome caused 
by loss-of-function mutations in STAT3 have been observed to develop a lupus-like 
syndrome involving heightened type I IFN responses (100). Further studies are required 
to clarify the net impact of these dysregulated ISGs on early events in gammaherpesvirus 
infection in de novo-infected primary B cells. STAT3 has been reported to negatively 
regulate the type I and II IFN responses by upregulating Socs3, repressing the transcrip
tion of IRF9, STATs 1, and 2, and competing for binding with STAT1 to reduce ISGF3 
transcriptional complex formation (68–70). While we observed consistent downregula
tion of Socs3 in the absence of STAT3 in GC B cells of infected mice, the mechanism 
by which STAT3 suppresses IFN responses in MHV68-infected B cells, via either direct or 
indirect regulation, requires additional investigation.

The loss of STAT3 in GC B cells led to the downregulation of known STAT3 target 
genes, Prdm1, S1pr1, and Socs3, but also revealed the dysregulation of Il9r that encodes 
the receptor for IL-9 and Fcer2a that encodes CD23, the low-affinity IgE receptor. We 
observed that IL-21 suppresses CD23 expression in primary B cells at least in part 
through STAT3, consistent with transcript upregulation previously reported in an RNAseq 
data set of a diffuse large B cell lymphoma cell line treated with an shRNA targeting 
STAT3 (68). CD23 was downregulated in total splenic B cells upon MHV68 infection 
in mice and upon ex vivo infection of primary B cell cultures, even more so in the 
directly infected cells (Fig. 7A). CD40-ligation leads to the induction of CD23 on the 
surface of activated B cells (71). We observed that IL-21 reversed CD40 induction of 
CD23 in a STAT3-regulated manner, leading us to postulate that STAT3 is repressing 
CD23 expression through IL-21 signaling. Hyper-IgE syndrome patients have autosomal 
dominant loss-of-function mutations in STAT3, in whom naive and memory B cells are 
noted to have heightened CD23 surface levels (101). Future studies are needed to define 
the STAT3-dependent mechanism of CD23 downregulation in response to infection or 
IL-21. While the functional consequence of CD23 loss for B cells infected with MHV68 
is unclear, caution is warranted when using CD23 to demarcate follicular B cells in the 
context of MHV68 infection.

EBNA2, a key latency-associated transactivator and transforming factor of EBV, and 
RTA, the master lytic transactivator of KSHV, each upregulate the CD23 promoter through 
interactions with host RBP-Jkappa (102–104). CD23 expression is an indicator of B cell 
activation and surface CD23 complexes with surface CD21 and IgE (71, 73). Soluble 
CD23 (sCD23) is released upon metalloproteinase cleavage and mediates activation and 
differentiation of lymphocytes (72). sCD23 regulates IgE synthesis in human B cells, likely 
by binding CD21 and membrane IgE (105). Membrane and sCD23 are induced by RTA 
and EBNA2 (102, 106), and transfer of conditioned media containing sCD23 leads to 
activation of lymphocyte cultures (102). EBV+ LCLs express LMP1, a potent activator of 
STAT3, and EBNA2, a known activator of STAT3 and inducer of CD23 (107, 108). IL-21 
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treatment promotes the proliferation of EBV+ diffuse large B cell lymphomas, inducing 
LMP1, STAT3 activation, and MYC expression (109). Our finding that IL-21 treatment 
led to CD23 downregulation in EBV+ LCLs that retain STAT3 but not in those silenced 
for STAT3 expression suggests that CD23 induction by EBNA2 is lost in the absence of 
IL-21-induced STAT3 activation. Taken together, these findings suggest that a dynamic 
shift in STAT3 signaling occurs upon engagement of GHV-infected B cells with the GC 
cytokine IL-21. One outcome is the reduction in the levels of CD23, a B cell activation 
factor that has two mechanisms of action. Determining the consequences of these 
changes, and whether CD23 functions directly via receptor-mediated signaling on the 
infected B cell or indirectly via sCD23 shed into the GC microenvironment, will require 
careful delineation.

Our study highlights STAT3 signaling as a critical host pathway commandeered by 
GHVs to promote latency. We report that the requirement for STAT3 in MHV68 latency 
establishment is intrinsic to the infected B cell. STAT3 is activated upon MHV68 infection, 
and those infected B cells have gene signatures that partially overlap with signatures of 
virus-driven reprogramming reported for EBV and KSHV (110, 111). Understanding the 
virus-host interplay during long-term latency and how the GHVs utilize host factors and 
pathways to develop cancers is paramount. KSHV miRNAs block STAT3, and inhibition 
of STAT3 increases reactivation from latency (112). While there is a long-term latency 
defect in B cell-STAT3 KO mice 42 dpi, the role of STAT3 in the maintenance of MHV68 
has not been investigated. A recent study reveals a role for the STAT3-activating cytokine 
IL-16 in inhibiting MHV68 reactivation through the STAT3-p21 axis (113). Though the use 
of JAK and direct STAT3 inhibitors show promise in clinical trials, deeper understanding 
of the role of STAT3 in viral persistence is required, as some GHV cancers may lose 
their dependency on STAT3 (114). This study provides a comprehensive examination 
into understanding signaling downstream of STAT3 in GHV infection in vivo by transcrip
tional profiling of the major B cell latency reservoir. Future studies to delineate factors 
downstream of STAT3 in the context of GHV latency will reveal new avenues of treatment 
important for the prevention and treatment of GHV-driven malignancies.

MATERIALS AND METHODS

Animal models

Strain 1 designates Stat3f/f mice with exons 12–14 flanked by loxP elements (44), and 
Strain 2 designates Stat3f/f mice with exons 18–20 flanked by loxP elements [B6.129S1-
Stat3tm1Xyfu/J] (The Jackson Laboratory, Bar Harbor, ME) (45). CD19cre/cre mice [B6.129P2(C)-
Cd19 tm1(cre)Cgn/J] (Jackson) were crossed with Strain 1 and Strain 2 mice to generate Stat3f/

fCD19cre/+-1 and -2 mice, respectively. Stat3f/f and Stat3f/fCD19cre/+ mice used in pathogen
esis experiments were littermates derived from crossing Stat3f/f mice with Stat3f/f mice 
heterozygous for CD19cre; sexes were randomly assigned to experimental groups.

TdTomatostopf/f mice [B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J] (Jackson) were crossed 
with Stat3f/f CD19cre/+ mice for multiple generations to generate CD19cre/+Stat3 f/ftdTo
matostopf/f mice. First, a male CD19cre/+Stat3f/f mouse was crossed with a female tdTo
matostopf/f mouse generating progeny mice that were heterozygous at the CD19, Stat3, 
and tdTomato loci. Next, an F1 cross was set up with a male and female mouse of 
the following genotypes: CD19cre/+Stat3 f/+tdTomatostopf/+ and CD19+/+Stat3 f/+tdTomatostopf/+. 
Progeny mice from this pairing were then set up for an F2 cross, consisting of a male 
and female pairing of the following genotypes: CD19cre/+Stat3 f/+tdTomatostopf/f and CD19+/

+Stat3 f/+tdTomatostopf/f. Mice produced from this F2 cross maintained floxed alleles for 
both the Stat3 and tdTomato loci as follows: CD19cre/+Stat3 f/ftdTomatostopf/f and CD19+/

+Stat3 f/ftdTomatostopf/f. To maintain the colony and produce mice for experiments, parings 
were set up which consisted of the following genotypes: CD19cre/+Stat3 f/ftdTomatostopf/f 

and CD19+/+Stat3 f/ftdTomatostopf/f. Mice were backcrossed for at least five generations 
before experiments were performed.
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CD19cre/+ mice were generated by crossing CD19cre/cre mice with C57BL/6 mice. Ly5.1 
(CD45.1) [B6.SJL-Ptprca Pepcb/BoyJ] (Jackson) were the recipient mice for bone marrow 
chimera studies. All mice were bred at the Stony Brook University Division of Labo
ratory Animal Research facility or the National Institutes of Health Division of Veteri
nary Resources, unless stated otherwise. Mice were housed in a specific pathogen-free 
environment, and all mouse experiments were performed in accordance with guidelines 
under protocols approved by the Institutional Animal Care and Use Committee of Stony 
Brook University and the NCI Animal Care and Use Committee.

Generation of mixed bone marrow chimeric mice

Recipient Ly5.1 (CD45.1) [B6.SJL-Ptprca Pepcb/BoyJ] (Jackson) at 6 weeks of age were 
gamma irradiated with 900 rads, in split dose. Next, mice were injected retro-orbitally 
with two million bone marrow cells isolated from donor CD19cre/+Stat3 f/ftdTomatostopf/f 

(KO) and Stat3f/ftdTomatostopf/f (WT) mice at a 50% WT:50% KO bone marrow ratio for the 
first set of chimeras or with five million bone marrow cells isolated from donor CD19cre/

+Stat3 f/ftdTomatostopf/f (KO) and CD19cre/+ (WT) mice at a 30% WT:70% KO bone marrow 
ratio for the second set of chimeras. All female mice were used; there is no discernible 
difference between male and female mice with respect to establishment of MHV68 latent 
infection. Mice were treated with acidified water 2 weeks prior to and after irradiation. 
Verification of chimerism was performed 6 weeks post transfer through collection of 
blood by submandibular bleed, followed by flow cytometry. The mean reconstitution 
ratio was 66% WT:34% KO cells for the first set of chimeras and 39% WT:61% KO for the 
second set of chimeras.

Cells and viruses

Recombinant MHV68 expressing H2bYFP fusion protein (rMHV68-H2bYFP) was used for 
the infection (115). Mice (8–12 weeks old) were infected by intraperitoneal injection with 
1,000 PFU in 0.5 mL under isoflurane anesthesia. Mouse spleens were homogenized, 
treated to remove red blood cells, and passed through a 100-µm-pore-size nylon filter. 
For ex vivo experiments, flow sorting, and RNA-sequencing, splenocytes were subject 
to negative selection to enrich for B cells (Pan B Cell Isolation Kit; Stemcell, Vancouver, 
BC, Canada). Cells were counted using Vi-CELL BLU Cell Viability Analyzer (Beckman 
Coulter, Pasadena, CA). Blood was collected posthumously by cardiac puncture. Serum 
was collected after a centrifugation at 20,000 × g for 20 min at room temperature.

For STAT3 knockout in the EBV+ LCLs, single-guide RNA (sgRNA)-directed CRISPR-Cas9 
gene knockout was performed as previously described (116). In brief, two independent 
STAT3 targeting sgRNAs (GAGACCGAGGTGTATCACCA and AACATGGAAGAATCCAACAA) 
from Brunello library (117) were cloned into pLentiGuide-puro (a gift from Feng Zhang, 
Addgene # 52963). Lentiviruses were produced by transfection of 293T cells and used to 
transduce Cas9+ GM12878 LCLs as previously described (116, 118). In parallel, GM12878 
were transduced with control lentivirus expressing an sgRNA targeting GFP (pXPR-011, 
a gift from John Doench). Transduced LCLs were selected by puromycin (3 ug/mL, 
Invitrogen) for 3 days.

Cell stimulation and ex vivo virus infection

For cytokine stimulations ex vivo, primary murine splenocytes were harvested from 
spleens of Stat3f/f and Stat3f/fCD19cre mice. Single-cell suspensions were subjected to 
negative selection to enrich for B cells (Pan B Cell Isolation Kit; Stemcell, Vancouver, 
BC, Canada). Primary B cells were plated in a 96-well plate at a concentration of 4–
5 × 105 cells/mL, in 200 µL of primary B cell media (RPMI 1640 supplemented with 
20% FBS, HEPES, non-essential amino acids, sodium pyruvate, penicillin/streptomycin, 
L-glutamine, β-mercaptoethanol). rMHV68-H2bYFP was added at an MOI of 20 in the 
presence of polybrene, followed by centrifugation at 1,500 × g for 1 h at RT, and 
resuspended in 250 µL primary B cell media supplemented with 5 µg/mL LPS (Sigma) 
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overnight. Cells were treated with 10 µg/mL anti-CD40 (BioLegend) or 25 ng/mL murine 
IL-21 (PeproTech), alone or in combinations, as indicated. For ex vivo infection, primary B 
cells were plated at a cell density of 1 × 106 cells/mL, in 200 µL of primary B cell media in 
each well of a 24-well plate.

At day 6 post puromycin selection, Cas9+ GM12878 cells were seeded at a density of 
5 × 105 cells/mL in RPMI with 10% fetal bovine serum (FBS; Gibco) in 12 well plates. LCLs 
were mock stimulated with PBS or with IL-21 (BioLegend, 100 ng/mL in PBS). LCLs were 
re-seeded in fresh culture medium supplemented with IL-21 every 2 days and assayed by 
FACS at the end of 6 days.

Limiting dilution analysis of latency and reactivation

To determine the frequency of cells harboring the viral genome as an indicator of 
latency, single-cell suspensions were analyzed by single-copy-nested PCR as previously 
described (119). To determine the frequency of cells harboring latent virus capable 
of reactivation upon explant, single-cell suspensions were plated in 12 serial twofold 
dilutions on a monolayer of MEF cells prepared from C57BL/6 mice and scored for CPE 
3 weeks after plating. Parallel samples were mechanically disrupted using a Mini-Bead
Beater prior to plating on the monolayer of MEFs to release preformed virus and score for 
preformed infectious virus (119).

Immunoblotting

Total protein lysate was harvested in lysis buffer [150 mM sodium chloride, 1.0% 
IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 50 mM 
Tris (pH 8.0)] supplemented with a protease inhibitor cocktail (Sigma, St. Louis, MO). 
Proteins were separated on 4%–20% SDS-PAGE gels and transferred to a polyvinylidene 
fluoride membrane. Antibodies against STAT3 (clone K-15; Santa Cruz Biotechnology, 
Dallas, TX) and α-tubulin (clone B-5-1-2; Sigma) were detected using secondary anti-
mouse (Rockland, Limerick, PA) or secondary anti-rabbit (Invitrogen, Grand Island, NY) 
antibodies by immunoblot analysis with an Odyssey Imager (Li-COR Biosciences, Lincoln, 
NE).

Flow cytometry

For the analysis of murine B cells and T cells, 2 × 106 splenocytes were resuspended 
in 50 µL of FACS buffer (PBS with 2% FBS) and blocked with TruStain fcX (clone 
93; BioLegend, San Diego, CA). The cells were washed and stained to identify B cell 
subsets with fluorophore-conjugated antibodies against CD45.2 (clone 104), CD19 (clone 
6D5), B220 (clone RA3-682), CD138 (clone 281-2), CD95 (clone 15A7), CD21 (clone 7E9), 
CD23 (clone B3B4), CXCR4 (clone L276F12), CD86 (clone GL-1), and CD3 (clone 17A2) 
or biotinylated antibody against GL7 (clone GL-7) that was detected using secondary 
streptavidin-conjugated allophycocyanin-cyanin7. T cell subsets were identified with 
antibodies against CD4 (clone GK1.5), CD8 (clone 53-6.7), CD44 (clone IM7), CD127 (clone 
A7R34), KLRG1 (clone 2F1/KLRG1), TCRβ (clone H57-597). H-2K(b)-p79 MHC-peptide 
complex was provided as biotinylated monomers by the NIH tetramer core facility and 
reconstituted with streptavidin-conjugated allophycocyanin. For STAT3-Y705 phosphor
ylation detection, cells were blocked with TruStain fcX before staining for surface 
markers. Following fixation and permeabilization with Fixation/Permeabilization Kit (BD 
Biosciences, San Jose, CA), cells were permeabilized a second time in ice cold 100% 
methanol for 20 min. Cells were then stained with PE anti-STAT3 Phospho (Tyr705) 
antibody (Biolegend). For sorting, splenocytes were first enriched for B cells by depletion 
of non-B cells with magnetic microbeads (Pan B Cell Isolation Kit; Stemcell, Vancouver, 
BC, Canada) and then sorted using antibodies described above on a FACSAria III sorter 
(BD Biosciences) or MoFlo sorter (Beckman Coulter, Indianapolis, IN) into cold FACS 
buffer. All antibodies were purchased from BioLegend, Invitrogen, or BD Biosciences. The 
data were collected using a CytoFLEX flow cytometer (Beckman Coulter) and analyzed 
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using FlowJo v10.8.1 (Treestar Inc., Ashland, OR). Dead cells were excluded based on 
Alexa Fluor 700 NHS Ester uptake. Doublets were excluded through forward scatter-
height by forward scatter-area parameters.

For the analysis of EBV+ LCLs, cells were washed once with FACS buffer (2% FBS in 
PBS) and then stained with APC conjugated anti-CD23 (5 uL per samples) for 30 min at 
room temperature. Stained cells were washed twice with FACS buffer and analyzed by 
flow cytometry on a BD FACSCalibur instrument.

Enzyme-linked immunosorbent assay

To measure total IgG levels and antibody specificity in the serum, plates were coated 
with either 2 µg/mL of donkey anti-mouse IgG (Affinipure; Jackson ImmunoResearch 
Laboratories, West Grove, PA), carbonate buffer (0.0875 M Na2CO3, 0.0125 M HCO3, 
pH 9.2) or 0.5% paraformaldehyde-fixed viral antigen-carbonate buffer and incubated 
overnight at 4°C. Coated plates were washed in PBS with 0.05% Tween 20 (PBS-T) and 
blocked in 3% milk-PBS-T prior to incubation with serial dilutions of serum or the mouse 
IgG standard (Invitrogen, Jackson ImmunoResearch) in 1% milk-PBS-T for 2 h at RT. IgG 
was detected by the use of horseradish peroxidase-conjugated donkey anti-mouse IgG 
(Jackson ImmunoResearch), SureBlue TMB (SeraCare, Milford, PA), and stop solution, and 
absorbance at 450 nm was read on FluoStar Omega (BMT Labtech, Cary, NC).

Neutralization assay

Neutralization was tested by means of a plaque reduction neutralization test adapted 
from reference (54). Briefly, threefold serum dilutions, starting from an initial concentra
tion of 1:80 in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% FBS, 
100 U/mL penicillin, 100 µg/mL streptomycin, and 2 mM L-glutamine, were incubated 
with 150 PFU of MHV68 on ice for 1 h. The virus/serum mixture was then added to a 
sub-confluent BHK21 monolayer (4 × 104 cells/well) plated the previous day in a 24-well 
plate, in triplicate. As a control, three wells received no-serum-added virus. Plates were 
rocked every 15 min for 1 h at 37°C. Infected cells were overlaid with 1.5% methyl 
cellulose solution in DMEM containing 2.5% FBS and incubated at 37°C for 3–4 days. 
Methylcellulose media was then aspirated, and cell monolayers were stained with a 
solution of crystal violet (0.1%) in formalin to facilitate identification and quantification of 
plaques. Percent neutralization was determined by comparison of the number of plaques 
in experimental wells compared to no-serum-added control wells, and each data point 
was the average of three wells.

Immunofluorescence

For confocal microscopy of frozen spleen sections, spleens were removed at the 
indicated day post-infection, fixed in periodate-lysine-paraformaldehyde fixative for 
48 h, and then moved to 30% sucrose/PBS solution for 24 h. Tissues were embedded 
in optimal-cutting-temperature medium (Electron Microscopy Sciences) and frozen in 
dry-ice-cooled isopentane. 16-µm sections were cut on a Leica cryostat (Leica Microsys
tems, Buffalo Grove, IL). Sections were blocked with 5% goat, donkey, bovine, rat, or 
rabbit serum and then stained with a combination of the following Abs: ERTR7 (Abcam, 
Boston, MA), B220 (clone RA3-6B2, Biolegend), GL7 (clone GL-7, Thermo Fisher Scientific), 
and CD21/35 (clone eBio4E3, eBioscience, San Diego, CA). Sections were incubated with 
secondary antibodies as needed and for controls, and images were acquired on a Leica 
SP8 or Stellaris Confocal microscope. To increase staining intensity of MHV68, spleens 
were stained with anti-GFP Ab (EPR14104, Abcam) and goat anti-chicken Alexa Fluor 
488 (ThermoFisher Scientific, Waltham, MA). Images were processed and analyzed using 
Imaris software 8.0 (Oxford Instruments). Where indicated, the spots function of Imaris 
was used to identify and create spots for MHV68+ cells. Spots were masked on TdTomato 
expression inside the spot to reveal MHV68+ tdTomato+ cells, referred to as “gated.”
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RNA-sequencing

A quantity of 5 × 104 cells sorted on the markers of interest by flow cytometry were spun 
down, resuspended in 50 µL of TRIzol, and stored at −80°C. GENEWIZ (South Plain
field, NJ) performed RNA extraction, quality control, library preparation, and Illumina 
sequencing.

The custom reference genome allowing quantification of both viral and host 
expression used in this alignment (“mm10_MHV68YFP_Krug”) consisted of the mouse 
reference (mm10/Apr. 2019/GRCm38) with a modified MHV68 sequence added as an 
additional pseudochromosome. This viral genome was prepared from the annotated 
herpesvirus genome (NCBI reference U97553.2) with the addition of a CMV-driven 
histone 2b-YFP fusion gene locus found in the recombinant MHV68-H2bYFP. The custom 
gene annotations used for gene expression quantification consisted of a concatenation 
of the mm10 GENCODE annotation version M21 [99] and annotations of the MHV68 
genome. The first annotation (“mm10_MHV68YFP_Krug_Ov”) measures expression using 
complete viral ORF annotations, including those regions that overlap. In the second 
annotation (“mm10_MHV68YFP_Krug_NoOv”), overlapping regions of the viral ORFs 
were removed to create a minimal, non-overlapping annotation. This second annotation 
was used to make conservative estimates of the expression of individual viral genes 
reported here.

Raw sequencing files were aligned and counted using the CCR Collaborative 
Bioinformatics Resource in-house pipeline (https://github.com/CCBR/Pipeliner). Briefly, 
reads were trimmed of low-quality bases, and adapter sequences were removed using 
Cutadapt v1.18 (http://gensoft.pasteur.fr/docs/cutadapt/1.18). Mapping of reads to the 
custom reference hybrid genome described below was performed using STAR v2.7.0f in 
two-pass mode (120, 121). Then, RSEM v1.3.0 was used to quantify gene-level expres
sion (122), with quantile normalization and differential expression of genes analysis 
performed using limma-voom v3.38.3 (123). The data discussed in this publication, 
the custom genome reference FASTA, and both annotation GTFs have been deposited 
in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession 
GSE227765.

Bioinformatics analysis and visualization

Data analysis and visualization were performed in the NIH Integrated Analysis Portal 
(NIDAP) using R programs developed on Foundry (Palantir Technologies) for normali
zation, differential expression analysis, GSEA, and visualization. First, raw counts were 
imported and transformed to counts per million (CPM) and filtered to retain genes 
that had at least two samples with non-zero CPM counts in at least one group. Next, 
quantile normalization and batch correction across samples were used to account for 
factors that would prevent direct comparisons between samples. Heatmaps were created 
using the quantile-normalized, batch-corrected RNA-seq data. A principal component 
analysis demonstrating the within- and between-group variance in expression after 
dimensionality reduction was generated using NIDAP. Differential expression of genes 
analysis utilized log2-CPM transformed raw counts, implemented with the Limma Voom 
R package. Volcano plots were created from DEG analysis of each comparison highlight
ing significant fold changes (log2 fold change) >1 or <−1, with a significant P value (adj 
P value <0.05). GSEA in NIDAP used the Limma Voom calculated t-statistic ranking to test 
comparisons against the Broad Institute GSEA hallmark-curated gene sets. Bubble plots 
generated to display GSEA outputs were generated using SRPLOT (http://www.bioinfor
matics.com.cn/plot_basic_gopathway_enrichment_bubbleplot_081_en).

Gene signatures were developed using the Molecular Signature Database [MSigDB, 
(124)] with GO annotations provided by the Gene Ontology resource (125, 126). Germinal 
center signature was developed using intersection of the following GO data sets: 
GO:0002314, GO:0002467, GO:0002636, and GO:0002634, accessed on 15 December 
2022. Viral infection signature was developed using intersection of the following GO 
data sets: Hallmark: MM3877, GO:0016032, GO:0039528, GO:0045071, GO:1903901, and 
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GO:0002230. Hierarchical clustering heatmaps were generated using Morpheus (https://
software.broadinstitute.org/morpheus). Hierarchical clustering for all samples or 350 
top variable genes was performed using a one minus pearson correlation metric, with 
complete linkage. CPM trimmed mean of M (TMM) values for viral ORFs were normalized 
using a scaling factor generated from median total viral counts of samples within a data 
set.

Statistical analyses

Data were analyzed using GraphPad Prism software (Prism 8; GraphPad Software, Inc., 
La Jolla, CA). Significance was evaluated by unpaired two-tailed t test, paired t test, 
one-way ANOVA, or paired one-tailed t test of the log-transformed frequency values of 
samples from matched experiments, as noted. Using Poisson distribution analysis, the 
frequencies of latency establishment and reactivation from latency were determined by 
the intersection of non-linear regression curves with the line at 63.2%.
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