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Summary 
 
Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal 
cultures. MEA recordings can also reveal microscale functional connectivity, topology and network 
dynamics—patterns seen in brain networks across spatial scales. Network topology is frequently 
characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for 
analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA 
network analysis pipeline (MEA-NAP) for raw voltage time-series acquired from single- or multi-well MEAs. 
Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences 
in network development, including topology, node cartography, and dimensionality. MEA-NAP 
incorporates multi-unit template-based spike detection, probabilistic thresholding for determining 
significant functional connections, and normalization techniques for comparing networks. MEA-NAP can 
identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and, thus, 
can provide a translational platform for revealing mechanistic insights and screening new therapeutic 
approaches. 
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Introduction 
Microelectrode array (MEA) recordings from in vitro models of brain development and disease offer a 
cellular-scale platform for mechanistic and therapeutic studies in 2D murine or human-derived neuronal 
cultures and lately in 3D human cortical organoids. The parallel streams of information acquired from the 
MEA enable investigation of the patterns of functional connectivity and network topology that develop in 
these microscale functional networks in vitro 1,2. These features provide an electrophysiological phenotype 
of the effects of disease-causing genetic mutations on the efficiency of information processing 3 and can 
be used to understand differences in computational performance in human cerebral organoids 4. 
 
Patterns of functional connectivity and network topology observed at whole-brain level have revealed 
multiple organizing principles that are correlated with higher efficiency of cognitive processes, including 
the development of hubs and small-world topology 5. Computational tools for analyzing networks at the 
whole-brain level are widely used, including the Brain Connectivity Toolbox 6. Similar patterns and motifs 
in the functional connectivity and network topology have been observed at the microscale level in murine 
monolayer 7,8 and human-derived organoid 9 neuronal cultures. Yet relatively few studies of MEA 
recordings from 2D or 3D neuronal cultures, or complex organoids, go beyond measures of activity or 
correlation alone 10. This is primarily due to the limited availability of computational tools to reveal significant 
functional connectivity and to compare network metrics between cultures at different ages, species, cell-
type diversity, or in different conditions that affect network size and/or density 10.  
 
Here, we created the MEA network analysis pipeline (MEA-NAP) as a diagnostic tool for exploring 
functional connectivity and network topology in MEA recordings. Our work introduces several network 
analysis methodologies to facilitate analyses of microscale functional neuronal networks. We demonstrate 
their utility by analyzing several datasets from human-derived and murine cultures. Together, these 
methods expand our understanding of brain network development and dysfunction, and they make it 
possible to use the methods popularized by the Brain Connectivity Toolbox across spatial scales. MEA-
NAP is suitable for users without prior knowledge of network neuroscience, since it provides a single 
toolbox for batch analysis of entire experiments of MEA recordings. This streamlines the analysis of MEA 
recordings, combining robust spike (action potential) detection using template-based methods, comparison 
of action potential firing and burst rates, inferring functional connectivity from significant correlated activity, 
and comparison of network features including the topology and network dynamics. Importantly, MEA-NAP 
provides advances over existing tools through integrated validation, visualization, and statistical tools. In 
particular, MEA-NAP provides multi-unit spike detection with validation tools for comparing different 
template- and threshold-based methods. MEA-NAP automatically generates figures with scaling to 
individual MEA recordings and to the entire dataset to facilitate comparisons at the electrode, recording, 
and entire-dataset level. MEA-NAP successfully identifies network features in the development of 2D or 
3D, murine or human-derived neuronal cultures recorded with Multi-channel Systems (MCS) standard 
density single-well (60 electrodes) or Axion Biosystems multi-well (64 electrodes) MEA systems. MEA-
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NAP compares patterns of network activity over different time points (e.g., development) and between 
conditions (e.g., genetic mutations, drug application, other perturbation experiments) revealing how 
functional networks form in different types of murine and human-derived neuronal cultures and how they 
are affected by pharmacologic or optogenetic stimulation.  

Results 
 
MEA-NAP is a user-friendly MATLAB tool 
 
MEA-NAP is designed to batch analyze MEA recordings from an entire experiment for users who have 
little-to-no expertise in MATLAB, or network science, and to be customizable for more experienced users. 
The inputs to the pipeline are MEA recordings (raw or filtered voltage time series) imported to MATLAB.  
Figure 1 provides an overview of MEA-NAP’s five steps.  In Step 1, spike detection is performed to identify 
action potentials detected from the multi-unit activity at individual electrodes (nodes). In Step 2, the 
neuronal activity, including mean firing and network burst rates, are compared by age and group (e.g., 
genotype). In Step 3, significant functional connections (edges) between pairs of nodes are inferred from 
correlated spiking activity using the spike time tiling coefficient (STTC) 11 and probabilistic thresholding. In 
Step 4, graph theoretical metrics from the Brain Connectivity Toolbox and other network metrics are 
evaluated for each age and experimental condition. In Step 5, statistical comparisons and feature selection 
are performed. At each step, MEA-NAP automatically generates informative figures to facilitate 
visualization of neuronal activity and network features at the electrode, recording, and entire-dataset level 
and validation of spike detection, probabilistic thresholding, and other parameters. Therefore, MEA-NAP 
provides a diagnostic tool for examining microscale functional network features in neuronal cultures.  We 
exploited this approach to robustly apply network analysis methods from the wider field of network 
neuroscience to MEA recordings of neuronal cultures to facilitate the comparison of microscale functional 
networks in early development and disease in in vitro human-derived or animal, 2D or 3D models.    
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Figure 1. Overview of analysis pipeline steps. A. Illustration of microelectrode array (MEA) network 
analysis pipeline (MEA-NAP) steps.  MEA data from 60- (Multichannel systems single well) or 64-electrode 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.578738doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578738
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

(Axion Biosystems, 6-well plates) MEA systems serves as input to the pipeline.  1. Spike detection is 
performed to extract the action potential time series from each electrode.  2. Neuronal activity compares 
the spike and burst frequency within and between MEA recordings. 3. Functional connectivity is 
determined from significant pairwise correlation of the neuronal activity. 4. Network activity compares 
multiple network topological features.  5. Statistical analysis illustrates age and group comparisons.  
 
Multi-unit template-based spike detection shows high sensitivity and specificity in a 3D human 
cerebral organoid 
 
Human cerebral organoids offer an exciting platform for studying brain development in health and disease 
because they recapitulate both the cell-type diversity and some of the 3D architecture, such as cortical 
layering, of the human brain 3. We previously identified functional connectivity in a novel air-liquid interface 
cortical organoid (ALI-CO) model 9.  We sought to expand and improve the tools for characterizing neuronal 
activity, functional connectivity, and network topology in ALI-COs and other 3D human cerebral organoids 
models through new features in MEA-NAP.  One of the key challenges in analysis of MEA recordings from 
3D human cerebral organoids (Figure 2A) is the detection of multi-unit activity due to the higher density of 
neurons near each electrode, compared to 2D cultures. The amplitude of the action potentials from 
different neurons near an individual electrode will vary based on the distance from the electrode and other 
features (Figure 2B), which can lead to a trade-off in sensitivity or specificity when threshold-based 
methods, such as those commonly included with the MEA system acquisition software, are used.  
 
To address this challenge, MEA-NAP has the option to run one or multiple spike detection methods, and 
it provides validation tools to compare how the spike detection methods perform on specific experimental 
datasets (Figure 2C). In contrast to most publicly available and commercial tools for spike detection, MEA-
NAP offers template-based spike detection with the continuous wavelet transform 12,13 to identify spikes 
based on their waveform, using MATLAB built-in wavelets. The main advantage of template-based over 
threshold-based spike detection methods is that they can increase both sensitivity and specificity by 
identifying action potentials based on their morphology. Template-based spike detection is less sensitive 
to large artifacts (noise deflections) and differences in spike frequency between recordings than threshold-
based methods. We compared the template-based spike detection using three MATLAB built-in wavelets 
(bior1.5, bior1.3, db2) and threshold-based spike detection using three mean absolute deviations (3,4,5) 
on MEA recordings from a human cerebral organoid (Figure 2A) before and after application of 1 μM 
tetrodotoxin (TTX), which effectively inhibits action potentials. The wavelets detect more spikes than 
thresholds 4 and 5  (Figures 2B and 2C). Threshold 3 detects a larger number of spikes, as shown in the 
running average of the number of spikes detected by each method in the baseline recording (Figure 2C, 
left panel); however, the lower specificity of threshold 3 than the template-based methods is revealed in 
the TTX condition (Figure 2C, right panel). Multi-unit spike detection of action potentials detected by one 
or more wavelets was highly specific for action potentials (Figure 2D, p<1e-5, paired t-test) and was used 
to create a raster plot of the neuronal activity in the MEA over the 6-minute recording (Figure 2E). 
Importantly, depending on the signal-to-noise ratio and the goodness of fit of selected templates to the 
action potential morphology, different spike detection methods may perform better on some datasets (e.g., 
2D versus 3D, human versus murine cultures) than others. In MEA-NAP, users can select a single method 
(wavelet- or threshold-based) or to combine methods to achieve multi-unit spike detection. When 
combined, spike times detected by different methods are compared first to ensure that spikes detected by 
multiple wavelets or thresholds are only counted once for the downstream comparisons of neuronal activity 
and network features.  
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Figure 2. MEA-NAP offers template-based multi-unit spike detection and automated analysis of 
functional connectivity and network topology in 3D human cerebral organoids. A. Representative 
photo of an air-liquid interface cortical organoid (ALI-CO) on the microelectrode array (MEA). Scale: 
electrodes (black circles) are 200 μm apart. B. Sample 60-ms-long voltage trace (black line) from a single 
electrode showing comparison of spikes detected by the continuous wavelet transform with templates 
bior1.3, bior1.5, and db2 and by a median absolute deviation threshold of 3, 4 and 5 (colored triangles) in 
a days-in-vitro (DIV) 154 ALI-CO.  Dashed lines show thresholds (3, 4, 5 in the same colors as triangles). 
Scale bars: vertical 20 uV, horizontal, 2 ms. C. Comparison of spike detection methods with running 
averages of spikes per second for all electrodes in the MEA for each method (colored lines, see legend) 
over a 6-minute baseline recording (left) and after application of 1 μM tetrodotoxin (TTX) to block action 
potentials (right). D. Scatter with half-violin plot of density curve for mean firing rate by electrode during 
baseline recording and after TTX using the multi-unit template-based spike detection. Mean (black circles) 
± SEM (error bars). *** p<0.00001 (paired two-tailed t-test). Where error bars are not visible indicates the 
SEM was smaller than the size of the circle.  E. Raster plot shows firing rate (spikes per second, color bar 
on right) for each electrode (row) over the 6-minute recording using the multi-unit template-based spike 
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detection. F. Adjacency matrix shows correlation coefficient (spike time tiling coefficient, color bar) for 
significant functional connections (edges) between pairs of electrodes (nodes).  Significant edges 
determined using probabilistic thresholding.  G. Graph of network illustrating functional connectivity in the 
ALI-CO. Nodes show node strength (circle size) and edge weight (line thickness) strength of connectivity. 
Only edges with edge weight greater than 0.55 are plotted to show the strongest functional connections. 
Node color (scale bar) represents local efficiency. H. Summary of nodal-level graph metrics for the DIV154 
ALI-CO. Diagrams depict nodal-level graph metrics. Scatter plots show values for individual nodes (small 
gray circles), mean ± SEM (large black circle with error bars), and density curves.  
 
To infer significant functional connectivity, MEA-NAP applies probabilistic thresholding to determine 
significant functional connections using the spike time tiling coefficient (STTC) 11. Probabilistic thresholding 
facilitates robust comparison of network features where the network size and density may vary—such as 
with age or disease condition—while retaining weak but significant connections 14,15. MEA-NAP calculates 
the STTC for the spike trains from each pair of electrodes. Next circular shifts are performed on one of the 
spike trains for each pair. This method of rearranging the spike train preserves the number of action 
potentials and the distribution of interspike intervals. The STTC is calculated again for each iteration for 
each pair. A functional connection was determined when the real STTC was greater than 95th percentile 
of the STTC values from the circular shifts. The significant pairwise correlations are represented in the 
adjacency matrix (Figure 2F), and the functional connectivity is visualized in the spatial arrangement of the 
MEA (Figure 2G). Graph theoretical metrics were calculated and examples of node-level features in the 
network are shown (Figure 2H). The MEA recording from the days-in-vitro (DIV) 154 ALI-CO shows dense 
network activity with high mean node degree (number of significant connections per node) and participation 
coefficient (Figure 2H). This indicates that the neurons in the ALI-CO have many connections distributed 
throughout the network and participate in the overall network activity, rather than their activity being 
restricted to smaller modules or subcommunities of neurons within the ALI-CO. 
 
MEA-NAP reveals development of functional connectivity and network topology in 2D human iPSC-
derived NGN2 cortical cultures 
 
2D human iPSC-derived neuronal cultures show a developmental increase in firing rates and bursting 
activity that may reveal disease-related phenotypes at the microscale 16,17. MEA-NAP efficiently analyzes 
MEA recordings from neurogenin 2 (NGN2) iPSC-derived cortical cultures (Figure 3A), quantifying and 
visualizing firing rates and bursting activity, including network bursts. Raster plots of individual recordings 
from the same culture illustrate the increase in firing rate from DIV14 to 35 and the development of network 
bursts by DIV 35 (Figure 3B). Network bursts were defined as bursts of action potentials detected in 3 or 
more electrodes within a given time frame, or lag, in milliseconds using the ISIN method 18. To address the 
effect of age on the development of neuronal activity, functional connectivity, and network topology metrics, 
we applied a one-way ANOVA and the Tukey-Kramer method to adjust for multiple pairwise comparisons. 
NGN2 iPSC-derived cortical cultures showed a significant increase in the number of active 
electrodes  (p=8e-7), mean firing rate (p=7e-6), fraction of bursts occurring in network bursts (p=7e-4), 
mean network burst rate (p=0.02) between DIV 14-35 (Figures 3C-3F). This was accompanied by a 
significant decrease in the interspike interval (ISI) within (p=2e-4) and outside network bursts (p=4e-4; 
Figures 3G and 3H). MEA-NAP goes beyond existing computational tools to perform batch analysis 
comparing the development of functional connectivity and network topology (Table S1). MEA-NAP 
generated graphs of the significant functional connectivity in MEA recordings from individual cultures at 
DIV 14-35 (Figure 3I). As illustrated by the size of the node, the node degree (number of significant 
connections) was not uniform across all electrodes, with the neurons near a subset of electrodes being 
more connected. The edge weight (strength of connectivity) also varied. The network density (proportion 
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of significant connections from all possible connections, p=0.002) and top 10% of edge weight (p=4e-5) 
significantly increased from DIV 14-35 (Figures 3J and 3K). The number of modules significantly decreased 
from DIV 14-35 (p=0.01), while the mean participation coefficient (proportion of a node’s connections 
distributed among different modules) in the top 10% of nodes significantly increased from DIV 14-35 
(p=0.001). At DIV 14-28, the network topology approaches a randomly connected network (Figure 3N). 
However, by DIV35, small-world networks form as well as networks which approach a lattice-like (more 
highly connected) network.  The mean small-worldness coefficient (ω)19 approached zero, indicating small-
world topology, at DIV35 compared to more positive values at DIV 14-28 (p=3e-4), indicating a more 
random network. MEA-NAP includes visualization tools for comparing the choice of STTC lag on 
downstream graph theoretical metrics (Figure 3O).  The difference in small-worldness at DIV35 was not 
dependent on the choice of lag (10, 25 or 50 ms) used to determine significant functional connections with 
the STTC.  
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Figure 3. Human 2D NGN2 iPSC-derived cortical cultures develop microscale functional networks. 
A. Photo of NGN2 neurons on an Axion 64-electrode MEA. Scale bar 0.5 mm. B. Raster plots of the last 
4 minutes of representative 10-minute MEA recordings from days-in-vitro (DIV) 14, 21, 28 and 35 from the 
same culture show increase in firing and burst rates. C-H. Scatter plots with mean ± SEM (black circles & 
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lines) and density curves show a developmental increase in number of active electrodes (C), mean firing 
rate (D), fraction of in-network bursts (E), and network burst rate (F) and a decrease in the mean ISI within 
(G) and outside (H) of network bursts (n=15 cultures). I. Representative graphs of the development of 
microscale networks from DIV 14-35 from a single culture. Node strength (circle size), edge weight (line 
thickness) and density (number of lines), and participation coefficient (node color) increased over 
development. J-L. Illustrations (left) of each network metric with nodes (blue circles) and edges (lines). 
Scatter plots (right) for each metric with mean ± SEM and density curves show a developmental increase 
in the network density (J) and mean of the top 10% of edge weights (K). The number of modules (L) 
decreased, while the mean participation coefficient of the top 10% of nodes (M) increased.  N. Scatter 
plots with mean ± SEM and density curves show the small-worldness coefficient (ω). Values near 1 
represent more randomly connected networks, while values approaching 0 indicate small-world networks 
and -1 lattice-like (highly connected) networks. O. Line graph of mean (lines) ± SEM (shading) for the 
small-worldness coefficient (ω) at DIV 14-35 as calculated with three different spike time tiling coefficient 
(STTC) lags (10, 25, 50 ms).  Statistical significance was determined with a one-way ANOVA and the 
Tukey-Kramer method to adjust for multiple post-hoc comparisons. * p<0.05, **p<0.01, *** p<0.001  
 
Node cartography identifies the development of hub nodes in microscale functional networks  
 
To examine the roles of neurons, or groups of neurons, in the network activity, we applied node cartography 
20 (Figure 4A) in MEA-NAP. This method uses the within-module z-score and the participation coefficient 
for each node to distinguish between hubs, non-hubs and peripheral nodes (Figure 4B). Hub nodes 
connect local clusters, modules, or subcommunities and facilitate participation in the overall network 
activity 21.  Hub nodes exist at the brain-region 5 to microscale 7 levels and have been shown, for example 
in in vivo microscale murine hippocampal networks, to be stable over time using two-photon calcium 
imaging 22. Importantly, functional magnetic resonance imaging (fMRI) of brain networks reveals that hub 
nodes are critical for efficient task performance at the cognitive level, allowing for information processing 
that is integrative across the whole network and segregated into subcommunities 23. To determine hub and 
non-hub roles in neuronal cultures, the role designation boundaries are automatically determined in MEA-
NAP using a density landscape based on the distribution of the within-module z-score and the participation 
coefficient values for the entire dataset (Figure 4C). We applied node cartography to MEA recordings from 
2D murine cortical cultures revealing both hub and non-hub nodes (Figure 4D) and a developmental 
increase in kinless hub and non-hub  neurons from DIV 14-28 (Figure 4E and 4F, p<0.001, one-way 
ANOVA, with post-hoc paired t-tests for age). This example in wild-type mice illustrates how node 
cartography in MEA-NAP could be used in murine disease models to identify developmental differences 
in hub nodes. This may be particularly important for elucidating microscale functional network defects in 
genetic causes of autism spectrum disorder and intellectual disability.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.578738doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=86478&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=338402&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3904718&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5930874&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9645678&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3930587&pre=&suf=&sa=0
https://doi.org/10.1101/2024.02.05.578738
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 
Figure 4. Node cartography reveals the roles of individual nodes in network activity. A. Schema of 
a network shows 7 different node cartography roles including hub (blue) and non-hub (green and gray) 
designations. B. Diagram shows how node cartography roles (colors) are determined based on the within-
in module degree z-score and participation coefficient.  C. Scatter plot of node cartography (color) for a 
representative 2D mouse cortical culture at days-in-vitro (DIV) 14. Boundaries (dashed lines) for 
determining hub versus non-hub and subtypes were automatically set for the experimental dataset in MEA-
NAP using the density landscape (not pictured). D. Network plot with node cartography (color) in the spatial 
arrangement of the MEA. Nodes (circles) and edges (lines) show functional connectivity for the 
representative culture in C. E. Circular network plots show development of node cartography (colors) and 
functional connectivity (lines show edges) for representative 2D mouse cortical culture from DIV 14-28.  
Line thickness represents edge weights (scaled for each DIV) to show modularity.  F. Comparison of the 
proportion of node cartography roles (colors) for the entire dataset of 2D mouse cortical cultures (n=19) 
from DIV 14-28. Mean (solid lines) ± SEM (shading). There were significant effects of age (* p<0.001, one-
way ANOVA). 
 
Identification of subcommunities within microscale functional networks based on the network 
dynamics 
 
Dimensionality reduction methods can detect patterns of activity observed in multiple nodes within the 
network 24 and can reveal population-level effects of age or condition not apparent from pairwise metrics 
used elsewhere in MEA-NAP. Dimensionality reduction approaches are commonly applied to multi-unit 
recordings of neuronal activity in in vivo animal models and can capture complex population-level 
responses on cognitive tasks 25. Thus, this approach can also provide a link between network development 
and disease perturbations observed in vitro through MEA recordings of neuronal cultures and relevance 
of these features for microscale information processing at the macroscale level in vivo. Dimensionality 
reduction also provides a complementary approach to the metrics based on pairwise comparisons in MEA-
NAP, such as number of modules, within-module z-score, and participation coefficient for identifying 
subcommunities in the microscale networks. 
To identify the participation of neurons near individual electrodes in functional subnetworks in MEA 
recordings, MEA-NAP applies non-negative matrix factorization (NMF). This approach has been applied 
at the macroscale to fMRI in humans, where the participation of individual nodes in multiple subnetworks 
correlated with task-based flexibility and performance 26,27, and at the microscale to in vivo MEA recordings 
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in rat, where NMF detected the onset and spread of induced epileptic activity 28. We utilized NMF to 
compare the development of subcommunities in 2D murine cortical and hippocampal cultures (Figure 5). 
To illustrate how NMF reveals differences in the patterns of activity in MEA recordings, we first selected 
representative raster plots from MEA recordings of DIV 21 cortical and hippocampal cultures with similar 
firing rates (Figure 5A). Although both raster plots show network bursts, the raster plots of the top three 
NMF components reveal different patterns of activity underlying the bursting activity (Figure 5B). The NMF 
components are ranked based on the percent of the variance observed in the MEA recording. MEA-NAP 
quantified the number of NMF components in two ways. First, MEA-NAP calculated the number of NMF 
components that explained 95% of the variance observed in the MEA recordings was quantified (Figure 
5C). Second, the number of significant NMF components was determined by comparing the number of 
NMF components from a random spike time matrix created by shuffling the time series in the original 
recording (Figure 5D). These complementary methods allow comparisons of the number of dominant (or 
major) NMF components identified in the MEA recordings and the total number of components.  This may 
be particularly important, for example, in disease models where bursting activity is preserved or enhanced 
leading to a similar number of dominant patterns but activity of subgroups or modules in the network 
(activity observed outside of the bursts) is lost.  The 2D murine cortical cultures showed a higher mean 
number of significant NMF components than hippocampal cultures (Figure 5E) despite similar (DIV 14)---
or even smaller (DIV 21-28)---mean network size (Figure 5F and 5G). Thus, NMF analysis revealed that 
cortical cultures can support a larger number of patterns of activity than hippocampal cultures, in which the 
firing of action potentials outside of network bursts becomes less frequent over early development (DIV 
14-28) compared to cortical cultures 29. Thus, NMF analysis can facilitate age and/or experimental 
condition comparisons of the ability of microscale functional networks to support a diversity of patterns. 
 
MEA-NAP also applies effective rank 30 to MEA recordings of neuronal activity. Effective rank provides a 
continuous measure of the dimensionality of the population activity. Thus, it bypasses the need for 
heuristics, such as the elbow method, that are commonly used to determine the number of significant 
dimensions in principal components analysis (PCA). In contrast to the NMF analysis, effective rank 
provides a single number representing the number of patterns or subcommunities within the network. An 
effective rank of one indicates fully correlated activity across all nodes in the network, while an effective 
rank equal to the number of recorded nodes indicates independent activity in all nodes. Effective rank can 
be compared across networks of different size (e.g., over development in vitro) by dividing it by the number 
of active electrodes, what we have termed relative effective rank. In the murine 2D cultures, the mean 
effective rank was higher in cortical than hippocampal cultures at DIV 14 and 21 (Figure 5H). This finding 
was consistent with the NMF analysis that identified more patterns of activity in the cortical cultures.    

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.578738doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=10626007&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4494210&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15543233&pre=&suf=&sa=0
https://doi.org/10.1101/2024.02.05.578738
http://creativecommons.org/licenses/by-nc-nd/4.0/


13  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.578738doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578738
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

Figure 5. Dimensionality reduction approaches reveal fewer subcommunities in 2D mouse 
hippocampal than cortical cultures. A. Raster plots of representative MEA recordings from 2D primary 
cortical (left) and hippocampal (right) murine cultures at DIV 21 show action potential firing rate (binned by 
100 ms) by electrode (rows) for 10 minutes of spontaneous activity.  B. Raster plots of the top three non-
negative matrix factorization (NMF) components for the MEA recordings in A. C. Number of NMF 
components that explained 95% of variance (dashed gray line) in the MEA recordings in A. D. Comparison 
of the mean square root residual by the number of NMF components for the MEA recordings in A (blue 
line) and the MEA recordings shuffled. The number of significant components (dashed line) was 
determined where the mean square root residual from the observed recordings was greater than that from 
the shuffled recordings (random). E-H. Scatterplot, mean ± SEM, and density curves for number of NMF 
components (E), network size (F), number of NMF components normalized by network size (G), and 
effective rank (H) comparisons by age and cortical (CTX, orange) versus hippocampal (HPC, red) cultures. 

Discussion 
Main findings 
 
Here we provide evidence that MEA-NAP can be exploited as a user-friendly computational tool for batch 
analysis of MEA data revealing functional connectivity, network topology and network dynamic features in 
3D brain organoids and 2D human-derived or murine neuronal cultures. MEA-NAP includes a user-friendly 
GUI and detailed documentation to assist users new to MATLAB, MEA analysis, and/or network science.  
MEA incorporates leading methods for robust spike detection, including template-based methods, and for 
determining functional connectivity, including combining the spike time tiling coefficient with probabilistic 
thresholding to identify significant connections. MEA-NAP incorporates many graph theoretical metrics 
from the Brain Connectivity Toolbox and other sources along with state-of-the-art methods for normalizing 
network metrics. MEA-NAP integrates null models to determine significant network features including the 
development of small-world topology. MEA-NAP reveals the functional connectivity and network topology 
in 3D human cerebral organoids and 2D human NGN iPSC-derived cortical cultures. MEA-NAP introduces 
node cartography for MEA recording and adapts the density landscape approach to automatically 
determine hub role boundaries for each dataset. This approach reveals an increase in hub nodes and 
integration of nodes into the overall network activity in murine cortical cultures over early development  
Dimensionality reduction methods in MEA-NAP including NMF and effective rank reveal subcommunities 
of neurons within the networks by their patterns of activity observed in multiple electrodes that were greater 
in cortical than hippocampal murine cultures. 
 
Comparison with other publicly available tools 
 
MEA-NAP incorporates methods for analyzing functional connectivity, network topology, and 
dimensionality reduction from multiple disciplines of network science and adapts these methods for robust 
application to microscale functional networks in MEA recordings (Tables S1 and S2). We compared MEA-
NAP’s performance on the dataset from Schroeter et al. (2015). MEA-NAP recapitulates the development 
graph theoretical metrics in these 2D hippocampal cultures (Figure S1).  MEA-NAP expands the offering 
beyond current publicly available MEA and network toolboxes (Tables S3 and S4) through creating a 
streamlined approach for batch analysis from comparison of spike detection methods (including template-
based methods) to inferring significant functional connections and comparing network topological and 
dynamic features.  MEA-NAP has been adapted for and tested on multiple MEA systems (Multi-channel 
Systems and Axion Biosystems) and on recordings from 2D and 3D murine or human-derived neuronal 
cultures. MEA-NAP automatically generates the figures needed to examine both the validity and the age 
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and genotype comparisons.  This is particularly helpful for users new to MATLAB and/or network science. 
MEA-NAP also facilitates comparisons with other microscale network approaches. In vivo calcium imaging 
of the rodent hippocampus has identified hubs that are stable over time. This approach provides single-
cell resolution and can connect network topological features to task performance 22,31. Functional 
connectivity and network topology analysis of MEA recordings provide a complementary approach. MEA 
recordings have a higher temporal resolution necessary for detecting action potentials, and late embryonic 
and early postnatal time points in network development can be studied before in vivo imaging is practicable. 
 
Limitations 
 
MEA-NAP is designed for 60-electrode (Multi-channel Systems) or 64-electrode (Axion Biosystems) 
microelectrode arrays. Although advanced MATLAB users can adapt the code to accommodate other 
electrode numbers, spatial arrangements, and/or spike-sorted data from in vivo recordings (e.g., 
Neuropixel), multiple topographical features may not work on MEAs with too few electrodes (e.g., 12 or 
16) and the computational time necessary to determine functional connectivity in higher numbers of 
electrodes (e.g., 384 electrodes or high-density arrays) may be too long. The default parameters set for 
the spike detection (CWT, cost parameter), burst detections, and functional connectivity (lag) have been 
tested on a variety of datasets from 2D and 3D, mouse and human, different disease models. However, 
the user will need to confirm that these parameters are performing well on their data.  We have tested MEA 
data acquired at 12.5 and 25 kHz for 5 to 12 minutes. Longer recording times may require more 
computational time and/or resources. 
 
Spikes detected at individual electrodes may originate from one (single unit) or more (multi-unit) neurons 
near each electrode. MEA-NAP uses this multi-unit activity. The network features compared in MEA-NAP 
are seen across spatial scales in the brain. We chose not to incorporate spike sorting, as it is difficult to 
establish a ground truth to validate even the leading spike sorting methods on one’s own experimental 
data. For determining significant functional connections, the spike time tiling coefficient (STTC) is in most 
cases rate-independent 11; however, the choice of STTC lag can alter downstream graph metrics. Thus, 
the lag comparison tools in MEA-NAP should be used.  Probabilistic thresholding is less likely to introduce 
false positives or negatives than absolute or proportion thresholding 14. We have incorporated leading 
methods for determining significance in multiple network metrics; however, adjustment of the p value for 
multiple comparisons should be considered based on the experimental design 32. Users are encouraged 
to perform pre-power analysis and “mask out” any comparisons with insufficient power 33. 
 
Broader Application 
 
We created MEA-NAP to facilitate application of network-level analysis to MEA recordings performed by 
neurobiologists studying in vitro models of neuronal development and disease.  In addition, our data 
provides an extensive reference resource for neuronal network behavior studies. MEA-NAP can reveal 
how perturbations such as genetic mutations in human iPSC-derived or mouse models impact functional 
connectivity, network topology and network dynamics at the microscale. Thus, MEA-NAP can also inform 
mechanistic and therapeutic studies in vitro.   Future application of MEA-NAP to microscale functional 
networks observed in MEA recordings from patient iPSC-derived neurons can be compared to application 
of graph theoretical metrics in functional imaging or EEG students in the same patient or patient 
populations. Combining these approaches could decipher the missing link between microscale and 
macroscale brain development and dysfunction in neurologic and psychiatric disorders 34.     
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Methods 

Murine 2D cultures 
 
Cell culture initiation. The MEA recordings and methods for the murine primary hippocampal cultures 
were previously published 8.  For the murine primary cortical cultures, neonatal C57BL/6J mice were 
sacrificed at postnatal day 0 in accordance with UK Home Office regulations by first inducing hypothermia 
prior to decapitation. The heads were quickly submerged in sterile ice-cold phosphate buffer solution (PBS, 
Gibco, 14190094), and the cortices were dissected in sterile ice-cold PBS under a stereoscope followed 
by removal of the meninges.  The cortices were next chemically dissociated using a 1:1 mixture of papain 
(Sigma, P5306) and sterile PBS at 37 oC for 25 minutes. The reaction was stopped by adding neurobasal 
media (Gibco, 21103-049) with B27 supplement (NB-B27; B27 supplement, Gibco, 17504-044) with 4% 
fetal bovine serum (Gibco, 175004044) and the cortices were manually dissociated using a pipette.  A 
small volume (20 μL) of the cells were removed for manual cell counting with a hemocytometer and the 
remaining volume was then centrifuged for 10 minutes at 0.4 r.c.f.  The supernatant was removed, and the 
pellet was resuspended in neurobasal media with the B27 supplement (NB-B27).  The cells were 
resuspended in the volume necessary to ensure that 15 μL would contain 5x104 cells, which were plated 
on single-well 60-channel MEA chips (Multi-channel systems, 60MEA200/30iR-ITO-gr).   
 
MEA preparation and plating. The MEA chips were treated in advance with heavy-weight poly-L-lysine 
(PLL; Sigma, P4832) for 5 minutes up to 24 hours at 37 oC in the incubator, followed by three PBS washes 
to ensure full removal of the PLL, before adding 7 μL of laminin (Sigma, L2020) directly over the MEA grid.  
A 15 μL aliquot of 5x104 cells was added directly to the laminin on the MEA grid, and the MEA chips were 
incubated for at least 20, but not more than 30, minutes. Visual inspection under a light microscope was 
used to confirm cell adhesion prior to adding 300 μL of NB-B27 at 37 oC to the MEA well.  The MEA cultures 
were incubated overnight. The following day an additional 300 μL of NB-B27 with 0.25% Glutamax (Gibco, 
35050-038) was added to each well. Cultures were maintained in the incubator at 37 oC with humidity 
control and 5% carbon dioxide.  The 30% media (180-200 μL/well) was exchanged three days per week 
with fresh NB-B27 with 0.25% Glutamax at 37 oC.  MEA recordings were made weekly from DIV 7-35 using 
the MEA2100 system (Multi-channel systems). 

2D human iPSC-derived cortical cultures 
Cell culture initiation.  Frozen DIV 4 stock of NGN2 iPSC-derived cortical neurons (Brigham & Women’s 
Hospital Neuro iHub) were gently thawed and resuspended in NB-B27 media with RHO/ROCK pathway 
inhibitor (RI, 10 μM, Stemcell Technologies, Y-27632).  A small volume (10 μL) of the cells was removed 
for automated cell counting (Invitrogen, Countess 3). The remaining volume was centrifuged for 5 minutes 
at 0.4 r.c.f.  The supernatant was removed, and the pellet was resuspended in the volume of NB-B27 with 
supplements (NB-B27-S) and RI necessary to ensure that 15 μL would contain 35x103 cells, which were 
plated on sterile 6-well (64-channels per well) CytoView MEAplates (Axion Biosystems, M384-tMEA-6W). 
The NB-B27-S included human ciliary neurotrophic factor (CNTF, 10 ng/mL, 1:1000, Peprotech, AF-450-
13), glial-derived neurotrophic factor (GDNF, 10 ng/mL, 1:1000, Peprotech, 450-10), brain-derived 
neurotrophic factor (BDNF, 1:1000, 10 ng/mL, Peprotech, 450-02) recombinant proteins, Glutamax (1%, 
Gibco, 35050), MEM Non-Essential Amino Acids Solution 100X (0.5%, Invitrogen, 11140-050), 
doxycycline hyclate (DOX, 2 μg/mL, Sigma, D9891), and dextrose 20% (1.5%, Sigma, D9434).  
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Astrocyte preparation. Frozen normal human astrocytes (CC-2565 NHA-Astrocytes AGM, Cryo amp, 
Lonza, 185115) were gently thawed in AGM Astrocyte Growth Medium BulletKit (Lonza, CC-3186) and 
automated cell counting performed. The astrocytes were centrifuged for 5 minutes at 0.4 r.c.f.  The 
supernatant was removed, and the pellet was resuspended in the volume of NB-B27-S with RI necessary 
to ensure that 20 μL would contain 12x103 cells.  
 
MEA preparation and plating. The MEAs in the 6-well plates were treated in advance with 
polyethylenimine (PEI) for 12-24 hours at 4 oC (or heavy-weight PLL for 5 minutes up to 24 hours at 37 oC 
in the incubator), followed by three PBS washes to ensure full removal of the PEI or PLL, before adding 
12 μL of laminin directly over each MEA grid.  The 15 μL aliquot of 35x103 cells was added directly to the 
laminin on the MEA grid. The MEA chips were incubated for at least 20, but not more than 30, minutes. 
During the incubation, the astrocytes were prepared. The MEA plates were removed briefly one at a time 
to plate 20 μL of the astrocyte solution (12x103 cells) per well, distributed in 3 or 4 5-7 μL drops around–
but not touching–the drop of neurons on the grid.  After the incubation of the neurons was complete, cell 
adhesion was confirmed with visual inspection under a light microscope prior to adding 400 μL of NB-B27 
with the supplements and RI at 37 oC to each MEA well.  The MEA cultures were incubated overnight. The 
following day an additional 350 μL of NB-B27 with the supplements—without RI—was added to each well. 
Cultures were maintained in the incubator at 37 oC with humidity control and 5% carbon dioxide. Three 
days per week ~30% of media was exchanged with fresh NB-B27 with CNTF, GDNF, BDNF, and DOX at 
37 oC.  The volume of media per well was gradually increased to 1.5 mL per well by DIV 21. MEA recordings 
were made weekly using the Maestro Edge MEA system (Axion Biosystems). 

3D human air-liquid interface cortical organoids 
 
Human air-liquid interface cerebral organoids (ALI-COs) were generated from the H9 embryonic stem cell 
line using published methods 3,9.  In brief organoids were sliced between DIV 55-60 and cultured at the air-
liquid interface.  On the day of recording, the ALI-COs were transferred from the membrane to the 60-
channel 3D MEA chip (Multi-channel systems, 60-3DMEA250/12/100iR-Ti-gr) filled with neurobasal media 
with B27 supplement. The ALI-COs were positioned on the grid, and a platinum harp with nylon strings 
was used to gently hold the ALI-CO in place. A lid with a semi-permeable membrane (ALA Science, MEA-
MEM5) was placed on the MEA chip to reduce evaporation. The chip was transferred to the MEA2100 
system.  After MEA recording, the ALI-COs were either fixed for immunohistochemistry or discarded. 

MEA data acquisition  
 
Recordings using MCS MEA systems: Data for the 2D mouse hippocampal cultures was acquired with 
an MEA1600 MEA System (Multi-channel systems) as previously described 8. The 2D mouse cortical 
culture and the 3D human cerebral organoid cultures were recorded with an MEA2100 dual headstage 
MEA system (Multi-channel systems), with the temperature controller (Multi-channel systems, TCX-2) set 
to 37 oC.  Raw data was acquired at 25 kHz for 5-12 minutes using the MCRack software (Multi-channel 
systems).  Raw data was exported using MCTool (Multi-channel systems) and converted to MATLAB 
format (.mat) using custom scripts included in MEA-NAP.  All photographs of the cultures on the MEA grid 
were taken with a standard digital camera attached to a light microscope using a scope attachment and 
saved in .jpeg format.  
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Recordings using Axion Biosystem MEA system: Data for the 2D human iPSC-derived cultures was 
recorded with a Maestro Edge MEA system, with the temperature set to 37 oC.  Raw data was acquired at 
12.5 kHz for 10 minutes using the Axis software (Axion Biosystems).  Raw data was exported to MATLAB 
format (.mat) using custom scripts, including publicly available MATLAB scripts from Axion for separating 
the 6 MEA recordings per multi-well plate into individual MEA recordings.  All photographs of the cultures 
on the MEA grid were taken with an iPhone (Apple) through the scope of an inverted light microscope and 
were exported in .jpeg format.  

MEA-NAP data analysis 
 
All MEA data was analyzed using our MEA network analysis pipeline (MEA-NAP) in MATLAB (2021b) on 
a computer with at least 16GB RAM.  The pipeline inputs included: (1) raw voltage traces acquired with 
either a 60-channel MEA1600 or 2100 system (Multichannel Systems) or 64-channel each multi-well MEA 
plates (Axion Biosystems) and (2) a batch analysis file (.csv) with the filenames to be analyzed and the 
age and group information. Step-by-step methods for MEA-NAP are available in our online documentation 
at https://github.com/SAND-Lab/MEA-NAP/ (and permanently at https://doi.org/10.7910/DVN/Z14LWA). 
 
Data conversion tools and filtering 
Voltage time series collected with the MEA2100 or MEA1600 system (Multi-channel systems) were 
converted to MATLAB format using the MC_Tool (Multi-channel systems).  Voltage time series collected 
with the Maestro Edge (Axion Biosystems) 6-well plates were converted to MATLAB format using a custom 
script included with MEA-NAP.  We provide a sample MEA dataset in MATLAB format  (Supplemental 
Resource 1). We also include MATLAB functions to facilitate the import of raw MEA data from MCS or 
Axion Biosystems MEA systems. In MEA-NAP, the voltage time series are first bandpass filtered (third-
order Butterworth filter, 600-8000 Hz).  
 
Spike detection and validation tools 
Spike detection was performed using multiple methods. (1) Template-based spike detection was 
performed using the continuous wavelet transform (CWT) 12,13 with MATLAB BiorSplines family 
bioorthogonal wavelets (bior1.5, bior1.3) and Daubechies orthogonal wavelet (db2) and a cost parameter 
of -0.12. (2) Threshold-based spike detection using the mean absolute deviation (MAD) of the voltage 
signal 35 with thresholds of 3, 4, and or 5 MAD. Plots generated for each recording included a running 
average of the spike frequency for the entire MEA for each spike detection method, an overlay of 50 
sampled spikes and the averaged waveform(s) of spikes detected for each method for a subset of 
electrodes, and sample voltage traces with spikes detected by method from 9 electrodes. These plots were 
reviewed for each MEA recording to compare the performance and confirm accuracy spike detection. 
 
Spike features and network burst metrics 
The spike frequency for each electrode was calculated as the number of action potentials per second 
(raster plot) divided by the length of the recording (MEA heatmap, scatter plot with mean and density curve) 
for each recording.  The number of active channels was calculated as the number of electrodes per MEA 
in which the number of spikes detected divided by the length of the recording was greater than 0.01 Hz (or 
0.1 Hz for the NGN2 dataset, Figure 3). The mean and median spike frequency were calculated for each 
recording and compared by age and group. Here, network bursts were defined as a minimum of 10 spikes 
in at least 3 channels with the ISIN threshold 18 set automatically; these parameters are easily adjustable 
in MEA-NAP in the advanced settings. Network bursts were characterized by rate (number of network 
bursts divided by length of the recording in minutes), mean number of electrodes (channels) participating 
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in the network burst, mean network burst length (seconds), mean inter-spike interval (ISI) within and 
outside (between) network bursts (both in milliseconds), coefficient of variation in the inter-network burst 
intervals, and the fraction of single-channel bursts that occur in network bursts for each recording.  These 
features were automatically plotted as scatter plots with mean, SEM, and density curves for age and group 
comparisons. 
 
Inferring significant functional connections 
Functional connectivity was inferred through pairwise comparisons of the spike trains with the spike time 
tiling coefficient (STTC) 11. Time lags for the STTC were compared for 10, 25 and 50 milliseconds for most 
recordings (see Supplemental Figure S1H). Significant functional connections were determined using 
probabilistic thresholding 14.  For each pair of electrodes, a circular shift was performed on one of the spike 
trains, and the STTC was calculated for 180 iterations. Significant functional connections were identified 
where the real STTC value exceeded the 95th percentile of the STTC values for the 180 different circular 
shifts. These parameters are easily adjustable in MEA-NAP. The effect of the number of iterations on the 
threshold for determining significant edges was reviewed. Weighted adjacency matrices with only the 
significant functional connections were used for subsequent analysis of functional connectivity and network 
topology metrics, with the exception of the dimensionality reduction approaches which did not rely on 
pairwise comparisons. For the network metrics and statistical comparisons in Figures 2 and 3, a STTC lag 
of 50 ms was used for the human iPSC-derived organoid and monolayer cultures. For the network metrics 
and statistical comparisons in Figures 4 and 5, a STTC lag of 10 ms was used for the postnatal mouse 
cortical and hippocampal postnatal cultures. 
 
Graph theoretical metrics 
The graph theoretical metrics calculated in MEA-NAP are illustrated in Table S1 and the source code 
referenced in Table S2.  The node degree, edge weight, node strength, network size, network density, and 
global efficiency were calculated using dedicated functions from the Brain Connectivity Toolbox (BCT) 6.  
To determine the local efficiency, the weight_converstion function from the BCT was used first for 
normalization followed by the efficiency function from the BCT.  Modularity (score and number of modules) 
were derived from a consensus clustering method 36 to produce modularity groups.  The within-module z-
score was calculated using the module_degree_zscore function from the BCT with the modularity affiliation 
vector calculated above as an input argument.  The betweenness centrality (BC) was calculated using the 
BCT function. The BC was next normalized to the range 0 to 1 using the formula BC/((N-1)(N-2)), where 
N is the number of nodes in the network.  The normalized participation coefficient was calculated using a 
method described 37. The clustering coefficient was calculated using the BCT function and normalized 
using a lattice model 38,39. The characteristic path length was calculated using the BCT function and 
normalized using a random null model 38. The small-world topology was calculated in two different 
approaches. The small-world coefficient (σ) was calculated by dividing the clustering coefficient, 
normalized to a random network model, by the characteristic path length, normalized to a random network 
model 40.  The small-world coefficient (ω) was calculated by subtracting the clustering coefficient, 
normalized to a lattice model, from the characteristic path length, normalized to a random network model 
19.  Here, the output was restricted to a range of -1 (pure lattice) to 1 (pure random network) and values 
near zero represent a small-world network.  
 
Node cartography 
To define the boundaries for hub and non-hub roles in the node cartography, the density landscape was 
first calculated using the participation coefficient and within-module z-score for all nodes in the dataset 
using our custom code based on method 20. These boundaries for nodal roles were then applied to 
individual recordings to classify nodes as ultra-peripheral nodes, peripheral nodes, non-hub connectors, 
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non-hub kinless nodes, provincial hubs, connector hubs, or kinless hubs.  The proportion of nodes in each 
role were compared by STTC lag for individual recording and by age and group between recordings. 
 
Dimensionality reduction 
Non-negative matrix factorization (NMF) was performed using the built-in MATLAB function.  We provided 
two methods for evaluating the number of components sufficient to describe the observed neural activity. 
In the first method, we computed the root-mean square residual between the observed activity and the 
NMF rank-k approximation. We then shuffled the activity of each electrode across time bins to destroy 
temporal correlations between channels to create a null activity matrix with the same mean activity for each 
electrode. Then we again computed the residual of the rank-k approximation. The number of components 
is the largest rank-k approximation such that the residual corresponding to the original activity matrix is 
lower than for the null activity matrix. In the second method, we found the smallest rank-k approximation 
such that the variance explained was above 95%. The top 3 components from this rank-k approximation 
were plotted with the original recording. We also plotted the variance explained of each rank-k 
approximation and the mean-square-root residual of each rank-k approximation for both the original activity 
matrix and the null activity matrix. The number of NMF components was compared between recordings 
and normalized by network size.  Effective rank was calculated using methods described in Roy and Vetterli 
30. Relative effect rank was defined as effective rank divided by number of active electrodes and could be 
used to compare between cultures. 
 
Data visualization  
MEA-NAP automatically generated informative plots for each recording and for age and group 
comparisons of the entire dataset (see sample output folder in Supplemental Resource 2). The age and 
group comparison half-violin plots include: a scatterplot of the values for individual nodes or individual 
recordings (colored circles), the mean ± standard error of the mean (SEM; black circle with error bars), 
and the density curve (half violin). The density curve represents the probability distribution calculated using 
kernel density estimation for smoothing. For metrics that have a fixed range (e.g., 0 to 1), the density curve 
is cut off at the upper and lower limits of the metric. Custom color schemes were created for age and group 
comparisons using Affinity Designer.  MEA-NAP produced the plots in Figures 2-5 in .svg format, which 
were imported to Affinity Designer. After resizing the individual plots in the combined figures, the size of 
shapes, line thickness, and scatterplot jitter (in x-axis only) in individual plots were adjusted to a uniform 
size across all plots, while retaining the x,y center coordinates. 

Statistical analysis  
 
MEA-NAP incorporates statistical tests for evaluating differences between ages and groups. In cases 
where there is a single group (e.g., wild-type cultures) with multiple repeated observations of the same 
cultures across ages, we performed repeated measures one-way ANOVA on each recording-level metric 
(e.g., mean firing rate, mean node strength, effective rank). We also fit the observed recording-level metric 
with a linear mixed effects (LME) model with age as the main effect and a random effect of the specific 
culture identity on the intercept. We also performed pairwise t-test comparison by age for each recording-
level metric. In cases where only a difference between groups is of interest, we utilized a LME model with 
the group as the main effect and a random effect of the specific culture identity on the intercept. In cases 
where cultures of different groups and ages were available, we fit two LME models, one with a main effect 
of age, group, and a random effect of the culture identity on the intercept, and a second one with an 
interaction between the two main effects.  
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Beyond traditional statistical comparisons, we also provide methods for identifying age and genotype 
differences via classification and regression approaches. By default, we performed classification of either 
the age or genotype using linear support vector machine, k-nearest neighbor, decision tree, and linear 
discriminant analysis, with network metrics as features. The models were compared via k-fold cross 
validation (with the option of stratification), and visualizations were created to compare the model 
misclassification rate with the baseline chance rate. We also performed regression from network features 
to obtain age predictions using support vector machine regression, ridge regression, regression tree and 
feed-forward neural network regression. We compared the mean-squared error between the observed and 
predicted age using k-fold cross validation. To assess the importance of each feature in the classification 
process, we performed a process akin to leave-one-out feature selection 41. We shuffled the feature of 
interest across observations and compared the difference in the misclassification rate of the original mode 
with the shuffled model.  
 
In all cases, the automated statistical analysis step in MEA-NAP is intended to provide an overview of 
where significant trends in network development or group differences may exist. However, users must 
check the underlying statistical assumptions, such as normality, for their experimental data are correct. 
They must also correct for multiple comparisons.  For the analysis presented in Figures 3-5 and 
Supplemental Figure S1, the tabular output files from MEA-NAP were used to perform statistical analysis 
in MATLAB.  For Figures 3 and 4 and Figure S1, a one-way ANOVA was performed to determine whether 
there was an effect of age (days in vitro) on each metric. Adjusted p-values for multiple pairwise 
comparisons were calculated using the Tukey-Kramer method.  For the network burst rate (Figure 3F), the 
MATLAB implementation of the Tukey-Kramer method produced unrealistically high p-values; thus, small 
random numbers were added to the zero values to account for numerical instability.  For Figure 5, a two-
way ANOVA was performed to determine whether there was an effect of age and/or culture origin (cortex 
and hippocampal) with the Tukey-Kramer method for post-hoc pairwise comparisons. 

Code availability  
 
All MATLAB code for analysis and production of figures in this paper have been permanently deposited in 
the Harvard Dataverse: https://doi.org/10.7910/DVN/Z14LWA. The latest version of MEA-NAP can be 
downloaded at: https://github.com/SAND-Lab/MEA-NAP/ 
 
For a full list of previously published code from other sources incorporated in MEA-NAP, please see Table 
S2. 
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Supplemental Figure S1. Development of functional connectivity and network topology in 2D 
murine hippocampal cultures. A. Representative raster plot of spontaneous activity in a 10-minute 
microelectrode array (MEA) recording from primary mouse hippocampal culture. B. Adjacency matrix 
shows correlation coefficient (spike time tiling coefficient, STTC) for significant edges after probabilistic 
thresholding for recording in A.  C. Graph of functional connectivity for recording in A. Nodes (circles) 
represent the activity observed at individual electrodes in the spatial arrangement of the MEA.  Number of 
connections shown as node degree (circle size) and strength of connectivity as edge weight (line 
thickness). D. Development of functional connectivity in representative hippocampal cultures from days-
in-vitro (DIV) 14-28 including increase in node strength (circle size), edge weight (line thickness), and local 
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efficiency (circle color). E. Comparison of nodal-level network metrics for electrodes (colored circles) from 
hippocampal cultures (n=10) for node degree, mean edge weight (per node), local efficiency, and 
participation coefficient. Scatter plots with mean (black circles) ± SEM (error bars) and density curve for 
DIV 14-28. F. Comparison of recording-level network metrics (colored circles) for mean node degree, mean 
edge weight, mean local efficiency, and mean participation coefficient from DIV 14-28. G. Comparison of 
recording-level network metrics including network density, mean clustering coefficient, global efficiency, 
and small-worldness from DIV 14-28. H. Comparison of recording-level network metrics by STTC lag and 
developmental age (color, DIV 14-28). Means (lines) ± SEM (shading). For panels E-G, a one-way ANOVA 
(p<0.01 for all plots) followed by the Tukey-Kramer method to calculate p-values adjusted for multiple post-
hoc pairwise comparisons (** p<0.01, * p<0.05). 
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Supplemental Table 1. Functional connectivity, network topology, and network dynamic metrics 
in MEA-NAP 

Nodal-level 
Feature 

Description Recording-level 
Feature 

Description 

Basic features of the network 

Node degree 
 

 

Number of connections 
(edges) with other nodes in the 
network.  Highly connected 
nodes may have more 
influence on network activity. 

Network size 

 

Number of active electrodes 
(defined by a minimum 
number or frequency of spikes 
detected).   

Edge weight  
 

 

Strength of connectivity 
between two nodes.  
Calculated using the spike-
time tiling coefficient (Cutts & 
Eglen, 2014) 

Network density 

 

Number of edges as a 
proportion (%) of the total 
possible edges that can be 
formed in the network. 

Node strength 
 

 

Sum of the edge weights for 
each node.   

  

Local processing in the network 

Local efficiency 

 

Efficiency defined at the level 
of individual nodes. The 
inverse of path length of the 
subgraph generated by 
removing the index node and 
its edges. (Latora & Marchiori, 
2001) 

Clustering 
coefficient 

 

Probability that two nodes 
each directly connected to a 
third node will also be directly 
linked to each other. 

Within-module 
degree z-score

 

Measure of how well-
connected a node is to other 
nodes in the same module. 
Higher values indicate higher 
intramodular node degree. 
(Guimerà & Nunes Amaral, 
2005) 

Number of 
modules 

 

Number of subsets of nodes 
into which the network can be 
decomposed, where nodes in 
each subset are more densely 
connected to each other than 
to nodes in other subsets. 
(Brandes et al., 2008) 

Affiliation vector Vector containing the number 
of the module to which each 
node belongs. 

Modularity score 

 

A value between -0.5 and 1 
that describes how well a 
network has been partitioned.  
(Lancichinetti & Fortunato, 
2012) 

Global processing and nodal roles in the network 

Betweenness 
centrality 

Number of times a node lies 
on the shortest path between 

Path length Characteristic path length is 
the minimum number of edges 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.578738doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?nqN0Dz
https://www.zotero.org/google-docs/?nqN0Dz
https://doi.org/10.1101/2024.02.05.578738
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

any two nodes in a network. 
(Brandes, 2001) 

 

required to link any two nodes 
in the network averaged 
across nodes. 

Participation 
coefficient

 

Measure of how well-
distributed a node’s edges are 
among different modules. 
(Guimerà & Nunes Amaral, 
2005) 

Global efficiency 

 

Efficiency of parallel 
information transfer between 
nodes in the network. Inverse 
of characteristic path length.  
(Latora & Marchiori, 2001) 

Node 
cartography 
group 
proportions  
 

 

Each node is assigned a role 
by node cartography group. 
(Guimerà & Nunes Amaral, 
2005) 
 

1. Peripheral nodes 
2. Non-hub connectors 
3. Non-hub kinless nodes 
4. Provincial hubs 
5. Connector hubs 
6. Kinless hubs 

Small-world 
coefficient, 
Method 1 (σ) 

 

Network topology with clusters 
of nodes connected to other 
clusters via hub nodes. This 
reduces path length and 
facilitates both local and 
global information processing. 
Calculated as clustering 
coefficient divided by 
characteristic path length. 
(Humphries et al, 2006; 
Humphries & Gurney, 2008) 

Hub score Hubs are nodes with high 
centrality in the network. 
Nodes are ranked based on 
node strength, betweenness 
centrality, local efficiency, and 
participation coefficient. Hubs 
rank in the top 10% of nodes in 
3 or 4 of these features. 
(Schroeter et al., 2015) 

Small-world 
coefficient, 
Method 2 (ω) 

Calculated using the 
normalized clustering 
coefficient and path length. 
Small-world network structure 
is at the midpoint (0) between 
a lattice (-1) and random (1) 
network structure. (Telesford 
et al., 2011) 

 

Network dynamics 

Non-negative 
matrix 
factorization 
(NMF) 

Dimensionality reduction 
approach identifies patterns of 
activity in the network and the 
number of electrodes 
participating in each pattern.  

Effective Rank Dimensionality reduction 
approach calculates the 
number of sub-communities 
within the network. (Roy & 
Vetterli, 2007) 
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Supplemental Table 2. Code from other sources incorporated in MEA-NAP 

Reference(s) Description Location in MEA-
NAP 

Source code 

Methods - Spike detection 

Nenadic Z & Burdick JW (2005). 
Spike detection using the 
continuous wavelet transform. 
IEEE T Bio-med Eng, 52, 74-87. 
 
Benitez R & Nenadic Z (2008). 
Robust unsupervised detection 
of action potentials with 
probabilistic models. IEEE T Bio-
med Eng, 55(4), 1344-1354. 

Continuous wavelet 
transform (CWT) 
method for template-
based spike detection 
using the MATLAB 
function 
detect_Spikes_wavele
t.m  

detectSpike.m, 
getTemplate.m, 
customWavelet.m, 
detectSpikesWavelet.
m  (optional step in 
MEA-NAP) 

http://cbmspc.eng.u
ci.edu/SOFTWARE/
SPIKEDETECTION/
detect_spikes_wave
let.m. 

Lieb F et al. (2017). A stationary 
wavelet transform and a time-
frequency based spike detection 
algorithm for extracellular 
recorded data. J Neural Eng, 
14(3), 036013. 

Stationary wavelet 
transform (SWTTEO) 
method for template-
based spike 
detection. 

detectSpike.m  
(optional step in 
MEA-NAP)  

https://github.com/fli
eb/SpikeDetection-
Toolbox 

Methods - Burst analysis 

Bakkum DJ, et al. (2014). 
Parameters for burst detection. 
Front Comput Neurosci, 7(193).  

Method for burst 
detection. Based on 
ISI_N burst detector 
(Bakkum, 2013) using 
BurstDetectISIn.m &    
HistogramISIn.m 
(modified) 

BurstDetectISIn.m, 
getISInTh.m 

https://www.frontier
sin.org/articles/file/d
ownloadfile/61635_
supplementary-
materials_presentati
ons_1_pdf/octet-
stream/Presentation
%201.PDF/1/61635 

Methods - Functional connectivity 

Cutts CS & Eglen SJ (2014). 
Detecting pairwise correlations in 
spike trains: An objective 
comparison of methods and 
application to the study of retinal 
waves. J Neurosci, 34(43), 
14288–14303.  

Spike-time tiling 
coefficient (STTC) 

get_sttc.m https://github.com/C
Cutts/Detecting_pai
rwise_correlations_i
n_spike_trains/blob/
master/spike_time_t
iling_coefficient.c 

Methods - Network features 

Rubinov M & Sporns O (2010). 
Complex network measures of 
brain connectivity: Uses and 
interpretations. NeuroImage, 
52(3), 1059–1069.  

Brain Connectivity 
Toolbox (BCT) for 
calculating graph 
theoretical metrics 
and null models. 

Functions in  
2019_03_03_BCT 
folder, CC_PL_SW 
folder 

http://www.brain-
connectivity-
toolbox.net/ 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.578738doi: bioRxiv preprint 

http://cbmspc.eng.uci.edu/SOFTWARE/SPIKEDETECTION/detect_spikes_wavelet.m
http://cbmspc.eng.uci.edu/SOFTWARE/SPIKEDETECTION/detect_spikes_wavelet.m
http://cbmspc.eng.uci.edu/SOFTWARE/SPIKEDETECTION/detect_spikes_wavelet.m
http://cbmspc.eng.uci.edu/SOFTWARE/SPIKEDETECTION/detect_spikes_wavelet.m
http://cbmspc.eng.uci.edu/SOFTWARE/SPIKEDETECTION/detect_spikes_wavelet.m
https://github.com/flieb/SpikeDetection-Toolbox
https://github.com/flieb/SpikeDetection-Toolbox
https://github.com/flieb/SpikeDetection-Toolbox
https://github.com/CCutts/Detecting_pairwise_correlations_in_spike_trains/blob/master/spike_time_tiling_coefficient.c
https://github.com/CCutts/Detecting_pairwise_correlations_in_spike_trains/blob/master/spike_time_tiling_coefficient.c
https://github.com/CCutts/Detecting_pairwise_correlations_in_spike_trains/blob/master/spike_time_tiling_coefficient.c
https://github.com/CCutts/Detecting_pairwise_correlations_in_spike_trains/blob/master/spike_time_tiling_coefficient.c
https://github.com/CCutts/Detecting_pairwise_correlations_in_spike_trains/blob/master/spike_time_tiling_coefficient.c
https://github.com/CCutts/Detecting_pairwise_correlations_in_spike_trains/blob/master/spike_time_tiling_coefficient.c
https://www.zotero.org/google-docs/?nZUdGe
https://www.zotero.org/google-docs/?nZUdGe
https://www.zotero.org/google-docs/?nZUdGe
https://www.zotero.org/google-docs/?nZUdGe
https://www.zotero.org/google-docs/?nZUdGe
https://www.zotero.org/google-docs/?nZUdGe
http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/
https://doi.org/10.1101/2024.02.05.578738
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

Pedersen M et al. (2019). 
Reducing module size bias of 
participation coefficient. BioRxiv. 
doi: 10.1101/747162. Retrieved 
December 8, 2021. 

Normalizing the 
participation 
coefficient using 
random networks to 
preserve degree 
distribution  

participation_coef_no
rm.m 

https://github.com/o
midvarnia/Dynamic
_brain_connectivity
_analysis 

Bettinardi RG (2017). 
getCommunicability(W,g,nQexp)
MATLAB Central File Exchange. 
Retrieved June 6, 2022. 

Communicability 
function. (Used in 
fcn_find_hubs_wu.m 
for ExtractNetMet.m) 

getCommunicability.
m  

https://www.mathwo
rks.com/matlabcentr
al/fileexchange/629
87-
getcommunicability-
w-g-nqexp 

Methods - Statistics 

Trujillo-Ortiz A., et al. (2004). 
RMAOV1:One-way repeated 
measures ANOVA. MATLAB 
Central File Exchange. 
Retrieved August 3, 2023. 

One-way repeated 
measures ANOVA 

RMAOV1.m https://www.mathwo
rks.com/matlabcentr
al/fileexchange/557
6-rmaov1 

Schurger A (2005). Two-way 
repeated measures ANOVA. 
MATLAB Central File Exchange. 
Retrieved August 3, 2023. 

Two-factor, within-
subject repeated 
measures ANOVA 

rm_anova2.m https://www.mathwo
rks.com/matlabcentr
al/fileexchange/687
4-two-way-
repeated-measures-
anova 

Tools - GUI 

Hoelzer S (2010). Progress bar. 
MATLAB Central File Exchange. 
Retrieved December 8, 2021. 

Progress bar progressbar.m https://www.mathwo
rks.com/matlabcentr
al/fileexchange/692
2-progressbar 

Tools - Plotting 

Marsh G (2016). LOESS 
regression smoothing. MATLAB 
Central File Exchange. 
Retrieved June 23, 2023. 

Smoothing function 
using LOESS (locally 
weighted regression 
fitting using a 2nd 
order polynomial) 

fLOESS.m, 
getISInTh.m 

https://www.mathwo
rks.com/matlabcentr
al/fileexchange/554
07-loess-
regression-
smoothing 

Lee T (2006). Kernel density 
estimation of 2 dim with SJ 
bandwidth. MATLAB Central File 
Exchange. Retrieved June 23, 
2023. 
 

Kernel density 
estimator with 
Sheater Jones (SJ) 
bandwidth 

bandwidth_SJ.m, 
KDE2.m 
 

https://www.mathwo
rks.com/matlabcentr
al/fileexchange/109
21-kernel-density-
estimation-of-2-dim-
with-sj-bandwidth 
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https://www.mathworks.com/matlabcentral/fileexchange/6922-progressbar
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Botev Z (2015). Kernel density 
estimator. MATLAB Central File 
Exchange. Retrieved June 23, 
2023. 
 

Faster kernel density 
estimator 

improvedSJkde.m 
 

https://www.mathwo
rks.com/matlabcentr
al/fileexchange/140
34-kernel-density-
estimator 

Thyng KM, et al. (2016). True 
colors of oceanography. 
Oceanography, 29(3), 10. 

Colormap generator cmocean.m https://matplotlib.org
/cmocean/ 

Kumpulainen K (2016). 
tight_subplot. MATLAB Central 
File Exchange. Retrieved June 
19, 2023. 
 

Creates axes 
subplots with 
adjustable margins 
and gaps between the 
axes 

tight_subplot.m https://www.mathwo
rks.com/matlabcentr
al/fileexchange/279
91-tight_subplot-nh-
nw-gap-marg_h-
marg_w 

Schwizer J (2015). Scalable 
vector graphics export of figures 
(fig2svg). GitHub. Retrieved 
June 16, 2022. 

Converts MATLAB 
plots to the scalable 
vector format (SVG) 

Functions in fig2svg 
folder 

https://github.com/js
chwizer99/plot2svg 

Campbell R (2020). notBoxPlot. 
GitHub. Retrieved December 8, 
2021. 
 

Plots raw data as a 
jitter, mean, s.e.m., 
and 95% confidence 
intervals (modified) 

notBoxPlotRF.m https://github.com/r
aacampbell/notBox
Plot 
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Supplemental Table 3. Comparison with other publicly available MEA analysis or functional 
connectivity tools 
 Adapted 

for MEA 
data 

Spike 
Detect
ion 

Neuronal 
activity 
compariso
n 

Inferring 
functional 
connectivity 

Network 
metrics 

Statistic
al 
analysis 

Visuali
zation/
GUI  

MEA-NAP ●  ●  ●  ●  ●  ●  ●  
Brain 
Connectivity 
Toolbox 

   ●  ●  ●   

MEA-
ToolBox 

●  ○  ●  ○    ●  

MEAnalyzer ●  ○  ●  ○  ○   ○  
meaRtools ●   ●    ●   
BSMART    ●  ●    
ToolConnect ●    ●  ●   ●  
SPICODYN ●  ○  ●  ●  ○   ○  
Table Legend: Closed circle = many features; Open circle = limited features 
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Supplemental Table 4. Publicly available MEA analysis or functional connectivity 
toolboxes 
Method Features 
MEA data analysis tools 

MEA-ToolBox 
(MATLAB) 

Source: https://github.com/DrJPFrimat/MEA-ToolBox 
Features: 

● File conversion & filtering of raw MCS MEA data 
● Threshold-based spike detection with artifact removal  
● Single channel burst detection with max interval & log ISI 

method (from Cotterill et al., 2016) 
● Network burst detection 
● Cross-correlation to infer functional connectivity 
● Synchronicity (pairwise) using ISI distance method 
● Spike sorting 
● GUI with data visualizations 

 
Reference: Hu M, Frega M, Tolner EA, van den Maagdenberg AMJM, 
Frimat JP, le Feber J. MEA-ToolBox: an Open Source Toolbox for 
Standardized Analysis of Multi-Electrode Array Data. 
Neuroinformatics. 2022 Oct;20(4):1077-1092. 

MEAnalyzer 
(MATLAB) 

Source: https://github.com/RDastgh1/MEAnalyzer 
Features: 

● Spike detection with threshold method 
● Spike and burst features 
● Cross-correlation or overlapping spikes or bursts to infer 

functional connectivity 
● Graph metrics (including node degree, global efficiency, 

network size and network density) 
 

Reference: Dastgheyb RM, Yoo SW, Haughey NJ. (2020) 
MEAnalyzer - a Spike Train Analysis Tool for Multi Electrode Arrays. 
Neuroinformatics, 18(1):163-179.  

meaRtools (R) Source: https://cran.r-project.org/src/contrib/Archive/meaRtools/ 
Features: 

● Spike features (no spike detection) 
● Single channel burst features 
● Network spike and burst features 
● Spike-time tiling coefficient (mean per network) 
● Entropy (mean per network) 
● Mutual Information (pairwise comparison of patterns in spike 

trains) 
 
Reference: Gelfman S, Wang Q, Lu YF, Hall D, Bostick CD, Dhindsa 
R, Halvorsen M, McSweeney KM, Cotterill E, Edinburgh T, Beaumont 
MA, Frankel WN, Petrovski S, Allen AS, Boland MJ, Goldstein DB, 
Eglen SJ (2018). meaRtools: An R package for the analysis of 
neuronal networks recorded on microelectrode arrays. PLoS Comput 
Biol,14(10):e1006506.  

FIND (previously MEA- Source: 
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tools) (MATLAB) https://web.archive.org/web/20060910130103/http://www.brainworks.
uni-freiburg.de/projects/mea/meatools/install_instructions.html 
 
Features: 

● Identification of local field potentials & extracellular spike times 
& waveforms (method not specified) 

● Basic spike sorting with principal component analysis 
● GUI with limited data visualizations 

 
Reference: Egert U, Knott T, Schwarz C, Nawrot M, Brandt A, Rotter 
S, Diesmann M. (2002) MEA-Tools: an open source toolbox for the 
analysis of multi-electrode data with MATLAB. J Neurosci Methods, 
117(1):33-42. Meier R, Egert U, Aertsen A, Nawrot MP. (2008) FIND-
-a unified framework for neural data analysis. Neural Netw, 
21(8):1085-93.  

MEA Viewer (Python) Source: https://github.com/dbridges/mea-tools 
Features: 

● Spike detection with threshold method 
● GUI to view and examine spike detection 

 
Reference: Bridges DC, Tovar KR, Wu B, Hansma PK, Kosik KS. 
(2018). MEA Viewer: A high-performance interactive application for 
visualizing electrophysiological data. PLoS One, 13(2):e0192477. 

McsMatlabDataTools 
(MATLAB) 

Source: https://github.com/multichannelsystems/McsMatlabDataTools 
Features: 

● Imports data from Multi-Channel System 
● Visualization tools for data 

 
Reference:  Armin Walter (2022). McsMatlabDataTools, GitHub.  

Multiwell Analyzer 
(Windows application) 

Source: https://www.multichannelsystems.com/software/multiwell-
analyzer 
Features: 

● For MCS multi-well MEA data 
● Spike detection with threshold or slope method 
● Single-channel and network burst detection 

 
Reference: Multi-channel Systems software (publicly available) 

SPICODYN (C/Visual 
Studio) 

Source: https://www.nitrc.org/projects/spicodyn/ 
Features: 

● Spike detection with threshold methods 
● Burst detection 
● Infer functional connectivity with transfer entropy method 
● Graph theoretical metrics (degree, path length, clustering 

coefficient, hubs, small-world index) 
● Visualization tools in GUI 

 
Reference: Pastore VP, Godjoski A, Martinoia S, Massobrio P. (2018) 
SPICODYN: A Toolbox for the Analysis of Neuronal Network 
Dynamics and Connectivity from Multi-Site Spike Signal Recordings. 
Neuroinformatics, 16(1):15-30. 
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SPKtool (MATLAB) Source: https://spktool.sourceforge.net/ 
Features: 

● Spike detection via threshold method  
● Spike features 
● Spike sorting 
● Cross-correlograms 

 
Reference: Liu X, Wu X, Liu C (2011). SPKtool: An open source 
toolbox for electrophysiological data processing," 2011 4th 
International Conference on Biomedical Engineering and Informatics 
(BMEI), Shanghai, China, 2011, pp. 854-857. 

SPYCODE (MATLAB) Source: Bologna et al. (2010) requires prospective uses to email 
senior author to obtain code. 
Features: 

● Spike detection with threshold methods and spike features 
● Network spike and burst features 
● Infer functional connectivity with cross-correlation and/or 

information theoretical approaches 
● Neuronal avalanche detection (features within bursts) 

 
Reference: Bologna LL, Pasquale V, Garofalo M, Gandolfo M, Baljon 
PL, Maccione A, Martinoia S, Chiappalone M. (2010) Investigating 
neuronal activity by SPYCODE multi-channel data analyzer. Neural 
Netw, 23(6):685-97. 

ToolConnect (C/Visual 
Studio) 

Source: https://www.nitrc.org/projects/toolconnect/ 
Features: 

● Infer functional connection from cross-correlation or partial-
correlation methods 

● information theory (joint entropy, transfer entropy) based core 
algorithms 

● Visualization tools in GUI 
 
Reference: Pastore VP, Poli D, Godjoski A, Martinoia S, Massobrio P. 
(2016) ToolConnect: a functional connectivity toolbox for in vitro 
networks. Front Neuroinform, 10:13. 

Functional connectivity, network topology and network dynamics tools (not designed or 
specific to MCS 60-electrode or Axion 64-electrode MEA data analysis) 
Brain connectivity 
Toolbox (MATLAB) 

Source: http://www.brain-connectivity-toolbox.net/ 
Features: 

● Extensive graph theoretical metrics functions 
● Tool commonly used for macroscale networks (especially 

neuroimaging) 
● Statistical methods available through associated toolboxes 

(e.g., Zalesky et al., 2010. Network-based statistic: identifying 
differences in brain networks. Neuroimage, 53(4):1197-207)  

● Requires knowledge of network neuroscience to use 
 
Reference: Rubinov M & Sporns O (2010). Complex network 
measures of brain connectivity: Uses and interpretations. 
NeuroImage, 52(3), 1059–1069. 
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BSMART (MATLAB/C) Source: https://github.com/brain-smart/brain-smart.github.io 
Features: 

● For 15 electrode, EEG, MEG or fMRI data  
● Multivariate autoregressive (MAR) analysis 
● Spectral analysis 
● Granger causality 
● Requires knowledge of network neuroscience to use 

 
Reference: Cui J, Xu L, Bressler SL, Ding M, Liang H. (2008) 
BSMART: a Matlab/C toolbox for analysis of multichannel neural time 
series. Neural Netw, 21(8):1094-104.  

Chronux (MATLAB) Source: http://chronux.org/ 
Features: 

● Spike sorting 
● Spectral analysis 
● Coherence 

 
Reference: Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. 
(2010). Chronux: a platform for analyzing neural signals. J Neurosci 
Methods, 192(1):146-51.  

Elephant (Python) Source: https://elephant.readthedocs.io/en/latest/modules.html 
Features: 

● Designed for LFP and spike train analysis 
● Spike train statistics 
● Spike train correlation, synchrony, dissimilarity 
● Require knowledge of python and network neuroscience to 

use with MEA data 
 
Reference: Denker M, Yegenoglu A, Grün S (2018). Collaborative 
HPC-enabled workflows on the HBP Collaboratory using the 
Elephant framework. Neuroinformatics, P19.  

Graphene-Electrode-
Seizures (MATLAB) 
 
 
 

Source: https://github.com/BassettLab/Graphene-Electrode-Seizures 
Features: 

● Designed for 16-electrode graphene MEA 
● Non-negative matrix factorization to show seizure progression 
● Limited documentation 
● Code source from research article, requires knowledge of 

MATLAB to apply to MEA data 
 
Reference: Driscoll N, Rosch RE, Murphy BB, Ashourvan A, 
Vishnubhotla R, Dickens OO, Johnson ATC, Davis KA, Litt B, Bassett 
DS, Takano H, Vitale F. (2021) Multimodal in vivo recording using 
transparent graphene microelectrodes illuminates spatiotemporal 
seizure dynamics at the microscale. Commun Biol. 2021 Jan 
29;4(1):136. 

nSTAT (MATLAB) Source: https://github.com/iahncajigas/nSTAT 
Features: 

● Point process – generalized linear model for spike trains 
● Requires knowledge of MATLAB to apply to MEA data 
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