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Abstract

Motivation: Short-read single-cell RNA-sequencing (scRNA-seq) has been used to study cellular heterogeneity, cellular
fate, and transcriptional dynamics. Modeling splicing dynamics in scRNA-seq data is challenging, with inherent difficulty
in even the seemingly straightforward task of elucidating the splicing status of the molecules from which sequenced
fragments are drawn. This difficulty arises, in part, from the limited read length and positional biases, which substantially
reduce the specificity of the sequenced fragments. As a result, the splicing status of many reads in scRNA-seq is ambiguous
because of a lack of definitive evidence. We are therefore in need of methods that can recover the splicing status of
ambiguous reads which, in turn, can lead to more accuracy and confidence in downstream analyses.
Results: We develop Forseti, a predictive model to probabilistically assign a splicing status to scRNA-seq reads. Our
model has two key components. First, we train a binding affinity model to assign a probability that a given transcriptomic
site is used in fragment generation. Second, we fit a robust fragment length distribution model that generalizes well across
datasets deriving from different species and tissue types. Forseti combines these two trained models to predict the splicing
status of the molecule of origin of reads by scoring putative fragments that associate each alignment of sequenced reads
with proximate potential priming sites. Using both simulated and experimental data, we show that our model can precisely
predict the splicing status of reads and identify the true gene origin of multi-gene mapped reads.
Availability: Forseti and the code used for producing the results are available at https://github.com/COMBINE-lab

/forseti under a BSD 3-clause license.
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Introduction

Single-cell RNA-sequencing (scRNA-seq) technology has

revolutionized our understanding of cellular heterogeneity and

differentiation dynamics (Stark et al., 2019), and short-read,

3′, tagged-end technologies have dominated contemporary

data generation. In the most popular scRNA-seq protocols,

poly(T) primers are used to capture the polyA tail of

polyadenylated RNAs. However, recent studies have shown

that intronic reads usually account for ∼ 20% to ∼ 40% of

the total gene count (i.e. distinct number of unique molecular

identifiers UMIs) in scRNA-seq data (He et al., 2023; 10x

Genomics, 2021), suggesting that, in addition to the polyA

tails, the internal adenine-single nucleotide repeats (A-SNR

or polyA) — predominantly on unspliced transcripts — are

also frequently primed by oligo(dT) primers in scRNA-seq

to generate sequenced scRNA-seq reads (Nam et al., 2002;

Svoboda et al., 2022; 10x Genomics, 2021). Prior work has also

shown that the information captured from unspliced transcripts

can offer unprecedented insights into single-cell biology from

a brand new perspective Pool et al. (2023); Chamberlin et al.

(2022); 10x Genomics (2022b); Gorin et al. (2023). For example,

single-cell RNA velocity (La Manno et al., 2018) infers the

cellular differentiation dynamics by proposing and performing

inference in a model that uses the spliced and unspliced scRNA-

seq reads separately to infer the transcriptional dynamics of

the underlying genes and cells. This innovation extended the

horizon of single-cell data analysis, and has inspired a plethora

of subsequent works (Bergen et al., 2020; Li et al., 2023).

Although the community has been paying increasing

attention to the development and use of novel algorithms

that utilize information captured from unspliced transcripts,

a fundamental problem has yet to be solved. Specifically,

the accurate identification of the splicing status of scRNA-

seq reads remains a difficult challenge (He et al., 2023, 2022;
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Eldjárn Hjörleifsson et al., 2022a). Currently, the standard

strategy of assigning splicing status to reads follows the

heuristics introduced in La Manno et al. (2018), in which

fully and partially intronic reads are classified as unspliced

reads, and reads that are only compatible with exonic regions

are classified as spliced reads. However, this strategy implies

a strong preference for classifying reads as spliced. This is

because reads that are entirely contained within the body of

an exon, which can originate from either spliced or unspliced

transcripts, are all classified as spliced reads. An alternative

strategy is to assign an ambiguous splicing status to these

exonic reads, indicating that the actual splicing status of the

reads is undetermined (Eldjárn Hjörleifsson et al., 2022a; He

et al., 2023). However, as a tremendous fraction of scRNA-seq

reads are exonic (10x Genomics, 2021), applying this strategy

leads to, on average, over half of the gene counts (UMIs) being

assigned as ambiguous (∼ 46% to ∼ 62% for the eight datasets

processed in He et al. (2023), with a mean of ∼ 53%).

In general, in the current work, we refer to “unspliced”

molecules in the understanding that they might be undergoing

splicing and hence, may be partially spliced at the point when

the cell was lysed. Further, having an “ambiguous” splicing

status indicates that, for a read, the splicing status of its

transcript origin, which in reality will be either spliced or

unspliced, cannot be determined because of a lack of definitive

evidence.

In this work, we introduce Forseti, the first probabilistic

model of which we are aware for resolving the splicing status

for exonic scRNA-seq reads. Our model does this by taking

advantage of the technical details of the underlying scRNA-

seq technologies. Specifically, our model is based on the

fact that the expected priming sites of oligo(dT) primers

are A-SNR, and the synthesized cDNAs are fragmented with

a length preference of ∼ 300 to ∼ 400 base pairs∗, and

follow a distribution that is well-concentrated about the mean.

By utilizing the fragment length distribution computed from

publicly available, paired-end 3′ scRNA-seq datasets, and a

multilayer perceptron model trained using the priming sites

obtained from these datasets, Forseti obtains an Area Under

the Receiver Operating Characteristic Curve (ROC AUC) score

of 93.5% on simulated data, and over 90% on two experimental

datasets.

We believe that this work represents a substantial and

important step in improving the specificity and accuracy of gene

quantification, and specifically splicing status determination,

from scRNA-seq data. After describing and evaluating our

model to demonstrate its utility, we discuss how the predictions

of such a model might immediately aid in improving the

downstream processing of scRNA-seq data, but also how

the probabilistic allocations produced by our model may,

themselves, help to enable more accurate and robust processing,

as well as how the model might be extended and enhanced in

the future.

Methods

Data Description
In this study, we collected 10 publicly available scRNA-

seq datasets using 10X Chromium v2 and v3 solutions for

∗ https://kb.10xgenomics.com/hc/en-us/articles/3600009

39852-What-is-the-difference-between-Single-Cell-3-and

-5-Gene-Expression-libraries-

training and testing our model. These datasets consist of

both nucleus samples and cell samples from human and mouse

across multiple tissue types (table 1). All these datasets

are generated using the alternative sequencing formats (10x

Genomics, 2022a), by which the technical read (Read1) is

sequenced with the same number of cycles as the biological read

(Read2), and therefore, contains the 5′ end of the read’s cDNA

insert (10x Genomics, 2022a). Compared with the standard

sequencing formats, in which reads1 contains only the technical

barcode sequences, the reads from the datasets used in this

work can be processed as “paired-end” datasets, so as to be

used to calculate the cDNA fragment length in scRNA-seq

(section 2.3). We processed all human datasets against the

GRCh38 version 2020-A genome build and all mouse datasets

against the mm10 version 2020-A genome build. Both genome

builds were downloaded from the 10X Genomics website †.

The corresponding gene annotations were downloaded together

with the genome builds and were used to make the augmented

gene annotation set. We utilized eight datasets for model

training and two datasets for model evaluation. The training

and test datasets were randomly selected and are marked in

the train/test column in table 1.

Augmented gene annotations
In this work, we built an augmented gene annotation set

for mouse and human, which we denote as transcript-

level spliced+unspliced references, or spliceu in short, to

obtain the read compatibility to both spliced and unspliced

transcripts. The spliceu references were generated by adding

the unspliced version of each multi-exon transcript to the

standard 10X gene annotations (section 2.1) in an R (version

4.3.2) environment, with the help of the BSgenome (Pagès,

2023), GenomicRanges and GenomicFeatures (Lawrence et al.,

2013), eisaR (Soneson et al., 2021), Biostrings (Pagès et al.,

2023), and rtracklayer (Lawrence et al., 2009) packages. The

unspliced version of a transcript is a contiguous genomic

interval from the 5′-most exonic locus to the 3′-most exonic

locus of the transcript. The single-exon transcripts (mainly

non-coding RNAs) were not augmented in spliceu reference,

because they do not have introns to be spliced. We first loaded

the 10X genome build and the exon by transcript information

using the readDNAStringSet function from Biostrings and

getFeatureRanges from eisaR. The exon annotations were then

written as a BED file using export.bed function from rtracklayer.

Unspliced transcript annotations were defined as the range of

transcripts. The sequence of spliced and unspliced transcripts

were then obtained according to the genome and the spliced and

unspliced transcript annotations using extractTranscriptSeqs

from GenomicFeatures. With the transcript sequences in hand,

we also found the A-SNR on each transcript using the

vmatchPattern function from Biostrings. Here a A-SNR is

defined as an adenine-single nucleotide repeat (aSNR) of length

6 or greater without mismatch. The A-SNR information will be

used to assist in simulation in later steps.

Read preprocessing
The composition of a cDNA fragment in the scRNA-seq

technologies we consider here has been clearly explained in 10x

Genomics (2022a) and Chen et al. (2023). Briefly, in scRNA-

seq, from the 5′ end to the 3′ end of a first strand cDNA,

† https://support.10xgenomics.com/single-cell-gene-exp

ression/software/downloads/7.0/
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Table 1. Details of the ten datasets used in this work. the Chemistry column records the version of the 10x Chromium 3′ assay used for the

corresponding datasets. The train/test column represents the label of the random split of the datasets used for training and testing Forseti.

All datasets are publicly available and can be downloaded from NCBI GEO at https://www.ncbi.nlm.nih.gov/geo/.

# GSE ID Species Cell type Chemistry Read length Cells or Nuclei train/test

1 GSE144136 Human Brain v2 100 Nuclei train

2 GSE148504 Human Cardiomyocytes v3 150 Cells train

3 GSE122743 Human MCF7 v2 75 Cells train

4 GSE125970 Human Ileum/Colon/Rectum v2 150 Cells train

5 GSE130636 Human Retina v3 150 Cells train

6 GSE131736 Human Retina v2 75 Cells train

7 GSE134520 Human Stomach v2 150 Cells train

8 GSE135922 Human RPE/Choroid v3 151 Cells train

9 GSE122357 Mouse Brain v2 151 Cells test

10 GSE125188 Human Liver/Blood/Spleen v2 150 Cells test

apart from all PCR and sequencing primers, consists of a

cellular barcode (CB) of length 16 base pairs, a unique molecule

identifier (UMI) of length 10 or 12 base pairs depending

on the chemistry, a poly(dT) sequence of length 32 bases

corresponding to the oligo(dT) primer, and a cDNA insert

of a various length but with a preference of 190 to 290

base pairs ∗ (without technical oligonucleotides, such as CB,

UMI and primers). When following the alternative sequencing

format (10x Genomics, 2022a), the corresponding read 1

consists of CB, UMI, a poly(T) sequence corresponding to the

priming window, and the 5′ end of the cDNA insert. The Read2

sequence consists of the 3′ end of the cDNA insert (i.e. the

standard “biological” read2). Throughout this work, we define

the CB, UMI and poly(T) sequence in read 1 as technical read

1, and the cDNA insert in read 1 as biological read 1. In the

following text, we discuss the procedure used for processing the

sequencing reads of each selected dataset.

In order to align the biological read 1 and read2 together,

we first break read 1 into technical read 1 and biological read

1 in a Python version 3.10.13 environment using dnaio (Martin

and Vorderman, 2023). Next, we filtered low-quality biological

read 1 and read2 pairs by passing them as paired-end

reads to fastp (Chen et al., 2018). In addition to the

default setting, we disabled adapter trimming by specifying

disable adapter trimming, because technical read 1s, instead of

primer sequences, is adjacent to the 5′ end of biological read 1s.

We specified that the required read length to pass the filtering

is 10 bases by the disable adapter trimming argument.

Read Alignment
The preprocessed biological read 1 and read2 pairs were

aligned to the genome using STAR (Dobin et al., 2013) with an

augmented gene annotation set. A spliceu STAR index was

built for mouse and human using the 10X standard genome

build and spliceu reference, respectively. To calculate the cDNA

fragment length distribution, we then aligned biological read 1

and read2 pairs as paired-end reads using the spliceu STAR

index. The alignments were exported as a BAM file and sorted

by genome coordinate by passing BAM SortedByCoordinate

to the outSAMtype argument. Additionally, a transcriptome

BAM file was generated by passing TranscriptomeSAM to the

quantMode parameter. We used the Singleend option of the

quantTranscriptomeBan option to allow soft clips and gaps

in transcriptome-based alignments. Additionally, we specified

outFilterScoreMinOverLread and outFilterMatchNminOverLread

as 0.33 to adjust this length-sensitive threshold to output the

alignment for the split reads 1, that have much shorter sequence

than read2, and set alignSplicedMateMapLminOverLmate as zero

to allow more alignments in paired-end mapping.

Then, we used a similar setting to align just the read2s

as single-end reads, and exported the alignments in the

transcriptome-based coordinate. For accurate fragment length

calculation, we filtered the genome-based alignments of the

paired-end reads using samtools (Li et al., 2009) to ensure

that the reads are properly and uniquely mapped to the

genome by specifying require-flags 2 and d NH:1 for paired-

end alignments. The genome-based paired-end alignments were

used to calculate the cDNA fragment length and find the

priming sites corresponding to each read (section 2.5). All

types of alignments were used to build the validation read

set(section 2.9).

cDNA fragment length distribution
As introduced in section 2.3, we define the cDNA fragment

length of a scRNA-seq read as the length of the cDNA insert of

the corresponding cDNA library fragment. Given the genome

alignment of a biological read 1, read2 pair, the cDNA fragment

length of this read can be calculated as the contiguous genomic

interval from the 5′-most locus to the 3′-most locus of the

alignment. Only reads properly and uniquely mapped to the

genome are used for calculating the cDNA fragment length

distribution (section 2.5).

This process was done in a Python version 3.10.13

environment using biopython (Cock et al., 2009) and pysam ‡.

We read the genome FASTA file using the SeqIO module from

biopython. Next, given the genome alignment pair of a uniquely

mapped paired-end read as an AlignedSegment (from pysam),

we found the interval spanned by the paired-end read on the

genome according to the corresponding SAM flags indicating

their orientation and the CIGAR string. Specifically, we found the

distance D between the closer ends of the paired-end alignment.

Then, we sum the read length of biological read 1 and read 2,

and D to get the final fragment length L. If the biological read

1 and read 2 intersect and they share gaps that are designated

as intronic by STAR (as indicated by the character “N” in the

CIGAR string), the gaps will not be included when calculating

D. Additionally, the genomic sequence of the priming window

captured by the oligo(dT) primer of this read, defined as the

downstream 30-base genomic interval of biological read 1, was

extracted from the genome according to the alignment. We

also extracted a background genomic interval randomly selected

around biological read 1. The extracted priming windows and

‡ https://github.com/pysam-developers/pysam
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background windows are used in section 2.7 for binding affinity

prediction.

Note that the procedure is designed for processing reads

generated from internal polyA priming that does not contain

a gap (exon-exon junction) in the interval between the paired-

end alignment. If the interval between a paired-end alignment,

that is not covered by the reads themselves, spans an exon-

exon junction, then the final fragment length will contain the

length of the gap. If read 1 originates from polyA tail priming,

then most likely, it will not align to the genome, and so the

corresponding fragment will not be used in fragment length

calculation (as intended), since it does not map as a proper

pair. However, it is possible that, in some cases, read 1 overlaps

the junction between the terminal exon and the polyA tail

of a polyadenylated transcript. In such cases, the intergenic

sequence downstream of the terminal exon in the genome will

be regarded as the priming window, because the polyA tail

of transcripts is not included in the genome build. However,

our results suggested that these exceptional cases are rare in

the selected datasets, as most fragment lengths fall into the

expected range, from 190 to 290 base pairs, and most of the

priming window sequences contain an A-SNR.

Fragment length model fitting and evaluation
We fit the empirical scRNA-seq cDNA fragment lengths

obtained from section 2.5 into a spline using scipy (Virtanen

et al., 2020). As the expected fragment length ranges between

190 to 290 base pairs (section 2.3), we used all fragment

lengths no larger than 1, 000 base pairs to fit the spline.

For each training dataset, we calculated the frequency of all

fragment lengths ranging from 1 to 1, 000 and normalized

the frequencies to get the discrete empirical fragment length

distribution. Then, we fit a spline on the distribution using

splrep from scipy and set the smoothing condition argument,

s, to 1/106 to balance the fidelity and smoothness. The average

and standard deviation of the root Mean Square Error (RMSE)

of the prediction to the empirical distribution was calculated

from the two test datasets.

The generality of the spline model was assessed using a

5-fold cross-validation experiment. In each iteration of the 5-

fold cross-validation, we trained the model using eight training

datasets and hold out the two validation sets. Then we

calculated the predicted frequency from each model. The error

bar plot showed the minimum and maximum difference between

predictions of each model and the mean of the 5 models’

frequency prediction.

The oligo(dT) binding affinity model
In section 2.5, we extracted the downstream sequence of

biological read 1 corresponding to the empirical priming

window together with background sequences. We then used

these empirical priming window sequences and background

sequences to train a multi-layer perceptron (MLP) using

MLPClassifier from scikit-learn Pedregosa et al. (2011). By

training an MLP on the priming windows, it should learn

the sequence motifs present therein, and be able to predict

the binding affinity of oligo(dT) primers for a given putative

priming window.

We initialized the MLP using MLPClassifier with the adam

optimizer. The maximum iterator parameter max iter was set

to 500 because of the large size of the training data. As the

extracted sequences might be intergenic instead of the actual

priming window (in the minority of cases when the mapped

read 1s originate from polyA tail priming), we first filtered

out the sequences that do not contain an A-SNR of length

at least 6 with at most one mismatch. Then, we trained

the filtered priming window sequences from the eight training

datasets in batches using partial fit because the training set

is too large to load into memory at once. We held out 1, 000

within training examples from each dataset as the evaluation

set. We then tested for overfitting of the trained MLP using

the filtered priming windows from the two test datasets by

comparing the mean accuracy between the evaluation and test

sets. Note that the performance of the trained MLP might be

limited by the potential mislabeled sequences in the provided

training data. There are two sets of mislabeled sequences in our

training data. The first set contains the background sequences

that have the potential to be primed but were not selected

for priming (false negatives). The second set contains the

intergenic sequences extracted from the biological read 1 that

are partially arising from polyA tails (false positives), because

we extracted the upstream sequence of biological read 1s from

the genome. However, Our results (not shown) suggests that

the trained MLP can predict the holdout set and the test

datasets consistently well, with a mean accuracy ∼ 80%.

The Forseti model
In the evaluation of the splicing status of scRNA-seq reads,

a critical piece of potentially useful evidence that is currently

unused is the likelihood that particular priming sites give rise

to the reads. For example, since the priming of sequenced

fragments is expected to originate from the priming to A-SNRs

along transcripts, and since fragment lengths in scRNA-seq

follow a well-characterized distribution that can be inferred

from observed data, one can evaluate the likelihood that a

particular polyA tract gives rise to an observed read based on

the mapping location of its read 2. Specifically, for a read r

with a given mapping on a transcript t, starting at position

x, one can consider this read to derive from the end of a

cDNA fragment whose opposite end terminates proximate to

a downstream A-SNR (i.e. the priming event associated with

this fragment). To evaluate the probability of these potential

cDNA fragments, one can evaluate the binding affinity of the

A-SNR and the probability of observing a cDNA fragment

of the implied length under the empirical fragment length

distribution. If, for example, it is highly likely that a read

is paired with an A-SNR located within an intron, then this

provides strong evidence that the associated UMI should be

assigned an unspliced status. On the other hand, if the read

is likely paired with the poly-A tail, then the pairing is not

particularly informative as to the associated UMI’s splicing

status (since both spliced and unspliced molecules may be

polyadenylated).

More formally, let the fragment length distribution be f .

This is a probability distribution that assigns a probability

pf (`) to observing a fragment of length `. Let the binding

affinity distribution b be another probability distribution that

assigns a binding probability pb(w) for a potential priming

window w containing an A-SNR based on its sequence. Further,

for the start site x of a read mapping on exon e of transcript

t of gene g, let pbs (t, x) = {(w1, d1), (w2, d2), · · · } denote

the set of all potential priming windows downstream of x in

t that contains an A-SNR, and for each such window wi the

corresponding distance di from x. Given a read r of ambiguous

status that maps to position x on exon e of transcript t, we

can evaluate the probability that this read arises from t (here,
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defined as the probability of the most likely associated binding

event) as:

Pr(t | x) = max
(wi,di)∈pbs(t,x)

pf (di)× pb(wi). (1)

Then, assume that, in addition to t, the exon e belongs to

other transcripts of the gene g. We define a function tx(g, e, v)

to be a function that returns all transcripts of g that contains

the exon e with the provided splicing status v ∈ {s, u}, where

s stands for spliced and u stands for unspliced. Then, we can

evaluate the probability that a read r arises from a spliced

transcript of gene g as:

Pr(s, x, e, g) = max
tj∈tx(g,e,s)

Pr(tj | x). (2)

Finally, we define the probability that the read arises from

a spliced transcript of gene g as:

Pr(s | x, e, g) =
Pr(s, x, e, g)∑

v∈s,u Pr(v, x, e, g)
. (3)

Additionally, if the read maps to multiple genes G =

{g1, g2, . . . }, then the most appropriate gene g for explaining

the read is defined as the gene that has the transcript yielding

the maximum P (v, x, e, g) among all genes in G, i.e.:

g = argmax
gk∈{G}

Pr(s, v, e, gk). (4)

Evaluation on experimental samples
In the experimental data on which we evaluated our model,

we extracted sequencing reads for which read 2, when aligned

alone, is of ambiguous splicing status, but when paired with

biological read 1, the splicing status is determined (or almost

certainly determined). In other words, we want to find the read

pairs such that the read 2 is entirely contained within an exon

but the biological read 1 is not entirely contained within the

same exon. Specifically, biological read 1 could be intronic (i),

span an intron-exon junction (i·e), span an exon-exon junction

(e·e′), or be contained in a different exon than read 2 (e∧e′). In

each of these cases, the definitive splicing status, either spliced

or unspliced, determined from the biological read 1 served as

the ground truth for the subsequent evaluation, where the

model, along with the alignments of read 2 treated as single-end

data, was used to predict the splicing status of the underlying

fragment.

Here, using the alignments for paired-end reads from

section 2.4, we briefly describe the process used to assign a

definitive splicing status to reads that have an exonic read 2. We

additionally note that reads that have pair-end alignments to

multiple genes are ignored in the procedure (i.e. not considered

for classification and subsequent evaluation) as we do not know

the true gene of origin. First, we used bedtools (Quinlan and

Hall, 2010) to mark all alignment positions for biological read

1 and read 2 that are entirely contained within exons according

to the paired-end alignment records and the exon annotations

generated in section 2.4. Again, if read 2 of a fragment is

not contained within any exon, then read 2, by itself, is

determinative as to the splicing status and the read pair will not

be processed further. We retain the information about whether

or not biological read 1 was entirely contained within an exon

to aid in subsequent classifcation.

Given a biological read 1, read 2 pair, we obtain the

reference transcripts explaining the paired-end read, denoted

as {Tpe}, from its alignments. We also obtain the transcripts

that are compatible with an exonic alignment of biological read

1 and read 2, denoted as {T r1
e } and {T r2

e }, respectively.

We identify the inferred status of the read, as spliced or

unspliced, as follows:

• e∧e′ reads: When (1) T̂ = {Tpe} ∩ {T r1
e } ∩ {T

r2
e } 6= ∅, (2)

T̂ contains only spliced transcripts, (3) the corresponding

exons in each t̂ ∈ T̂ that are compatible with biological read

1 and read 2 are different, and (4) the genomic distance

between the exons containing read 2 and biological read

1 in each t̂ ∈ T̂ are > 1, 000 nucleotides apart, then we

assign the read as a spliced (e∧e′) read, because this means

the fragment (but not either of the individual reads) spans

an exon-exon junction of the common reference transcripts.

Here, we require the distance between the involved exons to

be larger than 1, 000 nucleotides to minimize mislabelling

caused by short introns, where the fragment may place the

reads on different exons and completely contain a short

intervening intron.

• e·e′ reads: When (1) {Tpe}∩{T r1
e }∩{T

r2
e } = ∅, (2) {Tpe}∩

{T r2
e } 6= ∅ and (3) the intersection contains only spliced

transcripts, we assign the read as a e·e′ read, and therefore

of spliced status, because this means its biological read 1

spans an exon-exon junction.

• i and i·e reads: When (1) {Tpe} ∩ {T r1
e } 6= ∅ and (2)

the intersection contains only unspliced transcripts, we

assign the read as an unspliced read because this means its

biological read 1 either crosses an intron-exon junction (i·e)

or is complete contained within an intron (i), and therefore

the read pair must have arisen from an unspliced molecule.

We processed each read with an exonic read 2 individually to

get the spliced and unspliced labels for the evaluation set. We

then applied our model using the alignments of read 2s, treated

as single-end data, to predict the gene origin and the splicing

status of the read. The model prediction of reads was compared

with their assigned labels according to the above criteria to

evaluate the performance of the model.

Data Simulation
In addition to the experimental data, which employ a collection

of rules involving the paired-end mapping of read 1 and read

2 to ascertain the true splicing status, we also evaluated our

model on simulated data, where the true splicing status of

each fragment is known with certainty. As with all simulations,

the trade-off here is that the simulated data is, in general,

simpler and “cleaner” than the experimental data. Nonetheless,

as we observe similar AUCs in both cases (see Section 3), we

believe that the simulated data analysis is a useful evaluation

of Forseti.

We simulated paired-end reads from the spliceu transcriptomic

reference(section 2.2). In order to mimic real data at both read-

count and read-sequence levels, we seed our simulation with a

count matrix from experimental data and introduced realistic

sequencing errors into the simulated reads.

We applied simpleaf (He and Patro, 2023) to a 10X

1k Human PBMC v3 scRNA sample § using the spliceu

reference to generate the spliced, unspliced and ambiguous

count matrices. These matrices were loaded into Python as an

AnnData object (Virshup et al., 2021) using pyroe He and Patro

(2023).

§ https://www.10xgenomics.com/datasets/1-k-pbm-cs-from

-a-healthy-donor-v-3-chemistry-3-standard-3-0-0
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As detailed in section 2.2, regions on the reference sequence

with at least six consecutive adenine (A) bases are considered

potential polyA priming sites. We denote by ~tA the ordered list

of potential polyA priming sites on transcript t. The polyA tail

of each transcript was also considered a potential priming site.

Simulated reads were generated from the transcripts

recorded in spliceu according to the following process. First,

a gene g is selected for sequencing. For each gene g we draw gs

spliced reads and gu unspliced reads, where these counts are

determined by the corresponding counts from the processed

sample. Given a gene g and a read status v ∈ {u, s}, we

randomly select a transcript t of g with the desired splicing

status v. Next, we select a polyA site from ~tA uniformly at

random; let the site be denoted as tAi
. Then, we sampled

a fragment length d according to the empirically derived

fragment length distribution f . The pair of (tAi
, d) determines

the underlying fragment being sampled, which spans the

transcriptomic region of length d ending at tAi
. This determines

the position of read 2 (the first 91 bases at the 5′) as well as

the corresponding read 1 (the last 31 bases at the 3′), matching

the cycle length of the reference dataset. The sequence of read 1

and read 2 were extracted from the spliceu reference sequences,

which was loaded using the SeqIO module from Biopython (Cock

et al., 2009).

As our focus in this work is on recovering the splicing

status of fragments, the only simulated reads useful for our

experiments are those where read 2 resides entirely within an

exon. So as to not waste effort simulating and quantifying

fragments where read 2 is, itself, of determined splicing

status, we exclude fragments having a non-exonic read 2

from our simulated data. Thus, during simulation, we inspect

each simulated potential fragment to determine if read 2 is

ambiguous or not. If read 2 itself is determinative of the splicing

status of the underlying molecule, we discard this read and

sample a fragment again from the same gene and splicing status.

To achieve this while still striving to obtain the desired read

count for each gene, we implemented a resampling process,

limited to a maximum of 100, 000 trials per read.

We note that, because we rejected and resampled “naturally

simulated” fragments for which read 2 had a determinative

splicing status, there is a selection effect among the fragments

that eventually complete the simulation process, and that

the simulated data is therefore not entirely random with

respect to the underlying collection of polyA sites and

the target fragment length distribution. Nonetheless, we

find that this process performs reasonably well in terms of

generating fragments whose ambiguity profiles match those of

experimentally ambiguous fragments.

Moreover, it is also important to note that two specific

categories of reads are fundamentally ambiguous and remain

indistinguishable within our model and, in fact, in the context

of any model that just considers the type of information used

in Forseti. The first category includes fragments where read

1 is from the polyA tail and read 2 resides in the terminal

exon of the transcript of origin. Such fragments can originate

from either the spliced or unspliced versions of a transcript,

leading to inherent and fundamental ambiguity. The second

category comprises read pairs where the whole fragment (read

2 and its mate read 1) are from the same exon within a

transcript. These are fundamentally ambiguous for the same

reason as the first category but tend to be rare in practice as

typical fragment lengths are longer than typical exon lengths.

To test the performance of our model with and without

fundamental ambiguity, on top of the data simulated by the

procedure described above, we also simulated a read set without

fundamental ambiguity. In this set, we require not only that

read 2 of a fragment is contained in an exon, but also that its

corresponding read 1 is not contained within the same exon, and

the fragment is not generated from the polyA tail of transcripts.

To mimic realistic sequencing error profiles, we employed

InSilicoSeq (ISS) (Gourlé et al., 2019) to introduce realistic

Illumina errors into the simulated reads. We constructed a

custom error model using the reference 10X 1k PBMC sample

data mentioned above. We aligned the data with STAR using the

spliceu annotation. STAR was executed with similar flags as in

section 2.4 for aligning only read 2, but with an additional flag

to include the MD tag in the output BAM file. The error model

was then built using ISS with the default setting. ISS estimated

the quality score for each base, thereby introducing substitution

errors into the simulated reads based on the estimated scores.

Finally, we exported the read pairs to two separate FASTQ files

using SeqIO from Biopython.

Results

In this study, we developed a probabilistic model, Forseti, to

infer the splicing status of the molecule origin for scRNA-seq

reads. Our model makes use of a fragment length distribution

and a binding affinity model learned from empirical data to

identify and score the potential sequenced fragments that led

to the observed scRNA-seq reads. From these scored fragments,

Forseti can not only predict the splicing status of the molecule

origin that the read was drawn, but also recognize the true

gene origin when reads are compatible with multiple genes.

We evaluated Forseti on both simulated and experimental

validation sets, and found that Forseti precisely predicts the

splicing status of reads in all validation datasets, with AUC

scores ranging from 0.85 to 0.93 and an average AUC of 0.90.

Evaluation of model components
In most tagged-end scRNA-seq protocols, the cDNA fragments

are generated with a preferred length of 300-400 base pairs,

which means the cDNA fragment length in scRNA-seq might

follow a distribution. However, the potential cDNA distribution

is challenging to model, or even detect, in most existing

scRNA-seq data, because the recommended sequencing format

captures only the 3′ end sequence of the cDNA insert. To

overcome this challenge and model the cDNA fragment length

distribution, we collected ten scRNA-seq datasets that were

generated by applying the alternative sequencing format (10x

Genomics, 2018), in which read 1 is sequenced the same cycles

as read 2, so that the sequence of the 5′ and 3′ end of the

cDNA insert in each sequenced fragment are both captured,

by read 1 and read 2, respectively. In other words, these data

can be treated as paired-end data, and the cDNA fragment

length of each sequenced fragment can be calculated from

the alignments of the paired-end reads. In this work, we

fit a cubit spline model on the empirical fragment lengths

calculated according to the paired-end read alignments from

eight training datasets selected from the collected datasets. We

evaluated its performance on the two holdout testing datasets

(section 2.5). As shown in fig. 2a, the distribution model’s

close fit to data, strikes a balance between smoothness and

fidelity. The low Root Mean Square Error (RMSE) score in

our evaluation indicates a high accuracy of the model in

predicting the frequency of fragment length within two test

datasets(RMSE mean = 3 × e−4 , RMSE standard deviation

= 1×e−4 ). In addition, we assessed the trained spline model’s
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Fig. 1. Overview of the Forseti model of splicing status inference. The fragment length and binding affinity models are used to score putative fragments,

and splicing status of the molecule giving rise to the highest-scoring fragment yields the prediction.

generalizability with a 5-fold cross-validation experiment. For

each fold, we trained a cubic spline model with eight training

datasets. The error bar plot in fig. 2b illustrates that minimal

variation is observed in the frequency prediction across all

five folds, indicating model’s consistent performance and a

generally similar fragment length distribution across samples.

This consistency also supports our initial hypothesis regarding

a generalized insert size distribution and that a distribution

can be learned and robustly applied to various datasets across

different species, cycle length and chemistry version.

(a) (b)

Fig. 2. We fit a generalized distribution model of fragment length

frequency. The accuracy was assessed by Root Mean Square Error

(RMSE) score on test datasets(a).The blue line is the mean of the

frequency from 2 test datasets, and the orange line is the predicted

frequency from the trained spline model. The consistency of model across

samples was evaluated with a 5-fold cross-validation was showed in the

Error Bar plot (b).

In addition to the fragment length model, Forseti utilizes

a multi-layer perceptron (MLP) to predict the binding affinity

of the potential priming window containing the sequence motif

where the poly(T) primer binds. The MLP was trained and

tested on experimental priming windows obtained from the

training and test split used in the fragment length model. The

mean accuracy of the trained MLP on the training datasets,

the holdout set from the training data, and the tested datasets

is 0.877, 0.865, and 0.860, respectively, suggesting the high

accuracy and generalizability of the trained MLP for identifying

the experimental priming windows from random background

sequences across all datasets.

Forseti accurately predicts the splicing status of
reads
We evaluated Forseti on four evaluation read sets, two from

experimental data, and the other two from simulated data

(sections 2.9 and 2.10). Because Forseti, and in fact, any

model that just uses the same information, is unable to predict

a definitive splicing status for fundamentally ambiguous

fragments — fragments arising either from polyA tail priming

and staying in the terminal exon, or having both biological

read 1 and read 2 entirely contained within the same exon — we

generated two sets of simulated data; one with and one without

fundamental ambiguity (section 2.10).

(a) (b)

(c) (d)
Fig. 3. Forseti accurately predicts the splicing status of both simulated

and experimental reads, evaluated using receiver operating characteristic

(ROC) curve and Area Under ROC (AUC) score. In all plots, the blue

curve represents the ROC of Forseti, and the other three curves stacking

with each other, represent the three baseline models. Panel (a) and (b)

show the ROC curve and the corresponding Area Under ROC (AUC) of

simulated with and without fragments entirely contained within an exon

and fragments arising from terminal polyA priming, respectively. Panel

(c) and (d) show the AUC of the two experimental datasets from human

and mouse, respectively.

The model performance was assessed using the receiver

operating characteristic (ROC) curve and, specifically, by

evaluating the area under ROC curve (AUC) scores. The ROC

curve plots the true positive rate and false positive rate from

all predictions as the classification threshold is swept across the
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value of all scores. The AUC, ranging from 0 to 1, measures

the area under the ROC curve. A high AUC score means a

model has a good prediction power — that the probability

assigned by our model to a splicing status is well-correlated

with the true splicing status. As shown in fig. 3, our model

demonstrated consistently high AUC among all evaluated read

sets. In particular, the AUC of Forseti on the two experimental

sets generated from human and mouse scRNA-seq datasets

is 0.89 and 0.85 (figs. 3c and 3d), suggesting the generality

of our model across different species and cell types. The

high AUC scores of Forseti on the simulated data with and

without fundamental ambiguity (figs. 3a and 3b), consistent

with the experimental sets, suggest that the mechanism —

internal polyA priming — we used to generate the simulated

dataset (section 2.10) well-mimics the real-world mechanism

that generates ambiguous reads. Also, our result highlights that

including fundamental ambiguity did not hamper the ability of

our model to predict the correct splicing status for reads when

possible. We also included the ROC curve of three baseline

models, implying the current best practices for resolving

splicing ambiguity (La Manno et al., 2018; He et al., 2022; 10x

Genomics, 2022b; Kaminow et al., 2021; Eldjárn Hjörleifsson

et al., 2022b) Figure 3. These baseline methods either assign

all reads a spliced status probability of 1 (“All spliced”), 0

(“All unspliced”), or a random probability ranging from 0 to

1 (“All random”). This “All random” predictor is generated

by first assigning a random probability in [0, 0.5] to each truly

unspliced read and a random probability selected in [0.5, 1] to

each spliced read, and then randomly shuffling the order of

these probabilities. All three baseline models had an AUC=0.5,

suggesting that no trivial predictor can extract meaningful

splicing status at a level approaching that achieved by Forseti.

One advantage of being a probabilistic model is that,

for those fundamentally ambiguous reads that our model is

currently unable to handle, their splicing status will remain

ambiguous in Forseti’s prediction, with a probability of being

spliced as exactly 0.5. In the two experimental datasets,

reads that remain with an ambiguous splicing status after

Forseti account for 14% and 19%, respectively, suggesting that

fundamental ambiguity is cell-type specific. In the simulated

data with fundamental ambiguity, ambiguous reads account

for more than 76% of reads, mainly because our simulation

setting prefers generating fundamentally ambiguous reads

(section 2.10). In the simulated dataset without fundamental

ambiguity, this percent becomes 15%, coincident with the

experimental sets. This suggests that our simulation that allows

fundamental ambiguity is unrealistic (i.e. is overly pessimistic)

and that the degree of such ambiguity is likely substantially

lower in real-world, experimental data. In fig. 4, we show

similar ROC plots for the evaluation sets but with ambiguous

predictions included. Compared with figs. 3a and 4a, the AUC

of these rather unrealistic simulations, in which fundamentally

ambiguous reads are dominated, decreased from 0.93 to 0.68.

Though a large decrease from 0.93, this is still much higher

than the 0.5 AUC obtained by the baseline models. Apart from

this overly-pessimistic case, the AUC of other evaluation sets

remains consistently high. We note that the middle part of the

curve, not covered by examples (i.e. the thinner part of the

line in fig. 4), is caused by ambiguous predictions, as Forseti

assigned a probability of 0.5 to all of them.

Forseti can disambiguate gene multimapping reads
Another advantage of being a probabilistic model is that the

predicted probabilities of Forseti can be regarded as the

confidence score that each potential downstream priming site,

when paired with an alignment for read 2, represents that actual

underlying fragment from which read 2 was sequenced. The

final splicing status of a read with respect to a gene is assigned

as the splicing status of the reference transcript for which the

most confident alignment, priming site pair occurs. Similarly,

this highest confidence score (probability) can also be used to

evaluate the true gene origin of reads compatible with multiple

genes (which may arise because of overlapping genes in the

genome, or because of sequence-similar genes, such as members

of a gene family).

To select a splicing status among spliced and unspliced

transcripts within a gene, we simply compare the highest

scoring fragment from any spliced transcript to the highest

scoring fragment from any unspliced transcript. However, the

same underlying predictive scoring mechanism of Forseti can

also be used to evaluate the relative probability of the truly

generating fragment between genes.

Specifically, consider a read that is multimapping between

two genes g1 and g2. For each gene, Forseti computes a score

for all potential fragments and records the highest score among

all transcripts of g1 and all transcripts of g2, respectively. Then,

we can then compare the highest score computed for g1 and g2

to determine the best gene origin of the read between these

genes. In the current work, we consider the maximum score

as the criterion when comparing compatible genes. However,

we note that other aggregation mechanisms, such as the sum,

the expected fragment probability, or a weighted expectation,

can also be used for scoring genes, and evaluating optimal

aggregation mechanisms is an interesting direction for future

work.

One finding from our result is that, in our simulated data,

multi-gene mapped reads were all simulated from unspliced

transcripts, mainly from the regions that are shared by multiple

genes. Because the sequence of these shared regions is identical,

the true gene origin of these reads is indistinguishable in our

model. However, for the two experimental evaluation datasets,

Forseti assigned a single best gene origin to 65% of the multi-

gene mapped reads in one dataset and to 93% of the multi-gene

mapped reads in the other (the remaining reads had a tied

highest score among genes, and thus no single gene prediction

could be made). However, when a single gene prediction could

be made, Forseti’s prediction was correct in 74% and 63%

of the cases, respectively (i.e., the true gene origin of the

multi-gene mapped reads was identified). This suggests that

in reality, most multi-gene mapped reads are distinguishable,

and, among the distinguishable subset of multi-gene mapped

reads, Forseti can assign the true gene origin to them in the

majority of cases. As the gene origin assignment is affected by

the weight Forseti places on internal polyA compared to polyA

tail priming, a weight parameter naturally arises that affects

the relative preference for polyA tails versus internal polyA

priming. Exploring the trade-off between the accuracy of gene-

origin prediction and splicing status prediction by optimizing or

altering this weight is an interesting direction for future work.

Here, however, we consider just the simple case where we treat

the two polyA classes equally.

While the rescue of multi-gene reads is not the primary

focus of our model, and was not a target application

during Forseti’s design, the fact that it provides meaningful
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predictions in this distinct task is evidence of the promise that

fundamentally better fragment modeling can make to scRNA-

seq pre-processing. To our knowledge, our model is the first

to attempt to resolve fragment-level multi-gene mapping in

scRNA-seq data, thanks to the utilization of the fragment

length distribution and binding affinity models. Further, these

informative predictions stack on top of existing models for

partially allocating gene-multi-mapping UMIs, such as the

EM approach introduced in Srivastava et al. (2019) and later

adopted in Melsted et al. (2021); Kaminow et al. (2021) and He

et al. (2022).

(a) (b)

(c) (d)
Fig. 4. This figure shows the ROC curves that are analogous to those

in fig. 3, except where reads predicted as having an ambiguous splicing

status have been included (section 3).

Conclusion

In this work, we introduce Forseti, a mechanistic and predictive

model of the splicing status of the sequenced fragments

in scRNA-seq samples. As the first predictive model of

which we are aware that focuses on resolving the splicing

status ambiguity in scRNA-seq, Forseti utilizes the fragment

length distribution and a binding affinity model trained on

a variety of experimental scRNA-seq datasets to predict the

probability that the observed read is associated with specific

sequenced fragments arising from each compatible reference

transcript. Our results show that the AUC of our model

on both experimental and simulated evaluation sets is high,

demonstrating the consistent performance of Forseti across

species and cell types. Furthermore, by virtue of being a

probabilistic model that seeks to score potential fragments of

origin of a read, and not just the read’s splicing status, our

model predictions can also be compared across genes and used

to help successfully resolve the gene of origin for the majority

of multi-gene mapped reads in our experimental evaluation

datasets.

Because Forseti predicts the splicing status of sequenced

fragments based on the difference of the nucleotide sequence of

the spliced and unspliced transcripts, one limitation of Forseti

is that, when the possible fragments in spliced and unspliced

transcripts are identical (for example for fragments are entirely

contained within an exon) Forseti will be unable to resolve the

splicing status of the fragments. However, one potential path

to overcoming this limitation is to aggregate evidence over all

fragments from the same unique molecule identifier. In this

case, an individual read may be fundamentally ambiguous,

but other fragments of the same UMI may have a definitive

splicing status or at least an informative splicing probability, so

as to be used to distinguish the splicing status of their common

molecule of origin. Likewise, another potential use case for

Forseti at the UMI-level is to aid in determining potential UMI

collisions. If a UMI contains conflicting evidence, i.e., some

of its sequenced fragments are predicted as spliced and others

as unspliced, this might indicate UMI collision, suggesting the

potential of using Forseti to also improve the UMI resolution

in scRNA-seq. Finally, we have developed Forseti as a proof-

of-concept model, demonstrating the potential and promise of

fragment-level modeling to elucidate splicing status in scRNA-

seq data. However, one important direction for future work

is to properly integrate this model into existing tools for

efficient scRNA-seq processing, like our alevin-fry tool He

et al. (2022). While not conceptually difficult, such integration

will require the propagation of additional information through

the processing pipeline, and it will also likely highlight the

need and opportunity for further computational enhancements

and simplifications that will make the fragment probabilities

evaluated in Forseti faster to calculate at the scale of ever-

growing scRNA-seq experiments.
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