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ABSTRACT 23 

 24 

Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity 25 

and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into 26 

glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, 27 

undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. 28 

Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-29 

GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor 30 

interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or 31 

susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN 32 

simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of 33 

intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug 34 

targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our 35 

findings demonstrate an approach to uncover TRN topology and use it to rationally predict 36 

combinatorial treatments that disrupts acquired resistance in GBM. 37 

  38 
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INTRODUCTION 39 

 40 

Glioblastoma (GBM) is the most lethal and aggressive primary brain tumor in adults. With current 41 

standard of care (SOC), which involves maximal surgical resection, fractionated radiotherapy 42 

(XRT), and chemotherapy with the DNA-alkylating agent, temozolomide (TMZ) (1), patient 43 

prognosis remains dismal with a median survival time of 14-15 months and a 90% risk of 44 

recurrence. There is growing evidence that the poor therapy responsiveness and dismal 45 

prognosis in GBM patients emerges from the interplay of tumor cell heterogeneity and treatment-46 

induced shifts of cellular phenotypic states. Three molecular subtypes of GBM have been 47 

identified – proneural (PN), classical (CL), and mesenchymal (MES), each exhibiting distinct 48 

responses to SOC and clinical prognosis (2, 3). Single-cell resolution transcriptome analyses 49 

further demonstrated that even an individual GBM tumor consist of highly heterogeneous cell 50 

populations, not only morphologically but also with respect to its composition of cellular states (4), 51 

which can include a mixture of PN/CL/MES subtype cells and a small subpopulation of glioma 52 

stem-like cells (GSCs) that have the capability to self-renew, generate different tumor cell 53 

progenies, and initiate new tumors. Further, there is evidence that extrinsic signals and stressors, 54 

including those generated by treatment, can also drive heterogeneous tumor cells to 55 

dedifferentiate into immature GSCs that are inherently resistant to TMZ (5, 6). 56 

 57 

While PN GSCs have higher proliferation rates and promote tumor angiogenesis, MES GSCs 58 

have potent invasive capabilities (7) and are more resistant to radiation (8) and drug treatment 59 

(9). Thus, most recurrent tumors derived from non-MES primary tumor are comprised of the MES 60 

subtype (10, 11). Two hypotheses have been proposed for the shift in recurrent tumor subtype 61 

and corresponding development of treatment resistance (12, 13): 1) MES subtype GSCs pre-62 

existing in the heterogeneous tumor cell population are selected for and eventually drive the 63 

growth of the recurrent tumor (14); 2) radiation and chemotherapy causes GSCs to undergo a cell 64 

state conversion, namely a PN to MES transition (PMT) to evade and survive treatment (7, 15). 65 

The latter hypothesis is in line with the emerging notion that non-genetic cell plasticity, in addition 66 

to selection of fixed, genetically determined phenotypes of mutant cells accounts for tumor 67 

progression and recurrence. For instance, radiation- or chemotherapy-induced epithelial to MES 68 

transition (EMT) in solid tumors has been widely implicated in the rapid development of therapy 69 

resistance (16–25). Thus, GSCs undergoing PMT may be causally responsible for recurrence of 70 

most drug resistant GBM tumors in the form of the MES subtype (26). For example, expression 71 

of MES marker (CD44) and NF-kB pathways associated with PMT were elevated following 72 
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radiation treatment of PN GSCs pre-treated with TNF-. In genetically engineered mouse models 73 

with cells that can fluorescently report molecular subtype, GSCs transitioned to the MES subtype 74 

as early as 6 hours following radiation treatment, demonstrating intrinsic ability of GSCs to deal 75 

with treatment-induced stress (15). Finally, GSCs isolated from the invasive tumor edge 76 

transitioned from a PN subtype to a MES phenotype in a C/EBP- dependent manner following 77 

treatment (27). In view of the accumulating evidence for the role of non-genetic plasticity of GSCs 78 

in the development of recurrent and refractory tumors, understanding the mechanisms underlying 79 

GSC plasticity is critical to address its role in disease progression and the unintended 80 

consequences of treatment. Although  multiple clinical trials are underway to evaluate novel drugs 81 

or drug combinations that are both cytotoxic against GSCs and also meet the criteria for treating 82 

brain tumors (e.g., penetrance of blood brain barrier) and recurrent therapy-refractory GBM (28), 83 

these clinical studies, including our own, have discovered that many FDA-approved drugs are 84 

effective in killing GSCs, but can also induce surviving cells to undergo PMT. 85 

 86 

Here, we sought to understand if knowledge of mechanisms underlying the developmental 87 

plasticity of GSCs, and the trajectories through which these cells undergo drug-induced PMT, 88 

would enable rational strategies to improve treatment responsiveness by disrupting primary 89 

resistance mechanisms, by blocking therapy escape to prevent acquired resistance and tumor 90 

recurrence. We have performed these studies with pitavastatin, an HMG-CoA reductase inhibitor, 91 

which is widely used to manage cholesterol levels. Pitavastatin is a prime example of an FDA-92 

approved drug that can be repurposed to minimize GBM recurrence because of its anti-93 

proliferative and radiotherapy sensitization effects on glioma cells (29), its cytotoxic effects against 94 

GSCs (30), and because of its recent evaluation for use in combination therapy (31). Specifically, 95 

we have investigated mechanisms of primary and acquired resistance in six patient-derived GSCs 96 

(PD-GSCs) – three responders (SN520, SN533, and SN575) and three non-responders (SN503, 97 

SN517 and SN521) to pitavastatin. Through the inference of mechanistic transcriptional 98 

regulatory networks at single-cell resolution, we demonstrate that the architecture and dynamics 99 

of a core transcription factor (TF) network governed the phenotypic plasticity of PD-GSCs. By 100 

performing in silico simulations and chemical and genetic (siRNA) perturbations, we show 101 

compelling evidence that it wasn’t the composition of initial cell states, but the topology of the core 102 

TF-TF network that governed phenotypic plasticity of GSCs. Finally, our findings demonstrate that 103 

mechanistic knowledge of the gene regulatory network topology can be leveraged to rationally 104 

tailor combinatorial and sequential treatment regimen to disrupt primary or acquired resistance in 105 

a given PD-GSC. 106 
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RESULTS 107 

Pitavastatin treatment induces distinct responses in SN520 and SN503 PD-GSCs 108 

Through high throughput dose titration assays, we discovered that pitavastatin had a wide range 109 

of effectiveness against 45 PD-GSCs. Based on their varying sensitivities, we classified the PD-110 

GSCs into two categories, one in which PD-GSCs were considered a “responder” (IC50 < 5.0M) 111 

and the other in which they were considered a “non-responder” (IC50  5.0M, Fig. 1A). To 112 

understand the dynamics underlying each drug-response phenotype, we examined pitavastatin 113 

sensitivity of two PD-GSC cultures, SN520 and SN503, both of which were isocitrate 114 

dehydrogenase 1 (IDH1) wild-type and O6-methylgaunine-DNA methyltransferase (MGMT) 115 

unmethylated. The dose titration results revealed distinct susceptibility profiles to pitavastatin 116 

treatment. With an IC50 of 13.0M, SN503 was considered a “non-responder”, whereas as SN520 117 

with an IC50 of 0.43M was labeled a “responder” (Fig. 1A). Next, we investigated the longitudinal 118 

response of each PD-GSC culture over a 4-day treatment with DMSO (vehicle control) or 119 

pitavastatin at 6.0M, a dose at which significant decreases in cell viability were observed over 120 

the same treatment period (fig. S1). To minimize batch effects, replicate cultures were treated 121 

with drug or vehicle over a staggered schedule such that all samples for days 0 (D0), 2 (D2), 3 122 

(D3), and 4 (D4) were collected and processed simultaneously for subsequent flow cytometry, 123 

bulk RNA-seq, and scRNA-seq analysis (Fig. 1B). SN520 viability decreased dramatically during 124 

treatment between D3 and D4, falling below 90% by day 5 (Fig. 1A). By contrast, over the first 125 

three days of pitavastatin treatment, SN503 viability decreased rapidly at a rate that was similar 126 

to the kill rate of SN520, but leveled off to approximately 60% for the remainder of the 4-day 127 

treatment.  128 

 129 

Flow cytometry analysis with annexin V labeling demonstrated that pitavastatin had killed SN520 130 

cells by inducing apoptosis (fig. S2). This result differed from cytometry analysis results of SN503, 131 

which did not reveal any dramatic increase in annexin V signal, suggesting that in this PD-GSC 132 

culture a mechanism other than apoptosis was responsible for cell death in a small fraction of the 133 

population (fig. S2). These findings indicated that the cytotoxic consequences of pitavastatin may 134 

vary depending on the composition and characteristics of subpopulations of cells within each PD-135 

GSC culture. Further, the difference in the rate of cell death in both PD-GSC cultures during 136 

treatment suggested either the presence of distinct sub-populations of cells with varying 137 

susceptibility to pitavastatin, or the possible induction of adaptive responses and cell state 138 

transitions across sub-populations within each PD-GSC culture. Subsequent gene set variance 139 

analysis (GSVA (32)) of bulk RNA-seq profiles was used to generate GBM subtype-specific 140 
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enrichment scores, which revealed that subtype compositions of both treated PD-GSC cultures 141 

were fairly constant during 4-day vehicle (DMSO) treatment, with SN520 expressing signatures 142 

for CL/PN subtypes and SN503 expressing signatures for PN/MES subtypes (Fig. 1C). During 143 

pitavastatin treatment, subtype composition of SN520 transitioned from a PN/CL gene signature 144 

for the first three days to a predominantly MES subtype on the fourth day of treatment (Fig. 1C). 145 

By contrast, the subtype composition of SN503 remained relatively constant throughout 146 

pitavastatin treatment. The observed shift in molecular subtypes of SN520 could be explained by 147 

either a selection of a pre-existing subpopulation of MES cells or a treatment-induced transition 148 

that enabled a subpopulation of surviving cells to escape drug-induced cytotoxicity. Therefore, 149 

single-cell-level analysis was required to determine the mechanism driving the subtype change in 150 

the bulk cell population. Ultimately, these findings established that despite their similarity in terms 151 

of IDH1 mutation and MGMT methylation status, the two PD-GSC cultures exhibited vastly 152 

different pitavastatin responses.  153 

 154 

Single-cell analysis suggests drug-induced PMT is likely mechanism of acquired 155 

pitavastatin resistance in SN520 156 

To further dissect the likely role of sub-population heterogeneity in enabling treatment escape of 157 

SN520 and SN503 (Fig. 1B), we performed scRNA-seq profiling of each PD-GSC culture 158 

(Chromium, 10X Genomics, Inc.). Following QC of the raw scRNA-seq data (METHODS), a total 159 

of 5,402 cells from SN520 and 5,722 cells from SN503 were profiled across all time points (D0, 160 

D2, D3, and D4) and treatment conditions (pitavastatin or vehicle control). Batch-integration with 161 

Harmony (33), dimensionality reduction, and visualization with uniform manifold approximation 162 

and projection (UMAP, (34)) of the integrated scRNA-seq data revealed distinct pitavastatin-163 

specific transcriptional responses across the two PD-GSCs (Fig. 1D). In SN520, we observed 164 

time-dependent clustering of cells, indicating a coordinated transcriptional response to 165 

pitavastatin. By contrast, there was considerable overlap between pitavastatin-treated SN503 166 

cells from all time points (Fig. 1D). We quantified net temporal shifts in transcriptomic states of 167 

the cells, or lack thereof, using Wasserstein distance, which quantifies dissimilarity between two 168 

high-dimensional distributions (35). Drug treatment caused the SN520 cells to become 169 

progressively dissimilar from the preceding state over time, unlike vehicle-treated cells. By 170 

contrast, there was a slight increase in Wasserstein distance in drug-treated SN503 cells between 171 

D2 and D3, but not between D3 and D4 samples (Fig. 1E). Given the distinct response patterns 172 

of the two PD-GSCs, subsequent scRNA-seq analysis was performed on a patient-specific basis, 173 

(Fig. 2A, B). UMAP plots organized cells within each PD-GSC into two main groups, defined by 174 
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treatment with either pitavastatin or vehicle control. Pitavastatin-treated SN520 cells organized 175 

along treatment time whereas pitavastatin-treated SN503 cells from different time points 176 

overlapped with one another in the gene expression space as captured by the UMAP 177 

embeddings.  178 

 179 

Interestingly, GSVA enrichment scoring (fig. S3) showed that while the relative proportions of cells 180 

for each molecular subtype (i.e., CL, PN, MES) was fairly consistent in vehicle control, the 4-day 181 

pitavastatin treatment of SN520 cells showed a dramatic increase in the proportion of cells of the 182 

MES subtype (Fig. 2C). In stark contrast and consistent with bulk RNA-seq analysis, the SN503 183 

culture did not exhibit any significant change in subtype composition with either vehicle or 184 

pitavastatin treatment (Fig. 2D and Fig. 1C). Generally, the trends observed at the single-cell 185 

level, i.e., a dramatic increase in MES subtype in SN520 and a mixture of molecular subtypes in 186 

SN503, were reflected at the bulk-level (Fig. 1C). Furthermore, similar patterns in proportions of 187 

GSC subpopulations were observed when cells were annotated according to the more recently 188 

defined cell-state classification of GBM tumor cells (36) (fig. S4).  189 

 190 

Cytometry analysis confirmed findings from scRNA-seq analysis that pitavastatin treatment of 191 

SN520 resulted in an increase in the proportion of CD44+ (MES) cells from 28.2% to 65.35%, and 192 

a simultaneous decrease in CD133+ (PN) cells from 52.7% to ~1%. Of note, SN520 had a 193 

sizeable (35.3%) proportion of CD133+/CD44- PN cells, which were nearly eliminated by D4 (Fig. 194 

2E), likely due to a combination of treatment-induced killing and a transition of surviving cells to a 195 

MES state. By contrast, pitavastatin treatment did not cause a change in the proportion of CD44+ 196 

cells in SN503 (87% on D1 to 85.11% on D4, Fig. 2F). The significant decrease in the relative 197 

proportion of CD133+ cells within SN503 (from 38.1% on D1 to 9.51% on D4), especially over the 198 

first two days of treatment, was likely due to pitavastatin-induced killing of a susceptible PN 199 

subpopulation (9). Interestingly, the relative proportion of CD133+/CD44- PN cells (1.41%) within 200 

SN503 was negligible; pitavastatin sensitivity appeared to be associated with a CD133+/CD44+ 201 

sub-population that was in higher abundance (36.7%).  202 

 203 

To differentiate between selection and differential proliferation as opposed to cell type conversion 204 

(PMT) as the mechanism responsible for the observed shifts in subtype composition, we used 205 

canonical cell cycle gene expression signatures to score each cell (METHODS) and found that 206 

only small proportions of cells within each PD-GSC culture were in the S or G2/M phase 207 

regardless of treatment context (fig. S5). Consistent with this finding, cytometry-based DNA 208 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578510doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578510
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

quantification of individual cells confirmed that only a small proportion of cells across both PD-209 

GSCs were actively proliferating during pitavastatin treatment (fig. S6). Theoretical calculations 210 

based on cell division rate and treatment duration (fig. S7), as well as the homogeneity of CNV 211 

states pre- and post-treatment of both PD-GSCs (Fig. 2G, H) both independently suggested that 212 

cell subtype transitions of surviving SN520 cells, rather than a natural selection and expansion of 213 

a subclone, was responsible for the observed treatment-induced changes in subtype composition 214 

and phenotypic characteristics. Finally, overall drug sensitivity of surviving SN503 cells remained 215 

relatively unchanged post-pitavastatin treatment for ~30 days (Fig. 2I; paired t-test p-value = 216 

0.348). In stark contrast, there was significant 2.4 log2-fold increase in IC50 of surviving SN520 217 

cells from 0.42 M to 2.24 M, which was sustained over 100 days (Fig. 2I; paired t-test p value 218 

= 1.526e-05), demonstrating the long-term functional consequences of drug-induced PMT. 219 

 220 

Characterization of transcriptional states of PD-GSCs reveals multiple mechanisms of 221 

primary and acquired resistance 222 

Dimensionality reduction with PCA and subsequent Louvain clustering (METHODS) organized 223 

the 5,402 SN520 cells into 14 clusters (Fig. 3A, B) and the 5,722 SN503 cells into 12 clusters 224 

(cl503/520-i; Fig. 3C, D). As expected, the SN520 Louvain clusters were predominantly comprised 225 

of either vehicle- or pitavastatin-treated PD-GSCs (Fig. 3C). By contrast, several SN503 Louvain 226 

clusters contained a mix of both vehicle- and drug-treated cells (Fig. 3D). Below we summarize 227 

findings based on pathway enrichment analysis of differentially expressed genes (DEGs, fig. S8) 228 

within each Louvain cluster (Fig. 3E). A more detailed description is included in the 229 

Supplementary Materials. 230 

 231 

SN520 Clustering & Enrichment. Consistent with the mechanism of action of pitavastatin, gene 232 

set enrichment analysis (GSEA, tables S1-S2) revealed that within two days upon initiation of 233 

treatment SN520 cells differentially regulated cholesterol homeostasis, biosynthesis, and 234 

maintenance, as well as MTORC1 signaling. Cells from D3 and onwards the cells differentially 235 

regulated stress response genes including unfolded protein response, protein secretion, P53 236 

pathway, and apoptosis. Closer examination of those Louvain clusters enriched with apoptotic 237 

gene signatures (cl520-4, cl520-6, cl520-7, cl520-12, and cl520-13) revealed that 4 of the 5 clusters 238 

contained cells from all molecular subtypes, indicating that drug sensitivity was not necessarily 239 

subtype-specific (fig. S8). Concomitantly, the killing of susceptible cells alone does not explain 240 

the coordinated change in subtype composition of SN520, given that MES subtype cells were 241 

approximately 2% of the original population, whereas they comprised 94% of the total population 242 
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on D4 (Fig. 2C), when 80% of cells were killed by pitavastatin treatment (Fig. 1A). Interestingly, 243 

upregulation of both apoptosis and EMT genes across subpopulations of drug-treated D4 cells 244 

(cl520-6, cl520-7) was consistent with simultaneous induction of these pathways by TGFβ during 245 

tumor formation and progression, with cell fate being dependent on cell-cycle phase (37, 38). In 246 

this case, cl520-6 and cl520-7 cells were in G1/S phase, suggesting that SN520 cells escaped 247 

apoptosis by transitioning into the MES subtype (fig. S8).  248 

 249 

SN503 Clustering & Enrichment. Although there were fewer DEGs in SN503 as compared to 250 

SN520 (Fig. 3F), the Louvain clusters of pitavastatin-treated SN503 cells did bear similarity to 251 

SN520 clusters with regard to differential regulation of certain pathways, including cholesterol 252 

homeostasis, fatty acid metabolism, MTORC1 signaling, androgen response, and unfolded 253 

protein response (tables S3 – S4). However, the differential expression patterns were distinct 254 

between the two PD-GSCs. For instance, pitavastatin-treated SN503 cells did not cluster by 255 

treatment time; instead, cells from all time points grouped together across multiple Louvain 256 

clusters (Fig. 3D, E) characterized by upregulation of oxidative phosphorylation (OXPHOS, Fig. 257 

3G, table S3), which has been associated with drug resistance in tumor cells (39–42). Moreover, 258 

only a small proportion of pitavastatin-treated SN503 cells differentially regulated EMT-associated 259 

genes (cl503-0 and cl503-5) (Fig. 2, Fig. 3E). Furthermore, only two Louvain clusters differentially 260 

regulated apoptotic genes (cl503-0 and cl503-10), both of which contained cells from all three 261 

molecular subtypes (fig. S8). Thus, the differential enrichment of apoptotic signatures was 262 

consistent with responder and non-responder phenotypes of the two PD-GSCs, suggesting 263 

variable susceptibility of sub-populations with a greater proportion of pitavastatin sensitive cells 264 

in SN520 as compared to SN503. These findings suggested that different regulatory mechanisms 265 

were likely responsible for the distinct differential expression patterns of key pathways, as well as 266 

the responder and non-responder phenotypes of SN520 and SN503, respectively.  267 

 268 

Inference and simulation of the dynamics of transcriptional regulatory networks identify 269 

mechanisms driving cell-state changes and intervention strategies 270 

We applied single-cell SYstems Genetics Network AnaLysis (scSYGNAL) framework to uncover 271 

the transcriptional regulatory networks (TRNs, (43, 44)) responsible for driving the distinct 272 

transcriptome responses of the two PD-GSCs. Briefly, Mechanistic Inference of Node Edge 273 

Relationships (MINER), an algorithm within the scSYGNAL framework, was used to identify 274 

modules of genes (regulons) that were co-regulated differentially in response to treatment across 275 

sub-populations of cells (45, 46). Further, using the transcription factor binding site database (47)  276 
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and the Framework for Inference of Regulation by miRNAs (FIRM, (48)), scSYGNAL implicated 277 

specific TFs and miRNAs in mechanistically co-regulating genes of all regulons. Post-processing 278 

of the resulting TRNs using MINER (49) clustered regulons with similar activity profiles across 279 

subpopulations of cells into transcriptional programs ( Pr503/520-i) and clustered single cells with 280 

similar program activity profiles into distinct transcriptional states (St503/520-i). Here onwards we 281 

will refer to the TRNs for each PD-GSC as scSYGNAL-520 and scSYGNAL-503. 282 

 283 

scSYGNAL-520 modeled the influence of 109 TFs and 505 miRNAs in mechanistically regulating 284 

1,668 genes across 572 regulons that organized into 19 transcriptional programs and were 285 

differentially active across 17 transcriptional states (Fig. 4A, tables S5-S6). Strikingly, nearly every 286 

transcriptional program was enriched for genes that have been shown to be essential to GSC 287 

survival (table S7, (50)). GSEA revealed that many pathways identified within Louvain clusters 288 

were recapitulated by programs (Fig. 3G, table S8). For instance, Program 0 (Pr520-0) – the largest 289 

program consisting of 169 regulons, was enriched for genes associated with cellular stress 290 

responses, including unfolded protein response, androgen response, p53 pathway, and 291 

apoptosis. Pr520-1, the second largest program (61 regulons) was enriched for cholesterol 292 

homeostasis and MTORC1 signaling. Pr520-2 (proliferation), Pr520-5 and Pr520-6 (TNF signaling 293 

via NFB) showed variable activity in states enriched with vehicle-treated cells, but were uniformly 294 

underactive in states enriched with pitavastatin-treated cells (Fig. 4A). Only four states (St520-0 – 295 

St520-3) were enriched for D3 and D4 pitavastatin-treated cells (Fig. 4B), suggesting that they 296 

might represent drug resistant states adopted by the surviving subpopulation of cells to avoid 297 

pitavastatin-induced killing. Furthermore, when transcriptional states were rearranged with 298 

respect to their predominant treatment condition, program activities increased (nearly) 299 

monotonically over the course of treatment, which suggested that treatment-induced state 300 

transitions occurred through continuous rather than discrete changes in expression in SN520 (Fig. 301 

4C, fig. S9).  302 

 303 

scSYGNAL-503 modeled the regulation of 1,875 genes by 114 TFs and 507 miRNAs across 420 304 

regulons, organized into 21 distinct transcriptional programs, whose activity profiles stratified 305 

SN503 cells into 17 transcriptional states (Fig. 4A bottom heatmap, tables, S9-S10). Like SN520, 306 

a large portion of these programs were enriched with essential genes for GSC survival (table S11, 307 

(50)). Several programs were similar to those identified in SN520, including Pr503-13 (cholesterol 308 

homeostasis, MTORC1 signaling and fatty acid metabolism), Pr503-9 and Pr503-10 (stress 309 

responses, including vesicle-mediated transport, unfolded protein response, and p53 pathway). 310 
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In contrast to SN520, many SN503 programs were uniquely enriched in distinct processes, 311 

including WNT/-catenin and KRAS signaling (Pr503-18, Fig. 4F, table S12). Unlike SN520, D3 312 

and D4 pitavastatin-treated SN503 cells co-clustered in significant proportions with untreated and 313 

vehicle-treated cells across >75% of the 17 states, suggesting that a large number of SN503 cells 314 

may have been in pitavastatin-resistant states even prior to drug exposure (Fig. 4C). Interestingly, 315 

multiple states included pitavastatin-treated cells from all time points, including seven states in 316 

which the drug-treated cells represented >50% of all cells (Fig. 4B). The seven transcriptional 317 

states were distinct in their activity patterns of some programs, including Pr503-4 (apoptosis, EMT, 318 

IL6/JAK/STAT3 signaling), which was overactive in St503-5, St503-6, and St503-10; and Pr503-10 319 

(MTORC1 signaling, hypoxia, and unfolded protein response), which was overactive in St503-10 320 

and St503-11. The heterogeneous activity patterns of these programs, which were enriched for 321 

processes linked to chemotherapeutic resistance (51), suggests that multiple mechanisms likely 322 

contributed to pitavastatin resistance in SN503.  323 

 324 

Core TF-TF interaction networks governing PD-GSC response to pitavastatin.  325 

From the TRN of each PD-GSC, we extracted a network of TF-TF interactions among the 114 326 

and 109 TFs implicated in mediating the pitavastatin responses of SN503 and SN520, 327 

respectively. We derived a “core” network of TF interactions, i.e., the largest network of 328 

interconnected TFs, to investigate how transcriptional regulatory mechanisms contributed to PMT 329 

and pitavastatin resistance (Fig. 4D). Each directed TF-TF interaction was categorized as 330 

activating or repressing based on positive or negative pairwise correlation of expression levels 331 

between two TFs, respectively. The topology of the core TF network for each PD-GSC was distinct 332 

(METHODS), with 56 interactions (edges) among 31 TFs (nodes) in scSYGNAL-520 and only 13 333 

interactions connecting 15 TFs in scSYGNAL-503 (Fig. 4E, F). Multiple TFs in the core 334 

scSYGNAL-520 TF network have been linked to response-relevant processes including EMT, cell 335 

differentiation, adaptive responses, and stem-cell maintenance (table S13). Nine TFs were 336 

common between the core networks (overlap p-value: 9.44e-05), including ARID5A, ATF3/4, 337 

MEOX2, SOX9, XBP1, and HEY1, a Notch signaling regulator. TFs unique to the core 338 

scSYGNAL-503 network included DDIT3, MAFF, STAT3, and ID4, which have been implicated in 339 

multiple GBM-relevant processes, (table S13). Notably among these TFs, ID4 has also been 340 

shown to play a role in the pathogenesis of GBM, driving tumor-initiating cell formation by 341 

increasing two key cell-cycle and differentiation regulatory molecules – cyclin E and Jagged 1 342 

(52). These findings suggest that the core networks captured TF-regulation that play central roles 343 

in GBM and gliomas in general. 344 
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 345 

Trajectory analysis and network simulations uncover mechanisms of primary and acquired 346 

resistance  347 

Using Monocle3 we discovered that pseudotemporal ordering of SN520 cells correlated with 348 

treatment duration and concomitant drug-induced PMT (Pearson correlation coefficient r = 0.723). 349 

We observed similar agreement between treatment duration and inferred trajectories from 350 

multiple RNA velocity analyses (Fig. 5A, fig. S10) (53, 54), as velocity vectors pointed towards 4-351 

day treated cells. In parallel, we calculated the critical transition index (Ic), a quantitative metric of 352 

the high-dimensional state of a system that predicts whether a cell population is undergoing a 353 

state transition (higher Ic values) or if it has reached some stable attractor state (lower Ic values) 354 

(55). Ic values of SN520 decreased during drug treatment but remained relatively constant in the 355 

vehicle control (Fig. 5B), indicating that pitavastatin had driven the entire PD-GSC population into 356 

a predominantly drug-resistant MES subtype attractor state. By contrast, pseudotemporal 357 

ordering of SN503 cells did not correlate with treatment time (Pearson correlation coefficient r = 358 

–0.0167,) and was associated with high Ic values throughout the course of the experiment for both 359 

vehicle control and drug treatment, likely driven by the higher heterogeneity of the cells. 360 

Consistently, these GSCs exhibited a rather turbulent vector field where RNA velocities projected 361 

into multiple directions (Fig. 5A). Modeling concerns associated with pseudotime and trajectory 362 

inference analysis notwithstanding, e.g., hyperparameter optimization (56, 57), the pseudotime 363 

and criticality analyses demonstrated stark contrast between the responses of the two PD-GSCs; 364 

SN520 exhibited concerted pitavastatin-induced state transitions, relaxing into a regulated state, 365 

while SN503 exhibited a seemingly disorganized response without concerted transition of all cells 366 

into an attractor state. 367 

To identify putative drivers of treatment response, we performed LOESS regression and rank 368 

ordered TFs with respect to timing of peak expression along the pseudotime trajectories and 369 

uncovered a distinct sequence of changes in the activity of multiple TFs in each PD-GSC 370 

population (Fig. 5C). Within SN520, multiple TFs previously associated with PMT in GBM (e.g., 371 

ATF3, CREB, and NFE2L2) positively correlated with pseudotime trajectory (table S13 – Moran’s 372 

I value). Notably, the rank order of TFs in SN520 was quite different from previously proposed 373 

sequence of transcriptional events driving PMT (58), which highlights the diversity of regulatory 374 

mechanisms that have been implicated in driving EMT in multiple cancers (59, 60). As expected, 375 

we did not observe temporal sequence of changes in expression levels of TFs across SN503 cells 376 

(Fig. 5C, fig. S11, table S13).  377 
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In addition, we investigated the consequence of differential expression patterns of TFs by 378 

examining, along pseudotime trajectories, the dynamic activity patterns of transcriptional 379 

programs that they regulated (Fig. 5D, fig. S11). Activity of the stress-response-associated 380 

programs (Pr520-0) increased along the pseudotime trajectory of SN520 cells, implicating 80 381 

associated TFs, including ATF3, ATF4, CREB3, CREB5, JUN, KLF4, MYC, SOX4/9, and TCF4. 382 

In the case of SN503, we identified multiple treatment-activated programs for key processes (Fig. 383 

4C) including unfolded protein response and OXPHOS (Pr503-9 and Pr503-10), cholesterol 384 

regulation (Pr503-4) and EMT (Pr503-5 and Pr503-13) that showed upregulated gene expression 385 

relative to the untreated control condition (Fig. 5E). Importantly, scSYGNAL-503 had accurately 386 

identified TFs that have been mechanistically implicated in regulation of these processes, such 387 

as AR, FOS, MYC, TP53, and E2F7 for Pr503-9 and Pr503-10 (61). 388 

 389 

Ensemble modeling and analysis of GSC states via simulated TF-TF network dynamics 390 

We performed in silico perturbations on the core TF-TF networks using the random circuit 391 

perturbation (RACIPE) algorithm (62–64) to identify transcriptional regulatory mechanisms that 392 

governed pitavastatin-induced cell state changes across the two PD-GSCs (Fig. 4D, E). RACIPE 393 

was originally developed to investigate EMT circuits in cell development and other cancers by 394 

creating an ensemble of dynamic models based on ordinary differential equations and Hill function 395 

kinetics (65–67). First, we tested whether the TF-TF network model for each PD-GSC could 396 

accurately predict their observed pitavastatin-induced cell states using untreated (D0) TF 397 

expression levels to initialize the network. By performing 1,000 RACIPE simulations, we 398 

determined that the simulated stable steady states were statistically similar to the observed cell 399 

states of each PD-GSC on D4 of pitavastatin treatment (Fig. 6A, B, fig. S12).  400 

 401 

Next, we investigated how the core TF network contributed to phenotypic plasticity by determining 402 

the range of steady states that could emerge from each network topology. We simulated 10,000 403 

distinct models (i.e., parameter sets) across 100 randomly selected initial conditions resulting in 404 

an ensemble of 1 million simulations for each PD-GSC population, which was sufficient to yield 405 

convergent solutions (fig. S13 (62–64)). Based on pairwise Euclidean distances (METHODS) and 406 

hierarchical clustering, all simulated states generated by the core TF network for SN520 clustered 407 

into four distinct steady states (Fig. 6C). The simulated states stratified along the first principal 408 

component, recapitulating a continuum of progression from a PN to MES state (Fig. 6C). Pairwise 409 

comparisons of mean expression profiles of the core network TFs demonstrated that the 410 

simulated states were statistically similar to experimentally observed PD-GSC states (Fig. 6C, fig. 411 
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S12). Supervised classification using random forest analysis further revealed that ATF3/4, 412 

CEBPG, and HES1 contributed the most to distinguishing the four simulated states (Fig. 6C), 413 

which mirrored expression behavior across experimental data for SN520 (Fig. 6D). 414 

 415 

RACIPE simulations for SN503 also yielded four distinct stable steady states that did not show a 416 

gradient in PCA space as in the case of SN520 simulated states (Fig. 6E). Three of these states 417 

were similar to two experimentally observed PD-GSC states (Fig. 6F) associated with elevated 418 

expression of SOX4, SOX9, SOX11, HEY1, and ID4 (simulated states 3 and 4 and experimental 419 

state 3, fig. S12), or elevated expression of ATF3, ATF4, and FOS (simulated states 1 and 3 and 420 

experimental state 4, fig. S12). The experimentally observed states not identified by RACIPE 421 

simulations were associated with elevated expression of MEOX2, MAFF, and ARID5A, which 422 

were “root” nodes, i.e., TFs without any upstream regulators in the context of the model. 423 

Consequently, expression of these TFs in the RACIPE simulations was dependent upon the 424 

randomly selected initial conditions. However, the subset of simulations in which MEOX2, MAFF, 425 

and ARID5A had elevated initial conditions generated states that were indeed similar to 426 

experimentally observed states ES503-1 and ES503-2 (fig. S12). Finally, to distinguish the four 427 

SN503 PD-GSC states, random forest analysis identified MEOX2, MAFF, and ARID5A as the 428 

most important TFs, followed by ATF3, SOX9, and SOX11 (fig. S12). Interestingly, all of these 429 

TFs have previously been implicated in tumor stemness, progression, invasiveness or resistance, 430 

suggesting multiple mechanisms may have contributed to pitavastatin resistance in SN503 (table 431 

S13). 432 

 433 

In silico network perturbations implicate specific TFs in mechanistically driving treatment-induced 434 

cell state transitions and drug resistance in PD-GSCs 435 

After benchmarking the random forest models as 85% and 90% accurate in predicting cell states 436 

of SN520 and SN503, respectively (fig. S14), we used them in perturbation simulations to identify 437 

mechanistic drivers of treatment response of each PD-GSC. Specifically, we performed an 438 

additional 1 million RACIPE simulations to model the consequence of 95% knockdown in each 439 

TF within the core network on treatment-induced change in the relative abundance of each of the 440 

four steady states for the two PD-GSCs. (fig. S15). This analysis predicted that knockdowns in 441 

each of ten TFs, viz., ATF4, IRF1, NFE2L2, CREB3, XBP1, ARID5A, SMAD1, CREB5, CEBPG, 442 

and ATF3, would result in significant reduction in the relative abundance of simulated states with 443 

large subpopulations of MES subtype cells in SN520 (Fig. 6G). Notably, all ten TFs have been 444 

implicated in driving EMT across different cancers, including GBM (table S13). RACIPE 445 
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simulations predicted that decrease in the proportion of MES subtype-associated cell states in 446 

SN503 was likely through perturbations in just two TFs, namely SOX9 and SOX11 (fig. S15) both 447 

of which were also implicated in driving PMT (table S13). 448 

 449 

siRNA knockdowns of TFs validate core TF networks 450 

We tested RACIPE predictions by investigating whether siRNA (DharmaconTM) knockdown of TFs 451 

during pitavastatin treatment would block PMT leading to synergistic increase in PD-GSC killing. 452 

Indeed, knockdowns in nine TFs (5/10 predicted), including ATF3, IRF1, CREB3, CREB5, and 453 

CEBPG, significantly potentiated pitavastatin killing of SN520 (Fig. 6G). Notably, increased cell 454 

death of SN520 was observed with sequential treatment with pitavastatin followed by siRNA. Co-455 

administering siRNA and pitavastatin also achieves a sequential intervention, since siRNAs take 456 

approximately two days to achieve maximal knockdown of target protein levels after transfection 457 

(DharmaconTM). Potentiation of killing was not observed with simultaneous treatment, which was 458 

achieved by pre-treatment of cells with siRNA 2 days prior to administering pitavastatin (Fig. 6G). 459 

These findings showed that dynamic induction of TF activity by pitavastatin was essential for 460 

potentiation of SN520 killing by siRNA-mediated TF knockdown. In stark contrast, none of the TF 461 

knockdowns had any consequence on viability of SN503, in sequential or simultaneous treatment 462 

contexts. Altogether, the experimental findings corroborated the roles of nine TFs implicated by 463 

scSYGNAL and RACIPE analysis in driving PMT, thereby conferring pitavastatin resistance in 464 

SN520, but not in SN503, wherein a large fraction of the cell population was in a drug resistant 465 

MES state, even prior to drug treatment. As an alternative approach, we identified 24 additional 466 

TFs by MINER as important for mechanistically upregulating putative resistance mechanisms, 467 

including OXPHOS (Fig. 2G, tables S3, S12), and discovered that knocking down four TFs (HEY2, 468 

POU3F4, PRDM4, and PEG10) indeed potentiated pitavastatin-induced killing of SN503, likely 469 

by disrupting one or more primary resistance mechanism(s) in a sequence-dependent manner 470 

(Fig. 6H). 471 

 472 

Trajectories towards acquired resistance expose vulnerabilities to secondary drugs 473 

Finally, we investigated whether knowledge of mechanistic drivers of PMT could enable rational 474 

selection of a second drug that could potentiate the action of pitavastatin. Using Open Targets 475 

(68), we identified eight drugs that targeted TFs and genes associated with pitavastatin-induced 476 

PMT trajectories in SN520. We hypothesized that pitavastatin-induced cell state changes place 477 

cells in transitional states that may expose new vulnerabilities that could be targeted by secondary 478 

drugs. We selected vinflunine, a vinca alkaloid that binds to tubulin and inhibits microtubule 479 
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polymerization, thereby inducing G2/M arrest and ultimately apoptosis. Originally developed to 480 

treat advanced or metastatic transitional cell carcinoma of the urothelial tract (69), vinflunine has 481 

been tested in multiple Phase III trials for many cancers, used as a likely potentiator of anti-cancer 482 

effects of other drugs (70). Based on vinflunine’s mechanism of action, we identified multiple 483 

regulons containing tubulin-related genes (for example, SN520 regulons R520-0 and R520-43; 484 

SN503 regulons R503-19, R503-38, and R503-52). In SN520, the activity for R520-0 and R520-43 485 

increased significantly in response to pitavastatin (Fig. 7A). By contrast, pitavastatin-induced 486 

upregulation of tubulin-associated regulons was varied across in SN503, with only R503-19 487 

showing consistent over activity across all time points. R503-38 showed significantly higher activity 488 

in pitavastatin-treated cells relative to vehicle-treated, with maximal activity on D3. Finally, R503-489 

52 activity levels were slightly higher relative to vehicle control (Fig. 7B). The ability of vinflunine 490 

to block pitavastatin-induced cell state transitions was investigated in three experimental designs, 491 

one in which both drugs were added simultaneously and the other two in which vinflunine was 492 

added at 24 or 48hrs after initiation of pitavastatin treatment to match the timing when pitavastatin-493 

treatment induced the highest activity of tubulin regulons (Fig. 7C). The efficacy of the drug 494 

combinations were compared to outcome of treatments of PD-GSCs with each individual drug.  495 

 496 

Sequential treatments with pitavastatin followed by vinflunine had synergistic effect on killing of 497 

the two PD-GSCs. Specifically, sequential treatment of pitavastatin followed by vinflunine resulted 498 

in significant lower cell viability relative to pitavastatin treatment alone (Fig. 7D) and a 5.92- and 499 

1.6-fold decrease of IC50, compared to vinflunine treatment alone (fig. S16) in SN520 and SN503, 500 

respectively. The relative efficacy of sequential treatment with the two-drug combination varied 501 

significantly across other PD-GSCs (table S14), with the combination being more effective on 502 

pitavastatin responder (SN533 and SN575) than non-responder PD-GSCs (SN517 and SN521) 503 

(fig. S16). The poor efficacy of vinflunine on SN503 and other non-responder PD-GSCs is likely 504 

because pitavastatin did not induce a coordinated response that placed cells in a vulnerable state 505 

from which we predicted the utility of vinflunine based on the transcriptional network. Thus, the 506 

coordinated cell-state changes induced by pitavastatin killing of susceptible cells in the responder 507 

PD-GSCs pushed the surviving cells along PMT trajectories with generic and patient-specific 508 

characteristics, thereby exposing novel vulnerabilities that significantly potentiated increased 509 

killing upon sequential treatment with vinflunine.  510 

 511 

DISCUSSION 512 

 513 
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Inherent plasticity and heterogeneity of GSCs are implicated as underlying reasons for the high 514 

rate of GBM recurrence, which often manifest as an even more aggressive and drug-resistant 515 

MES subtype (8–10). Understanding the mechanisms of primary resistance and trajectories along 516 

which GSCs undergo adaptive subtype transitions to acquire resistance are both critical for 517 

formulating treatment regimens to prevent recurrence of aggressive and drug resistant GBM (7, 518 

71). In this study, we report five main findings that shed insight into the underlying mechanisms 519 

of phenotypic plasticity of PD-GSCs: 1) distinct population structures distinguished two PD-GSCs 520 

with acquired (SN520) and primary (SN503) resistance phenotypes, 2) distinct TF network 521 

topologies were associated with the two GSC phenotypes, 3) TF network topology was a key 522 

determinant of treatment-induced change in the population structure of PD-GSCs, 4) TF network 523 

topology inferred from scRNA-seq enabled predictions of underlying mechanistic drivers of 524 

primary and acquired resistance, including response trajectories, 5) disruption of primary 525 

resistance potentiated killing of non-responder PD-GSCs, and 6) treatment-induced trajectories 526 

through which PD-GSCs acquired resistance, exposed vulnerabilities to sequential interventions 527 

(siRNA KD of TFs or a secondary drug) targeting transcriptional programs mechanistically 528 

associated with cell state transitions. 529 

 530 

Primary resistance of SN503 was likely due to a larger pre-existing subpopulation of MES subtype 531 

cells, identified by both scRNA-seq and flow cytometry (Fig. 2C-F), with elevated expression of 532 

OXPHOS and fatty acid metabolism (Fig. 5E) and high activity of WNT/-catenin signaling 533 

pathway genes in Pr503-18 (Fig. 4F) (7, 72, 73). Hence, pitavastatin treatment was less effective 534 

on SN503 and failed to trigger a coordinated transcriptional response across the population of 535 

surviving cells in this PD-GSC. By contrast, a smaller proportion of SN520 cells were of the MES 536 

subtype (Fig. 2C, D) and activity of programs associated with known treatment-resistance 537 

mechanisms was low. As a result, pitavastatin killed most SN520 cells, triggering coordinated 538 

transcriptional responses across the surviving PD-GSCs, driving their transition into a MES 539 

subtype cell state that was more than 5-times resistant to pitavastatin (Fig. 2I). Flow cytometry 540 

using apoptosis/subtype-specific markers, CNV inference, and theoretical calculations based on 541 

cell division rates all demonstrated that pitavastatin-induced cell state and phenotypic transitions 542 

were mediated by epigenetic mechanisms and not clonal selection. We also ruled out the 543 

hypothesized role of histone deacetylase (HDAC) inhibition activity of statins as a likely 544 

mechanism by which pitavastatin treatment might have induced large scale change in gene 545 

expression across the two PD-GSCs (Supplementary Text and table S15). Further, the core TF-546 

TF networks inferred from scSYGNAL analysis were determined by RACIPE simulations as 547 
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sufficient to generate the observed heterogeneity and treatment-induced cell state changes of the 548 

two PD-GSCs. Our findings showed that the TF-TF network topology was likely a key factor in 549 

determining the trajectory and potential endpoint(s) of cell-state transitions in response to drug 550 

treatment or perturbation. The sparse network of SN503 generated multiple resistant states that 551 

were distinct from each other. Interestingly, SN503 contained a large number of smaller 552 

interconnected networks of two or three TFs that were not connected to the core network (Fig. 553 

4F). This finding was consistent with the lack of concerted cell state changes in the non-responder 554 

PD-GSC and limited information flow throughout the core TF network due its sparse and 555 

disconnected topology. The interconnected network of SN520, by contrast, generated a gradient 556 

of cell states along a PN-to-MES axis offering a plausible explanation as to why GSCs manifest 557 

a gradient of resistant states across a range of drugs (9). It is important to note that the core TF-558 

TF network models are static representations of the sum of interactions that drove pitavastatin-559 

induced responses of each PD-GSC. By performing dynamic simulations across a wide range of 560 

initial conditions and kinetic parameters and experimentally validating TF targets via siRNA 561 

perturbations, we demonstrated that many of these TFs were mechanistically responsible for 562 

driving the two PD-GSCs into various states observed experimentally. Together, our findings 563 

provide novel perspective on how patient-to-patient variation in the roles of TFs and the topology 564 

of their interactions can have profound consequences in driving PMT, likely influencing the rate 565 

of GBM progression, recurrence, and metastasis as tumors of MES subtype (27, 74).  566 

 567 

By killing a large proportion of cells, pitavastatin treatment triggered a core network of TFs to act 568 

sequentially and drive coordinated cell-state transitions across the surviving population of SN520. 569 

In so doing, pitavastatin treatment may have generated a bottleneck effect by channeling the 570 

surviving SN520 cells along few trajectories, thereby transiently exposing vulnerabilities in 571 

associated transcriptional programs across a large segment of those surviving cells, before they 572 

transitioned to the MES subtype and acquired a drug-resistant phenotype. Similar constraining 573 

effects on GSC plasticity, i.e., fewer cell-state transitions have been observed and attributed to 574 

hypoxic micro-environments, unlike the larger number of stochastic cell state transitions that occur 575 

under normoxic conditions (75). Our findings demonstrate that such constraints on plasticity 576 

makes the GSC population less heterogeneous and more vulnerable to siRNAs and drugs 577 

targeting transiently activated programs that mechanistically coordinate the cell state transitions. 578 

Taken together, these results suggest that the bottleneck effect generated by drug treatment can 579 

be exploited to minimize or prevent drug-induced transitions and therapy escape of GSCs. 580 

 581 
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Notably, the timing of the secondary intervention with siRNAs was critical, with efficacy of 582 

potentiation observed only after cell-state transitions had been triggered by pitavastatin treatment. 583 

The combinatorial interventions were ineffective in potentiating killing when the siRNA effects 584 

manifested simultaneously with pitavastatin treatment concurrently (Fig. 6G, H). These findings 585 

illustrate the importance of tailoring not just the specific combination of interventions, but also the 586 

order and timing of longitudinal treatment schedules based on mechanistic understanding of the 587 

causal sequence of events targeted by each individual intervention. Similar benefits from 588 

modeling cell state transitions and characterizing trajectories have also been reported in PDGF-589 

driven GBM mouse models. Specifically, the integration of mathematical models that account for 590 

the presence of radiosensitive and radioresistant tumor cell states as well as the rate at which 591 

state transitions occurred led to an optimized radiotherapy scheduling that improved survival rates 592 

of mice (76, 77).  593 

 594 

Combination treatment with vinflunine was effective to varying degrees across other PD-GSCs 595 

that were also sensitive to pitavastatin (SN533 and SN575), but was less effective in pitavastatin-596 

resistant PD-GSCs (SN503, SN517 and SN521). This finding suggests that cytotoxic effects of 597 

pitavastatin were likely important to expose vulnerabilities, and that the mechanism of killing by 598 

pitavastatin and resulting trajectories of escape were likely similar across some of these PD-599 

GSCs. However, variable susceptibilities of PD-GSCs to vinflunine explain why an N = 1 approach 600 

is necessary to uncover patient-specific characteristics and tailor regimen to their unique PMT 601 

trajectories (fig. S17, (58)).  602 

 603 

The partial generalizability of pitavastatin-vinflunine combination treatment to other pitavastatin-604 

sensitive PD-GSCs, further suggests that subgroups of patients might share transcriptional 605 

regulatory network topologies that drive their tumor cell state transitions along similar trajectories. 606 

If this hypothesis is confirmed by analyzing a larger number of PD-GSCs across a diverse range 607 

of drug treatments, then stratifying patients based on similar network topologies, instead of steady 608 

states of tumor cells, may identify a finite number of topology-matched combinatorial interventions 609 

for personalized treatment of most patients (2, 3, 36). 610 

 611 

The causal and mechanistic regulatory influences captured at single-cell resolution in the 612 

scSYGNAL network provides a generalizable approach for formulating N = 1 patient-tailored drug 613 

regimens and treatment schedules. Remarkably, we discovered that more than the composition 614 

of initial tumor cell states, mechanistic understanding of the topology of the core TF-TF network 615 
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and its associated dynamics of driving cell state transitions is essential for rationally tailoring 616 

sequential treatment regimen to an individual patient. This perspective, borne from these findings, 617 

complements prior and current efforts that aim to create frameworks that quantify the hierarchical 618 

and multi-state switching that underlie intratumoral heterogeneity in GBM using methods such as 619 

Markov chain models or exploratory adaptation models (78, 79). While these approaches define 620 

what states are present and the probability of transitioning from one state to another, our approach 621 

provides mechanistic insights into how GSCs are able to navigate the phenotypic landscape (Fig. 622 

7E).  623 

 624 

The repurposed use of statins in cancer treatment continues to be an active area of research (80). 625 

There is compelling evidence from pre-clinical models for anti-proliferative effects of pitavastatin 626 

against multiple cancers, including GBM (81). From a clinical perspective, evidence remains 627 

inconclusive as to whether pitavastatin does or does not have a positive effect on patients. A 628 

clinical trial to evaluate the benefit of statin use in GBM patients (NCT02029573) did not meet its 629 

primary endpoint of progression free survival at 6 months (82). However, it should be noted that 630 

this clinical trial evaluated the use of atorvastatin, not pitavastatin. Regardless, authors of 631 

NCT02029573 reported that high LDL cholesterol level was an important predictor of poor cancer 632 

outcomes. Along similar lines, meta-analysis of five clinical trials revealed that a subset of patients 633 

who used pitavastatin prior to GBM diagnosis had higher overall survival (83). Our observation 634 

that pitavastatin is effective in killing GSCs of some patients appears to be consistent with this 635 

finding. Thus, findings from prior studies and evidence presented in this work both suggest that 636 

future clinical trials on statins should recruit specific subsets of GBM patients, who have higher 637 

likelihood of benefitting from this drug.  638 

 639 

Further, our study has uncovered mechanisms of treatment responses of PD-GSCs with varied 640 

susceptibility to pitavastatin, and leveraged that understanding to rationally potentiate drug action 641 

with secondary interventions with siRNAs or other drugs. In so doing, these findings contribute 642 

valuable foundational insights into system wide effects of pitavastatin action on PD-GSCs, with 643 

actionable strategies to minimizing treatment escape with sequentially administered secondary 644 

interventions against transcriptional regulatory mechanisms driving cell state transitions. We also 645 

demonstrate that our findings of increased efficacy of pitavastatin in combinatorial treatments with 646 

vinflunine was generalizable across PD-GSCs, especially those that were sensitive to 647 

pitavastatin. Thus, our study serves as proof-of-concept for a generalizable systems biology 648 
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approach that can be applied to characterize and block mechanisms of treatment escape of all 649 

cancers with rationally designed combination treatments.  650 

 651 

Broadly speaking, our findings provide a mechanistic framework for connecting two aspects of 652 

phenotypic plasticity of tumor cells, one that characterizes discrete states (36), and the second 653 

that characterizes cell state continuums, including gradients defined by a neuronal 654 

developmental–injury response axis (84) or a PN–MES axis (11, 85). Such a framework, like the 655 

seminal GBM molecular subtype classification scheme (2), will enable integration of the genomic, 656 

transcriptomic, and epigenomic landscapes and associated factors that underlie phenotypic 657 

plasticity of GSCs and differentiated tumor cells that define intra- and inter-tumoral heterogeneity 658 

in GBM (2, 4, 36, 86). Ultimately, a systems approach that connects intrinsic regulatory 659 

mechanisms with extrinsic factors, including drug treatment, tumor microenvironment (75), and 660 

the immune response (87), governing phenotypic plasticity of GSCs in an individual patient’s 661 

cancer, will be needed for formulating treatment strategies to prevent recurrence of drug-resistant 662 

GBM tumors. 663 

 664 

METHODS 665 

 666 

Ethics Statement. Use of human tissue was reviewed and approved by the WIRB-Copernicus 667 

Group Institutional Review Board (WCG® IRB).  All participants provided written informed 668 

consent according to IRB guidelines prior to participation in the study. Only tissue specimens 669 

deemed non-essential for diagnostic purposes and that would otherwise be discarded were 670 

collected for research purposes. 671 

 672 

Patient samples and patient-derived GBM stem-like cell enrichment 673 

Tumors were obtained from surgeries performed at Swedish Medical Center (Seattle, WA) 674 

according to institutional guidelines. Patient samples used in this study were diagnosed as WHO 675 

grade IV glioblastoma. GSC cultures were established from freshly resected tumor tissues. Tissue 676 

samples were minced into 1mm3 fragments and digested with Accutase (Sigma) at 37°C for 15-677 

20 minutes. Neurobasal-A medium (NBM) was added to quench Accutase activity and cell 678 

suspensions were filtered through 70μm nylon mesh, centrifuged at 1K rpm for 5 min, 679 

resuspended in fresh NBM, and cultured in T75 flasks pre-treated with a laminin solution (1:100 680 

Sigma), which includes incubation of the flasks with the laminin solution at 37°C for a minimum of 681 

30 minutes. PD-GSCs were maintained in NBM with B-27 serum-free supplement, 20 ng/mL EGF, 682 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578510doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578510
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

20 ng/mL FGF-2, 20 ng/mL insulin, 1 mM sodium pyruvate, 2 mM L-glutamine and 1% Antibiotic-683 

Antimycotic.  684 

 685 

PD-GSC in vitro cultures 686 

PD-GSC adherent monolayer cultures were used for all pitavastatin and pitavastatin/vinflunine 687 

treatments. Monolayer cultures were maintained in T75 flasks (cell expansion), T25 flasks 688 

(pitavastatin-treatment), or 96 well plates (IC50 studies) pre-treated with a laminin solution (1:100; 689 

Sigma) and incubated at 37°C for a minimum of 30 min. Serum-free culture media consisted of 690 

Neurobasal Medium-A (GibcoTM) with 2.0% (v/v) B-27 serum-free supplement minus vitamin A 691 

(GibcoTM), 20 ng/mL EGF (PeproTech Inc.), 20 ng/mL FGF-2 (PeproTech Inc.), 20 ng/mL insulin 692 

(Sigma), 1 mM sodium pyruvate (Corning), 2 mM L-glutamine (GibcoTM) and 1% Antibiotic-693 

Antimycotic (GibcoTM). PD-GSC monolayer cultures were maintained at 37°C, 5% CO2 694 

atmospheric oxygen with culture pH monitored with the phenol red. Cultures were refed every 2-695 

3 days. PD-GSC cultures tested were within 10 passages from the initial GSC enrichment from 696 

the original tumor biopsy.  697 

 698 

PD-GSCs were passaged by dissociating monolayer cultures from the respective substrate by 699 

treating the cells with the dissociation reagent Accutase (1mL/25cm2) or TrypLETM (1mL/25cm2 – 700 

see Flow cytometry CD44 and CD133 analysis section) at 37°C for 5min. Pre-warmed (37°C) 701 

serum-free culture media (described above) was then added to quench dissociation reagent 702 

activity (1:3 media:dissociation reagent ratio). The resulting cell suspension was centrifuged at 703 

1K rpm (193g) for five minutes. The cell pellet was resuspended in fresh serum-free culture media, 704 

and added to QS serum-free culture media in a new laminin-treated flask. Final culture volumes 705 

were as follows: T75 – 10mL, T25 – 5mL, 96-well plate – 100L. Laminin treatment involved 706 

incubating flasks (or 96 well plates) with a laminin working solution (5mL/75cm2), which consisted 707 

of stock laminin (Sigma) diluted 1:100 in phosphate buffer solution, at 37°C for a minimum of 30 708 

min.  709 

 710 

Flow cytometry – apoptosis, caspase 3/7-mediated apoptosis, and cell-death 711 

Data acquisition of surface protein markers was performed on the Attune NxT Flow Cytometer 712 

(ThermoFisher Scientific). PD-GSCs were dissociated from their respective substrate using 713 

Accutase and washed twice with PBS + FBS serum (10%), which involved centrifugation at 1K 714 

rpm (193g) for 5 min, supernatant removal, and cell pellet resuspension with the PBS + FBS 715 

serum (10%). The supernatant wash was removed and the cell pellet resuspended in the 716 
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PBS/FBS solution to the desired concentration of 1e6 cells/mL. To assess apoptosis, caspase 717 

3/7-mediated apoptosis, and cell death within the GSC populations, cells were stained with 718 

Annexin V conjugated with Alexa Fluro 568 (Invitrogen A13202), CellEventTM Caspase 3/7 719 

detection reagent (Invitrogen C10423), and SYTOXTM AAdvanced Dead Cell Stain (Invitrogen 720 

S10349), simultaneously. Samples were stained following each of the manufacturer’s protocol, 721 

respectively. Gating for positive and negative expressing cells was performed using FlowJo V10 722 

based on multiple controls including, 1) unstained negative controls, 2) heat-inactivated cells 723 

(incubated in a 60°C water bath for 15 min), which served as positive controls for apoptotic and 724 

dead cells, and 3) Fluorescence minus one (FMO) controls to define an upper boundary for 725 

background signal on the omitted signal and gate for positively stained populations in multi-color 726 

experiments. 727 

 728 

Flow cytometry – CD44 and CD133 analysis 729 

Samples from each treatment condition were collected using TrypLETM (GibcoTM) to dissociate 730 

and remove the cells from the culture flasks. TrypLETM (1mL/25cm2) was used to minimize any 731 

structural changes on CD44 and CD133 surface proteins during the dissociation process (88). 732 

Subsequent sample processing prior to antibody staining was identical to how samples were 733 

processed for apoptosis, caspase 3/7-mediated apoptosis, and cell-death cytometry assessment. 734 

An anti-Hu CD44 antibody conjugated with PE (eBiosciencesTM) and an anti-Hu/Mo CD133 735 

antibody conjugated with FITC (eBiosciencesTM) were used to assess expression of these two 736 

surface proteins across each PD-GSC population. Samples were simultaneously treated with both 737 

antibodies per vendors’ recommendations. Analysis of flow cytometry data was performed using 738 

FlowJo V10. Fluorescent signal gating was set based on multiple control samples including: 1) 739 

unstained PD-GSC negative controls, 2) vendor-recommended isotype controls (Mouse IgG1 740 

kappa isotype and Rat IgG2b kappa isotype for anti-Hu CD133 and anti-Hu/Mo CD44, 741 

respectively, 3) human GBM stem cells (Cellprogen Inc.), which served as a positive control cell 742 

line for both CD133 and CD44 (per vendor’s specification), and 3) Caco2 cells, (ATCC) which 743 

served as a positive control cells for CD133 and negative controls for CD44. 744 

 745 

Pitavastatin treatment of PD-GSCs for scRNA-seq and flow cytometry analysis 746 

PD-GSCs were incubated in serum-free culture media (described above) with pitavastatin (6M). 747 

Stock pitvastatin calcium (Selleck Chemicals LLC) was dissolved in DMSO to obtain a stock 748 

concentration of 10mg/mL and stored in aliquots at -80°C. Stock pitavastatin calcium solution was 749 
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serially diluted in serum-free culture media to 100M and then to the final concentration of 6M 750 

with a final DMSO concentration of 0.053% (v/v).  751 

 752 

To monitor longitudinally PD-GSC response to pitavastatin, we performed a reverse time-course 753 

treatment by adding pitavastatin to SN520 and SN503 cultures in a staggered fashion such that 754 

the longest (4-day) treatment would have drug added first. Subsequent addition of pitavastatin 755 

would occur on following days for 3- and 2-day treatment, respectively. This reverse time course 756 

design allowed us to collect all samples simultaneously on day four following the initial addition of 757 

pitavastatin. Because pitavastatin was added to PD-GSCs on different days, flasks were 758 

inoculated at slightly different cell densities to account for cell growth that would occur in between 759 

inoculation and time of pitavastatin addition. Consequently, scRNA-seq library preparation of all 760 

samples for a particular PD-GSC population occurred simultaneously to minimize batch effects 761 

due to individual sample processing (table S16)  762 

 763 

Prior to T25 flask (BioLiteTM) inoculation for pitavastatin treatment, PD-GSCs were first expanded 764 

in a T75 flask (BioLiteTM). Once the culture was confluent, the culture was harvested and split into 765 

laminin-treated T25 flasks. Upon inoculation, cells were incubated in serum-free culture media at 766 

37°C for 24 hours to allow cells to adhere to the interior surface of the flask. Following the first 24 767 

hours, serum-free culture media was replaced with serum-free culture media with pitavastatin 768 

(6M) in T25 flasks predetermined to receive a 4-day treatment. Spent culture media would then 769 

be replaced with fresh culture media with pitavastatin (6M) on subsequent days for D3 and D2 770 

treatment conditions.  771 

 772 

Upon the completion of the 4-day treatment, spent media was removed and cells were harvested 773 

using AccutaseTM (1mL/25cm2). To prevent any cell-free DNA/RNA from treatment-induced lysed 774 

cells contaminating single-cell samples, we first processed a portion of the cell harvest solution 775 

using the dead cell removal kit (Miltenyi Biotec 130-090-101) to remove any cell debris to avoid 776 

any free RNA from lysed cells from getting mixed in with mRNA to be extracted from live cells. 777 

Samples were processed per vendor’s specifications. The result was a cell suspension of the 778 

remaining live cells post vehicle- or pitavastatin-treatment. Cell suspension was then processed 779 

for scRNA-seq profiling per the 10X Chromium platform.  780 

 781 

scRNA-seq library prep and sequencing 782 
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Single-cell RNA sequencing was performed using the 10X Chromium v2 system. Library 783 

preparation was performed using 10x manufacturer instructions on an Illumina NovaSeq 6000. 784 

scATAC-seq was performed as per manufacturer instructions (Single-cell ATAC Reagent Kits 785 

v1.1 UserGuide RevD) and sequenced on an Illumina NextSeq 500. 786 

 787 

Multi-passage, pitavastatin treatment   788 

PD-GSCs were harvested from a T75 flask and passaged into replicate T75 flasks for either 789 

pitavastatin (6M) or vehicle (DMSO) treatment (2.0e6 cells/flask). Concomitantly, a portion of 790 

those PD-GSCs were used to inoculate laminin-treated 96 well plates for drug-dosing analysis 791 

(see IC50 Analysis section). On D4, PD-GSCs were harvested using Accutase (1mL/25cm2) as 792 

described previously. Cell suspensions were spun at 1000rpm (193g) for five minutes. Cell pellets 793 

were then resuspended with serum-free culture media (200,000 cells/mL) to inoculate 96 well 794 

plates (100L/well, 20,000 cells/well) for subsequent IC50 determination. PD-GSCs were 795 

incubated in serum-free culture media in 96 well plates for 48 hours to allow for cell attachment 796 

prior to replacing spent media with serum-free media with pitavastatin (or vehicle). Treated cells 797 

were incubated at 37°C for four days. Following the four-day treatment, cell viability was 798 

measured via MTT assay as described below.  799 

 800 

DNA quantification via propidium iodide (PI) staining 801 

PD-GSC cultures were treated with pitavastatin (or vehicle control) in a reverse time-course 802 

manner as described previously (Pitavastatin treatment of PD-GSCs for scRNA-seq and flow 803 

cytometry analysis section). Following cell harvest, PD-GSCs were washed with PBS and spun 804 

down at 1000 RPMs (193 g) for 5 minutes. PD-GSCs were then fixed with cold 70% ethanol by 805 

adding 70% ethanol drop-wise to the pellet while vortexing. Cells were fixed in 70% ethanol 806 

overnight at 4°C. Once fixation was complete, the PD-GSCs were washed twice in PBS, spun 807 

down at 1000 rpms for five minutes with careful removal of the supernatant so as to avoid any 808 

cell loss. PD-GSCs were then treated with 50L of ribonuclease (100g/mL stock) to remove any 809 

RNA and ensure only DNA would be stained. Finally, 200L of propidium iodide (PI, 50g/mL 810 

stock) was added to the fixed and treated cells prior to flow cytometry analysis.  811 

 812 

IC50 Analysis and MTT viability assay 813 

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, (MTT) assay was used to 814 

determine the effects of pitavastatin on the viability of the non-responsive and responsive GSC 815 

populations. Briefly, 20,000 cells/well were plated in laminin-treated 96-well plates with 100uL of 816 
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culture media. Following an initial 24hr incubation, the cells were treated with 100L of culture 817 

media with pitavastatin at varying concentrations (0.0, 0.1, 0.6, 1.0, 3.0, 6.0, 10.0, 33.0M) and 818 

incubated at 37C for four days. Vehicle amounts were adjusted such that the vehicle 819 

concentration in all conditions was equivalent to the maximum drug dosage tested (DMSO 0.2% 820 

v/v). Following the 4-day treatment, spent media was replaced with 100L of serum-free culture 821 

media with MTT (0.5mg/mL) and incubated at 37°C for 60 minutes. Following incubation, 822 

supernatant from each well was discarded and replaced with 100L of DMSO to dissolve the 823 

formazan crystals formed during MTT incubation. Absorbance (Ai, where i is the drug 824 

concentration) was measured via spectrophotometer at 570nm (Synergy H4, Agilent 825 

Technologies, Inc.). Relative viability was calculated using the following formula: relative viability 826 

= (Ai – Abackground)/A0.0 * 100%, where Abackground is the absorbance from DMSO. IC50 values were 827 

calculated by using a 4-parameter log-logistic model determined by the drm() function within the 828 

drc package in R. Here, the upper limit of the log-logistic model was set to 100%.  829 

 830 

siRNA treatment 831 

Following a 24hr incubation period, cells were treated with 5M of Accell SMARTpool siRNA or 832 

Accell SMARTpool Non-Targeting siRNA (Dharmacon Inc.). Lyophilized SMARTpool siRNAs 833 

were resuspended in 1X siRNA buffer (Dharmacon Inc.) and subsequently diluted in serum-free 834 

culture media to a final concentration of 5M. Based on vendor recommendations, Accell siRNA 835 

designs facilitate siRNA delivery to the target cell and do not require additional transfection 836 

reagents. Accell SMARTpool siRNAs pools consist of four separate siRNAs designed to target a 837 

particular gene. To test the efficacy of sequential treatment of pitavastatin followed by siRNA-838 

mediated knockdown of specific TFs, pitavastatin (1.0M or 6.0M for SN520 and SN503, 839 

respectively) and siRNA (5M) were added simultaneously followed by a four-day incubation at 840 

37°C due to the delayed effect in which siRNAs would be maximally effective in the cells, per 841 

vendor recommendations.  To test the simultaneous effect of pitavastatin and siRNA-mediated 842 

knockdown, siRNA was added to PD-GSC cultures 24hrs post cell inoculation and allowed to 843 

incubate for 2 days. Pitavastatin was then added to cultures such that the final concentration 844 

reached 1.0M or 6.0M for SN520 and SN503, respectively. Relative viabilities with respect to 845 

non-template controls were calculated by first normalizing a relative viability values with respect 846 

to siRNA and drug-free condition (pitavastatin = 0.0M) and then normalizing that with respect to 847 

the NTC condition. All siRNA tests were performed in laminin-treated 96 well plates with an 848 

inoculation density of 20,000 cells/well and a final volume of 100uL of culture media/drugs/siRNA. 849 
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 850 

Bulk RNA-seq library prep and sequencing 851 

Total RNA was extracted from PD-GSC cultures using mirVANATM miRNA isolation kit 852 

(ThermoFisher). Residual DNA was removed using the RQI RNAse-Free DNase kit (Promega). 853 

Total RNA was then quantified using the Agilent RNA 6000 nano kit (catalogue number) on the 854 

Agilent 2100 BioAnalyzer. 1g of of high purity RNA was used as input to the Illumina TrueSeq 855 

Stranded mRNA Library Prep Kit and sample libraries were generated per manufacturer’s 856 

specifications. The RNA-seq libraries were sequenced on the NextSeq 500 next gen sequencer 857 

using a paired end high-output 150bp v2.5 flowcell. Sequence intensity files were generated on 858 

instrument using the Illumina Real Time Analysis software. The resulting intensity files were de-859 

multiplexed with the bcl2fastq2 software.  860 

 861 

Processing and normalization of bulk RNA-seq data 862 

Raw RNA-seq data of samples encoded in FASTQ-files were subjected to a standardized RNA-863 

seq alignment pipeline. In summary, RNA-seq reads were trimmed and clipped of Illumina 864 

sequence adapters via Trim Galore (https://github.com/FelixKrueger/TrimGalore), mapped to 865 

human reference genome (GRCh38) using STAR (v2.7.3a), and counted using HTSeq (v 0.11.1). 866 

Individual sample counts were combined into a single data object using the 867 

DESeqDataSetFromHTSeqCount function in DESeq2 (89). Sample-specific size factors were 868 

determined and used to normalize counts, which were transformed using regularized log 869 

transformation for subsequent downstream analysis, performed in R. 870 

 871 

scRNA-seq data QC filtering and normalization 872 

We initially processed the 10X Genomics raw data using Cell Ranger Single-Cell Software Suite 873 

(release 3.1.0) to perform alignment, filtering, barcode counting, and UMI counting. Reads were 874 

aligned to the GRCh38 reference genome using the pre-built annotation package download from 875 

the 10X Genomics website. We then aggregated the outputs from different lanes using the 876 

cellrange aggr function with default parameter settings.  877 

 878 

SN520 and SN503 scRNA-seq data sets were QC-filtered separately prior subsequent 879 

downstream analysis. To minimize inclusion of poor-quality genes and single-cell samples per 880 

sample set, we applied the following QC filters: 1) mitochondrial genes must comprise ≤ 6.5% of 881 

the number of uniquely mapped genes/cell, and 2) total counts/cell should be ≥ 7500 and ≤ 882 

60,000. Post QC-filtering, each scRNA-seq data set included: 5,402 cells expressing up to 18,227 883 
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genes (SN520) and 5,722 cells expressing up to 18,797 genes (SN503). Subsequent 884 

normalization and downstream analysis (e.g., DEG and functional enrichment analysis) was 885 

performed using the Seurat v3.2.2 platform (90).  886 

 887 

Normalization was performed for each scRNA-seq dataset separately by computing pool-based 888 

size factors that were subsequently deconvolved to obtain cell-based size factors using the 889 

computeSumFactors function within the scran package (version 1.10.2) (91) in R. Normalized log 890 

expression values were used for subsequent downstream analysis.  891 

 892 

Batch integration of scRNA-seq data 893 

As each PD-GSC-specific data set was collected separately, we performed batch correction on 894 

the scRNA-seq data to integrate the SN520 and SN503 data sets by applying the Harmony 895 

algorithm (33). Subsequent SNN-graph formation and UMAP embedding was performed on the 896 

Harmony-corrected PCs (Fig. 1E).  897 

 898 

Cell-cycle analysis 899 

To annotate individual cells with their respective cell cycle phase, we performed cell cycle analysis 900 

using the Seurat program. Briefly, core sets of 43 and 54 genes associated with the S- and G2/M-901 

phases, included in the Seurat platform, were used to determine a cell-cycle phase score based 902 

on the expression of the respective markers. Based on these scores, cells were assigned to be 903 

either in G1 or G2/M phase. Cells not expressing genes from either set were considered as not 904 

cycling and assigned to the G1 phase. Using these quantitative scores, we also regressed out 905 

cell-cycle effects on expression for each cell using the ScaleData function in Seurat as part of the 906 

pre-processing steps to QC the scRNA-seq data.  907 

 908 

Cluster identification and analysis of differentially expressed genes (DEGs). 909 

After quality control and filtering the scran-normalized scRNA-seq data, we performed 910 

dimensionality reduction via principal component analysis (PCA). The first 30 principal 911 

components were used as a basis to create a shared nearest neighbor (SNN) graph of the single-912 

cell samples. From this graph, clusters of single cells were identified via Louvain clustering of 913 

nodes, i.e., single cells, from the SNN graph.  914 

 915 

To identify DEGs in each of the SNN-clusters identified across the primary tumor and PDX single-916 

cell samples, the FindMarkers function in Seurat was used. In particular, the Wilcoxon rank sum 917 
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test was used with the following cutoff values to identify DEGs: absolute log-fold change ≥ 918 

log2(1.5), with a minimum proportion of 10% of the cells of interest expressing the gene of interest, 919 

and an FDR-adjusted p-value ≤ 0.1.  920 

 921 

Gene set variance analysis (GSVA) enrichment scores and statistical significance 922 

Gene set variance analysis GSVA (version 1.34.0, R package) (32) was used to determine 923 

enrichment scores of GBM molecular subtypes. To define the dominant molecular subtype gene 924 

expression signature in each single cell, we used an amalgamation of the original gene sets that 925 

defined the classical, proneural, and mesenchymal subtypes (2) and refined molecular subtype 926 

gene sets (3) for GSVA.  927 

 928 

Critical Transition Index (Ic) 929 

A brief explanation of Ic from (55) is reproduced for reference. The critical transition index is a 930 

scalar value that quantifies if a cell is undergoing (high Ic) or has undergone some critical 931 

transition and reached some stable cell state (low Ic). Ic is calculated according to the following: 932 

 933 

 𝐼𝑐(𝑡) =  
〈|𝑅(𝑔𝑖, 𝑔𝑗)|〉

〈𝑅(𝑆𝑘, 𝑆𝑙)〉
 (1) 

 934 

Where R is Pearson’s correlation coefficient between two observed cell state vectors Sk and Sl or 935 

between two “gene” vectors gi and gj, respectively, taken from the gene expression data matrix 936 

representing the state(s) of a “cell ensemble” X(t) 937 

 938 

 𝑋(𝑡) =  [
𝑥1

1 ⋯ 𝑥𝑚
1

⋮ ⋱ ⋮
𝑥1

𝑛 ⋯ 𝑥𝑚
𝑛

] (2) 

 939 

X(t) thus represents the data of a “measurement point”, with access to finer-grained layer of 940 

information given the single-cell nature of the data. Each row represents a single-cell in some 941 

state k within the cell-ensemble of n-cells in m-dimensional gene state space – 𝑆𝑘 =942 

 [𝑥1
𝑘 , 𝑥2

𝑘 , … , 𝑥𝑚
𝑘 ]. Each column represents gene i’s expression across n cells from said “cell 943 

ensemble” X(t), where 𝑔𝑖 =  [𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑛]. The brackets 〈⋯ 〉 in equation 1 represent the average 944 

of all correlation coefficients R between all pairs of state vectors S or gene vectors g from matrix 945 
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X(t). Here, a cell-ensemble represented the population of PD-GSCs at a particular treatment time-946 

point (D0, D2, D3, or D4).   947 

 948 

The underlying premise is that cells that have undergone some critical transition into an attractor 949 

state will be nominally expressing the same distinct gene expression pattern, with the exception 950 

of deviations due to stochastic fluctuations. Consequently, cells of the same differentiated state 951 

will be expressing similar gene expression programs and will correlate highly with one another. 952 

Characteristic gene expression of cells within a particular attractor state is affected by symmetric 953 

random fluctuations. Thus, gene-to-gene coupling is dominated by noise, reducing gene-to-gene 954 

correlations. Conversely, destabilized cells undergoing some transition, requires some non-955 

random shift in gene expression patterns that override the symmetric noise expected in cells 956 

within a stable attractor state. 957 

 958 

MINER network inference 959 

An additional gene-filtering step was performed on the QC scRNA-seq data sets to identify a 960 

common gene set between SN520 and SN503 – only common genes having a minimum gene 961 

count ≥ 2 in a minimum of 20 cells were considered for network inference. This resulted in a 962 

common gene set of 9,089 common genes used in SN520 and SN503 for MINER3 network 963 

inference.  964 

 965 

To infer regulons within single cells, we applied the MINER (46) workflow to the SN520 and SN503 966 

scRNA-seq data sets independently. As part of the scSYGNAL framework, the MINER algorithm 967 

involves a suite of functions that enables the inference of causal mechanistic relationships linking 968 

genetic mutations to transcriptional regulation. Because our datasets did not include any 969 

mutational profiling, we primarily focused on identifying regulons, based on co-expression 970 

clustering and enrichment of transcription factor binding motifs present in those co-expression 971 

clusters identified, and calculated the activity of these regulons in the single-cell samples. Broadly 972 

speaking, regulon activity represents the “eigengene” value in an individual cell. Regulons are 973 

identified, in part, by performing PCA on the normalized scRNA-seq data profiles to identify 974 

principal components in which decreasing amounts of variation across genes are captured along 975 

each principal component – defined as a linear combination of gene expression values. This linear 976 

combination of weighted gene expression values defines the eigengene value per sample (43, 977 

44, 46, 92). Alternatively, the eigengene is defined as the first principal component of the module 978 
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expression matrix composed of expression values of regulon genes across samples. It is a scalar 979 

representation of expression of gene members for a regulon in an individual sample (92). 980 

 981 

To determine the significance of each inferred regulon, we performed a permutation test to 982 

determine the possibility of obtaining an eigenvalue corresponding to the first principal component 983 

of a regulon (across all single-cells) of equal or greater value. The eigenvalue represents a 984 

summarizing value of all the genes in the regulon, i.e., eigengene and thus if these genes are 985 

indeed coregulated or are correlated, the eigengene value would be higher than that of randomly 986 

selected set of genes. Next, we randomly select a set of genes having the same number of 987 

members as the original regulon and calculate the corresponding eigengene value for the 988 

permuted regulon. This procedure was repeated 1,000 times to create a null distribution of 989 

eigengene values. We repeated this procedure for each inferred regulon. Those regulons whose 990 

eigengene values were greater than the 95th percentile of their respective null distribution were 991 

considered significant. These eigengene values represented regulon “activity” within each cell. 992 

We further filtered out regulons in which the first principal component from the module expression 993 

matrix composed of expression values of regulon genes across samples did not account for at 994 

least 20% of the variation of the module expression matrix. From these two criteria, statistical 995 

significance of an eigengene and variance explained within the module expression matrix were 996 

used to refine the number of regulons to include for SN520 and SN503, respectively.  997 

 998 

Pseudotime/latent time analysis 999 

We applied Monocle v3 in R (93, 94) and scVelo (54) to organize cells along pseudotime axes 1000 

and identify distinct trajectories along which transcriptomic expression states putatively transition. 1001 

Scran-normalized scRNA-seq datasets were used to infer pseudotime trajectories for SN520 and 1002 

SN503 independently using the learn_graph and order_cells function in Monocle v3 (v1.2.7) and 1003 

default parameter settings.  1004 

 1005 

In parallel, we analyzed transcriptional dynamics by determining latent time using scVelo (54). 1006 

Transcriptome dynamics were inferred using the latent_time function and default parameter 1007 

settings. 1008 

 1009 

Locally estimated scatterplot smoothing (LOESS) regression analysis 1010 

We performed LOESS regression on individual TF expression across the single cells along the 1011 

inferred pseudotime trajectories. This allowed us to fit a polynomial regression line through the 1012 
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highly variable single-cell gene expression to identify any underlying patterns that may be present 1013 

over pseudotime. LOESS regression of normalized single-cell gene expression along pseudotime 1014 

was performed using the loess function within the stats v3.6.2 package in R.  1015 

 1016 

TF-TF network topology inference 1017 

To generate TF-TF network topologies, we cross-referenced all regulator-target gene connections 1018 

inferred by MINER3 against the transcription factor binding site database 1019 

(tfbsdb.systemsbiology.net), focusing on only those interactions that involved pairs of TFs that 1020 

were also regulators for some regulon. The type of TF-TF interaction was determined by the sign 1021 

of the pairwise Pearson correlation between the two components – positive correlations were 1022 

interpreted as activating interactions while negative correlations were interpreted as inhibiting 1023 

interactions. We further refined the TF-TF network by removing those interactions having an 1024 

absolute Pearson correlation coefficient (r) below a statistically significant minimum threshold, 1025 

determined by permutation analysis (|r |  0.17 for SN520 and |r |  0.16 from SN503). 1026 

Permutation tests involved randomly mixing expression values across genes within a single-cell 1027 

and calculating Pearson’s r among all gene pairs across all PD-GSCs for SN520 and SN503 1028 

independently. This process was repeated 1000 times to create a null distribution of Pearson 1029 

correlation coefficients.  1030 

 1031 

To determine the statistical significance of each network TF-TF network topology, we performed 1032 

two sets of permutation tests. Briefly, the first set of permutation tests involved permuting the 1033 

network topology, where node labels and edges were permuted such that the number of edges 1034 

and nodes remained consistent, we performed dynamic simulation for the permuted network 1035 

using initial condition, i.e., TF expression profiles from a randomly selected untreated (D0) cell for 1036 

each PD-GSC, respectively. The simulated results were then compared to experimental data to 1037 

determine cosine similarity values. This permutation-simulation-comparison process was 1038 

repeated 1,000 times to create a null distribution of cosine similarity values. The distribution of 1039 

cosine similarity values derived from the original TF-TF network topologies were significantly 1040 

higher than the permuted similarity values (fig. S12). The second set of permutations involved 1041 

permuting the gene expression data, mixing the gene and cell ids to see if similar TF-expression 1042 

states could be achieved by random chance. Cell and gene labels were permuted 1000 times to 1043 

create a permuted distribution of TF-expression states, which were then compared to the original 1044 

experimental states, defined by hierarchical clustering, using pairwise cosine similarity values (fig. 1045 

S12).  1046 
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 1047 

RACIPE simulations 1048 

Simulations were performed using the sRACIPE package v1.16.0 in R. Briefly, using sRACIPE 1049 

we generated an ensemble of ordinary differential equation (ODE) models based on associated 1050 

chemical rate equations with distinct, randomly generated kinetic parameter sets. From the 1051 

ensemble of models, we analyze the resulting distribution of steady states and identify robust 1052 

phenotypes supported by the core TF network. The inferred TF-TF network topology for SN520 1053 

(or SN503) was used as the input circuit for the sracipeSimulate function. An integral step size of 1054 

0.2 and simulation time of 100 was used for simulations.  1055 

 1056 

To verify the ability of the network topology to recapitulate observed TF expression states, we 1057 

initialized the network by randomly selecting 1,000 expression profiles (with replacement) for the 1058 

respective TFs from D0 scRNA-seq profiles for each PD-GSC, i.e., initial conditions that were 1059 

paired with 1,000 parameter models randomly selected by the sracipeSimulate function (default 1060 

settings used).  1061 

 1062 

To explore the plausible network states supported by each network topology, we initialized each 1063 

network topology by using 100 randomly selected initial conditions that were used across 10,000 1064 

randomly selected parameter sets, which resulted in an ensemble of 1 million simulated steady-1065 

states. To determine the dominant steady states from the ensemble of simulations, all Euclidean 1066 

pairwise distances were calculated. Those simulated states that had a Euclidean pairwise 1067 

distance  4.0 (scSYGNAL-520) or  1.92 (scSYGNAL-503) were labeled as a “non-redundant” 1068 

state. The distance thresholds were found to be the  99th percentile of permuted Euclidean 1069 

pairwise distances for each PD-GSC, which was determined by randomly selecting 1,000 pairs 1070 

of simulated states and calculating all pairwise Euclidean distances. This process was repeated 1071 

10 times to create a distribution of 10 million pairwise Euclidean distances. From these distance 1072 

thresholds, we identified 6,519 (scSYGNAL-520) and 4,223 (scSYGNAL-503) simulated states 1073 

were deemed as unique states. We then hierarchically clustered each set of distinct, “non-1074 

redundant” states and identified four dominant states that were supported by each TF-TF network 1075 

topology (Fig. 6C, E). To classify a “redundant” simulated state, we assigned it the same state as 1076 

its nearest “non-redundant” neighbor, based on Euclidean distance.  1077 

 1078 

RACIPE convergence tests  1079 
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To verify that the number of initial conditions and parameter sets would sufficiently converge to 1080 

steady state solutions across the initial condition and parameter space, we performed a series of 1081 

simulations using 100 randomly selected initial conditions across different number of model 1082 

parameters (1e3, 2e3, 4e3, 6e3, 8e3, and 1e4). The result was a series of simulations consisting 1083 

of six different ensembles of simulated states, one for each model parameter set, with each 1084 

ensemble associated with a randomly selected set of initial conditions. This series of simulations 1085 

was performed in triplicate. For each set of results, we identified the unique states using the same 1086 

Euclidean distance thresholds described in RACIPE simulations. Next, we determined the 1087 

Kullback-Liebler (KL) divergence for these simulated states across the triplicate set of simulations 1088 

for each set of results (fig. S13).  1089 

 1090 

Random Forest analysis of RACIPE simulations 1091 

Random forest analysis was performed on RACIPE simulations, i.e., simulated transcriptional 1092 

states for SN520 and SN503 using randomForest function (default parameters) from the 1093 

randomForest package v4.7-1.1. Simulated state classifiers were based on hierarchical clustering 1094 

of the unique (non-redundant) simulated states as described in RACIPE simulations.  1095 

 1096 

Drug Matching Identification 1097 

To identify drugs targeting elements within the transcriptional programs identified from the 1098 

network analysis, we applied the Open Targets platform tool (https://www.targetvalidation.org/). 1099 

The platform integrates a variety of data and evidence from genetics, genomics, transcriptomics, 1100 

drug, animal models, and literature to score and rank target-disease associations for drug target 1101 

identification. We focused our search on identifying drug-target matches for only those drugs 1102 

associated with any cancer treatments that had reached Phase IV matching with regulon genes 1103 

associated with SN520. Originally, 28 drugs paired with genes across 17 regulons. We further 1104 

refined the list of potential drug candidates to those drugs associated with GBM, reducing the 1105 

number of candidate drugs to eight, including vinflunine.  1106 

 1107 
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FIGURE LEGENDS 1668 

 1669 

Fig. 1. Pitavastatin causes shift in molecular subtype expressed by PD-GSCs. (A) 1670 

Pitavastatin IC50 values for each of 45 PD-GSCs as determined using dose titration assays 1671 

(below). Labeled PD-GSCs represent a subset deemed as a responders (blue) and non-1672 

responders (red) to pitavastatin. Below are drug-dose response and time-course response curves 1673 

for SN520 (pitavastatin-responsive) and SN503 (pitavastatin-non-responsive) PD-GSC 1674 

populations. (B) Experimental workflow for longitudinal monitoring of PD-GSC response to 1675 

pitavastatin treatment. Colored horizontal arrows indicate duration of pitavastatin (magenta), 1676 

vehicle-control (DMSO, light blue), or untreated control (dark grey). (C) GSVA enrichment scores 1677 

for each molecular subtype (CL – classical, PN – proneural, MES – mesenchymal) analyzed for 1678 

all bulk samples collected. (D) UMAP plots of Harmony-integrated scRNA-seq data sets and 1679 

corresponding individual plots for each PD-GSC phenotype treated with DMSO or pitavastatin 1680 

(PSTAT) and untreated controls (CTRL) representing D0 time point. (E) Wasserstein distance of 1681 

transport distances between each consecutive time point for each PD-GSC under each treatment 1682 

condition (vehicle- or pitavastatin-treatment).  1683 

 1684 

Fig. 2. Single-cell characterization of PD-GSC response to pitavastatin. UMAP plots of 1685 

scRNA-seq profiles, annotated according to treatment conditions (untreated control, vehicle – 1686 

DMSO, and pitavastatin – PSTAT), for (A) SN520 and (B) SN503. Scatter plots show proportions 1687 

of each subtype in each PD-GSC population across treatment for (C) SN520 and (D) SN503. (E 1688 

– F) Flow cytometry analysis of PN and MES markers CD133 (PN) and CD44 (MES) across 1689 

pitavastatin-treated cells for SN520 and SN503, respectively. Values (grey) indicate percentages 1690 

of cell populations in each quadrant. Proportions of cells positive for each subtype marker are 1691 

quantified in the adjacent barplots underneath. (G – H) Heatmap of inferCNV scores for SN520 1692 

and SN503, respectively. Cells (rows) are grouped based on treatment conditions (same color 1693 

annotation as in (A) and (B)). Genes (columns) are arranged according to their chromosomal 1694 

positions. (I) Dose-response curves of naïve SN520 PD-GSCs (light blue) and SN520 PD-GSCs 1695 

that survived an initial pitavastatin-treatment (treated – dark blue). Adjacent plot shows 1696 

corresponding AUC values from dose-response curves generated from subsequent PD-GSC 1697 

cultures derived from original pitavastatin- or vehicle-control-treatment for SN520 (left) and SN503 1698 

(right). Paired t-test results showed a sustained (significant) increase in AUC values of the 1699 

PSTAT-treated SN520 PD-GSCs relative to their vehicle-control counterparts but not for SN503. 1700 

 1701 
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Fig. 3. Differential expression and pathway enrichment analysis reveals underlying 1702 

processes driving pitavastatin responses. (A) Heatmap of the top upregulated DEGs, based 1703 

on FDR p-values, across the 14 Louvain cell clusters (cl) identified in vehicle-control- and 1704 

pitavastatin-treated SN520 PD-GSCs. Adjacent UMAP plot with treatment annotation (same as 1705 

Fig 2A) included for reference. (B) Corresponding UMAP plots of scRNA-seq profiles annotated 1706 

according to Louvain cell cluster (left) and treatment condition (right) as reference. (C) Cell 1707 

proportions for each Louvain cluster that belong to each treatment condition for SN520. Significant 1708 

enrichment of treatment condition within Louvain cluster indicated by asterisk (FDR ≤ 0.05) or 1709 

double dagger (FDR ≤ 1e-05) (D) Cell proportions for each Louvain cluster that belong to each 1710 

treatment condition for SN503. Significant enrichment notation identical to that used in (D). (E) 1711 

Dotplot of hallmark gene sets enriched across SN503 and SN520 PD-GSCs, grouped with respect 1712 

to either drug-treatment duration or Louvain clustering. Dot size represents the ratio of number of 1713 

upregulated genes associated with a PD-GSC grouping to the number of genes associated with 1714 

a specific hallmark gene set. Dot colors indicate significance of enrichment (FDR value). (F) Total 1715 

number of up- and down-regulated DEGs, relative to untreated control (D0) cells, at each 1716 

treatment time point for SN503 (red) and SN520 (blue).  1717 

 1718 

Fig. 4. MINER3 transcriptional regulatory network inference reveals mechanisms of cell-1719 

state changes. (A) Heatmaps of normalized regulon activities across SN520 (top) and SN503 1720 

(bottom) PD-GSCs. Regulons (rows) are organized into transcriptional programs (Pr) while single 1721 

cells (columns) are organized into transcriptional states (St). Left-adjacent color bars indicate 1722 

what regulons belong to a particular transcriptional program. Left-adjacent color bar indicates 1723 

transcriptional programs. Top color bars indicate treatment condition (color annotation identical 1724 

to Fig. 1E) and corresponding transcriptional state for a single cell. (B) Stacked barplot show 1725 

proportion of cells within each transcriptional state from each treatment condition for SN520 (top) 1726 

and SN503 (bottom). (C) Boxplot/violin plots of distributions of regulon activity for select programs 1727 

across treatment conditions for SN520 and SN503. Regulon activity values were capped between 1728 

the lower 2.5% and 97.5% range of values. Labels indicate program IDs and select hallmark gene 1729 

sets (95) enriched within each program. The box represents the inter-quantile range (IQR – 25th 1730 

and 75th percentile) and median activity value while the whiskers represent 1.5x IQR. Asterisks 1731 

indicate statistically significant differences between regulon activity distributions. Single asterisks 1732 

(*) denote activity distribution of untreated controls (CTRL) is significantly lower than distribution 1733 

being compared (FDR << 1e-3). Double asterisks (**) denote distribution of untreated controls is 1734 

significantly higher than either vehicle-treated (DMSO) or pitavstatin-treated (PSTAT) 1735 
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distributions being compared (FDR << 1e-3). (D) Flow diagram outlining approach to derive core 1736 

TF-TF network from MINER3 results. Final core TF-TF networks derived for (E) SN520 and (F) 1737 

SN503.  1738 

 1739 

Fig. 5. Distinct trajectories define SN520 and SN503 pitavastatin response. (A) UMAP plots 1740 

of vehicle- and pitavastatin-treated cells for SN520 (left column) and SN503 (right column). 1741 

Annotation highlights treatment conditions (top row), molecular subtype (2nd row), pseudotime (3rd 1742 

row) and RNA velocity (4th row). (B) Critical transition index (Ic) of SN520 (blue) and SN503 (red) 1743 

cells treated with vehicle (DMSO - light) or pitavastatin (PSTAT – dark). (C) LOESS regression of 1744 

TF expression behavior sorted according to peak expression along pseudotime (Monocle3). 1745 

Density plots depict distribution of sample time points along pseudotime trajectory. Heatmap 1746 

shows expression of TFs rank sorted by time of peak expression along pseudotime (color bar 1747 

beneath heatmap). (D) Select set of LOESS regression of mean program activities with respect 1748 

to pseudotime. Regulons are clustered based on their dynamic activity profiles with respect to 1749 

pseudotime. Dashed grey line represents the average shape of the curves for each cluster. Labels 1750 

indicate which transcriptional programs were grouped into each cluster. Select hallmark gene sets 1751 

(95) enriched within programs are labeled as well. (E) Boxplots/violin plots of expression of genes 1752 

associated with indicated pathways/processes (95) on respective treatment days. Relative gene 1753 

expression values were capped at the lower 2.5% and 97.5% range of values. Labels indicate 1754 

select hallmark gene sets enriched within subpopulation of cells (treatment time point). Asterisks 1755 

indicate statistically greater expression in pitavstatin-treated cells (PSTAT) relative to untreated 1756 

control (CTRL) counterparts (Wilcoxon rank test, FDR << 1e-5). The box represents the inter-1757 

quantile range (IQR – 25th and 75th percentile), median activity value while the whiskers highlight 1758 

1.5x IQR.  1759 

 1760 

Fig. 6. Dynamic simulations of core TF regulatory network supports phenotypic plasticity 1761 

of GSCs. Simulated transcriptional states (black circles) projected along first two principal 1762 

components. Contour lines represent distribution of PCA scores of TF expression states (core 1763 

TFs only) for (A) SN520 and (B) SN503 cells. One thousand simulated states were generated 1764 

using core TF network topologies and corresponding D0 scRNA-seq data for initial conditions 1765 

(i.c.) as RACIPE inputs. (C) Three plots summarizing results from 1 million RACIPE simulations 1766 

(independent of (A)) using the core TF-TF network derived from scSYGNAL-520 and randomized 1767 

initial conditions to explore plausible steady states supported by the network topology. 1768 

Dendrogram of four distinct simulated steady states. Scatter plot of simulated states projected 1769 
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along first two PCs. Horizontal barplot of rank-ordered TFs based on their importance in 1770 

distinguishing the four simulated states. Here, importance is defined by the mean decrease in 1771 

classification accuracy following TF removal from the model, per random forest analysis. (D) 1772 

Heatmap of expression for SN520 core TFs. Cells (columns) were hierarchically clustered to 1773 

define experimental states (ES520-i), providing a basis of comparison for simulated states (SS520-1774 

i). Adjacent boxplots of three TFs having high importance in random forest classification. Boxplots 1775 

(top row) of TF expression distributions for experimental states. Boxplots (bottom row) of 1776 

simulated TF expression distributions (normalized). (E – F) Corresponding simulation results for 1777 

SN503. (G) SN520 cell viability following 4-day treatment with either simultaneous treatment with 1778 

pitavastatin and siRNA (light grey bars) or sequential pitavastatin then siRNA-mediated KD of TFs 1779 

(dark gray bars). Viabilities are relative to non-template control (NTC)-treated cells. (H) 1780 

Corresponding bar plots of relative viability for SN503. Asterisks (G – H) indicate significant 1781 

decrease relative to corresponding NTC treatment (FDR p-values  0.1).  1782 

 1783 

Fig. 7. Dynamics of regulon behavior reveal additional targets that guide rational 1784 

secondary drug selection. Distribution of activity of select tubulin-associated regulons in single 1785 

cells across treatments for (A) SN520 and (B) SN503. Asterisks indicate treatments having 1786 

significantly higher activities relative to the untreated control (CTRL (D0)) (Wilcoxon rank test,  1787 

FDR ≤ 1e-20,   FDR ≤ 1e-150). (C) Experimental design for sequential pitavastatin/vinflunine 1788 

treatment on multiple PD-GSCs. (D) Dose-response curves for SN520 and SN503 cells treated 1789 

with pitavastatin alone (PIT, dark gray), or pre-treated with vehicle (DMSO, light blue)/pitavastatin 1790 

(2M, pink), followed by 24hr vinflunine treatment (1.5e-9, 4.6e-9, 13.7e-9, 41.2e-9, 123.5e-9, 1791 

370.4e-9, 1.10e-6, 3.30e-6, 10.0e-6 30.0e-6 M). Results from 48hr vinflunine treatment included 1792 

in fig. S16. Adjacent barplots show relative viabilities following various treatments (black dots 1793 

underneath barplots) including monotherapy with pitavastatin (PIT), or pre-treatment with DMSO 1794 

(pre-DMSO)/pitavastatin (pre-PIT) followed by vinflunine (VIN). Asterisks/double crosses indicate 1795 

treatments resulting in significantly lower relative viability than pitavastatin monotherapy ( 1.1M, 1796 

FDR ≤ 0.1; ‡ 3.3 M FDR ≤ 0.1). Color annotation identical to dose-response curves. Error bars 1797 

represent ±2x standard deviation (N = 3). (E) Depiction of how core TF-TF networks underlying 1798 

drug-response drive cell state transitions in responder and non-responder PD-GSCs along a 1799 

Waddington-like phenotypic landscape. Treatment with a primary drug to which cells are sensitive 1800 

(1° drugS) activates a highly interconnected network in a responder PD-GSC, driving PMT across 1801 

surviving cells resulting in acquired resistance to “multiple drugsR”. Intervention with a second 1802 

drug (2° drugS) that targets vulnerabilities in transient states potentiates killing and disrupts PMT. 1803 
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By contrast, the non-responder PD-GSC consists of cell sub-populations (center well) resistant to 1804 

the primary drug (1° drugR). Here, treatment with 1° drugR activates a sparse network that drives 1805 

surviving cells into multiple distinct drug-resistant states potentially sensitive to secondary 1806 

interventions.  1807 
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