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Abstract 

Although genome-wide association studies (GWAS) have identified loci associated with alcohol 

consumption and alcohol use disorder (AUD), they do not identify which variants are functional. To 

approach this, we evaluated the impact of variants in 3’ untranslated regions (3’-UTRs) of genes in loci 

associated with substance use and neurological disorders using a massively parallel reporter assay 

(MPRA) in neuroblastoma and microglia cells. Functionally impactful variants explained a higher 

proportion of heritability of alcohol traits than non-functional variants. We identified genes whose 3’-

UTR activities are associated with AUD and alcohol consumption by combining variant effects from 

MPRA with GWAS results. We examined their effects by evaluating gene expression after CRISPR 

inhibition of neuronal cells and stratifying brain tissue samples by MPRA-derived 3’-UTR activity. A 

pathway analysis of differentially expressed genes identified inflammation response pathways. These 

analyses suggest that variation in response to inflammation contributes to the propensity to increase 

alcohol consumption.  
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Introduction 

Genome-wide association studies (GWAS) have identified loci associated with alcohol use disorder
1-4

 

(AUD), alcohol consumption
1,2,5-9

, and related traits
10-18

.  Though these strategies have expanded our 

understanding of the genetics of alcohol related traits, they are still limited in how much they can unveil 

about the underlying mechanisms. Variants in protein coding regions of the genome may cause a change 

in protein function, but most significant variants occur in noncoding regions and may be genetic markers 

rather than have a functional effect. To address this, massively parallel reporter assays (MPRAs) have 

been developed to identify variants in the broad loci that alter gene expression
19,20

. In this study, we 

used PASSPORT-seq
21,22

 to evaluate variants in the 3’ untranslated regions (3’-UTR) of genes within those 

loci. 

 

Though MPRAs can evaluate the effect of candidate variants, they cannot elucidate their roles in 

disease. Several methods use a Mendelian Randomization (MR)-like framework to identify genes that 

contribute to the onset of a phenotype, including PrediXcan
23

, TWAS
24

, and SMR
25

. These methods 

impute gene transcription from genotype using models trained on tissue-level transcriptome datasets, 

and test the association of these imputed gene expression levels with the phenotype. By using imputed 

expression, these approaches seek to isolate the gene’s effect on the phenotype while removing the 

phenotype’s effect on gene expression. These imputations, however, are based on association of 

variants with gene expression rather than the actual functional effect of each variant. To address this, 

we propose MPRA-mediated Gene Expression Association Analysis (MGExA), an approach that combines 

variant function derived from MPRA with GWAS summary statistics, to identify genes whose imputed 

expression based on genotype and MPRA results is associated with the phenotype. Our results suggest 

that this strategy not only provides increased statistical power for discovering genes that contribute to 

AUD and related traits, but also enables identifying which cell types those genes function in.  
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Results & Discussion 

MPRA identifies functional variants impacting gene expression 

To identify genes within GWAS loci likely to functionally impact AUD and related traits, we started with a 

set of SNPs that were weakly associated (p < 10
-5

) with AUD, alcohol-related traits, and neurological 

disorders (Figure S1, Table S1 and S2; ref. 
26,27

). We then selected 3’-UTR SNPs within regions of LD 

(r
2
>0.8) around the initial set if they had a minor allele frequency greater than 5% in at least one of the 

five super-populations from phase 3 of the 1000 Genomes Project
28

. This resulted in a total of 13,515 

candidate SNPs (see Methods and Figure S1), from which we created a pool of 24,780 oligos (some SNPs 

shared a reference sequence), each extending 25 base pairs upstream and downstream from both the 

reference and alternative alleles of each candidate SNP. This pool was cloned into the pIS-0 vector 

(Methods; Figure S2A) and transfected 6 independent times into two human cell lines, SH-SY5Y 

neuroblastoma cells
29

 and SV-40-immortalized microglial cells (Cat.No: T0251, Applied Biological 

Materials Inc, Richmond, QC, Canada). After 42 h, the cells were harvested, the DNA and RNA were 

isolated, cDNA synthesized, and sequencing libraries prepared that included barcodes and unique 

molecular indices (Figure S2B). The number of unique cDNA and DNA reads of reference and alternative 

alleles for each oligo was determined by sequencing (Figure S3).  

 

For each oligo, we compared the normalized number of DNA and RNA (cDNA) reads using a generalized 

linear model (see Methods) to determine if the oligo altered gene expression. If the inserted 3’-UTR 

sequences have no effect on transcription, the RNA abundance should be proportional to the DNA 

abundance.  Of the 24,780 oligo sequences, 2,908 altered gene expression (FDR < 0.05) in SH-SY5Y; of 

those, 81 increased expression by more than 2-fold, while 876 decreased expression by more than 2-

fold (Figure 1A, Table S3). In microglia cells, 5,460 sequences altered gene expression (FDR < 0.05), with 
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71 increasing expression by more than 2-fold and 1,220 decreasing expression by more than 2-fold. This 

is consistent with the expectation that 3’-UTR sequences are enriched with cis-acting elements that 

regulate RNA degradation.  

 

We then used a generalized linear mixed effect model to determine whether the alternative alleles 

differentially affected gene expression. Of the 13,515 SNPs tested, 972 (7.2%) showed significant 

differences between alleles (FDR <0.05): 400 in SH-SY5Y cells and 657 in microglia cells (Figure 1B & C, 

Table S3). Among these, only 84 SNPs showed significant allelic imbalance in both cell lines, 81 of which 

affected expression in the same direction (Figure 1D). 

 

Functionally impactful variants explained more heritability than expected 

We tested whether the 3’-UTR SNPs that differentially affected gene expression explained a 

disproportionate fraction of heritability for the number of alcoholic drinks per week (DPW; ref 
6
) or 

alcohol use disorder (AUD; ref. 2). For this, we analyzed the subset of SNPs for which we had both MPRA 

data and GWAS data. For DPW
6
, 223 SNPs among the 6,080 in SH-SY5Y and 379 among 6,119 in 

microglia significantly affected gene expression in our MPRA. These SNPs explained 1.4% and 2.3% of 

the overall heritability, respectively. This was 2.1-fold (SH-SY5Y; p = 0.034) and 2.3-fold (microglia; p = 

0.003) as much as the median of 1,000 randomly selected sets of equal size chosen from among all the 

tested SNPs (Table S4 and Figure 2). Similarly, for AUD the 158 (among 4,348 tested; SH-SY5Y) and 285 

(among 1,306; microglia) functional SNPs explained 1.5% (SH-SY5Y) and 1.3% (microglial) of the 

heritability, which is 8.4 times (p=0.001) and 5.0 times (p=0.004) the median heritability of an equal-

sized randomly selected set of the tested candidate MPRA SNPs (Table S4).  
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Combining GWAS and MPRA identifies genes whose 3’-UTR activity is associated with alcohol 

consumption and AUD 

To examine how the genetic variants in the non-coding regulatory regions of a gene might contribute to 

a trait of interest, we designed a computational framework, which we call MPRA-mediated Gene 

Expression Association Analysis (MGExA). MGExA multiplies the functional effect of each SNP 

(determined by the MPRA) by its effect size from a GWAS of a trait and sums the results for each gene to 

calculate a Z-score (Wald statistic ��) for the association between the trait and the imputed gene 

expression levels  (Methods, equation 3, and Figure S4A)
2,6

. We used MGExA to identify a set of genes 

whose expression levels, as calculated based upon the 3’-UTR genotypes, are associated with DPW
6
. We 

replicated our finding using the summary statistics from the AUDIT-C GWAS in the Million Veteran 

Program (MVP) study
2
.  Although DPW and AUDIT-C characterize different aspects of drinking behavior, 

they are both related to alcohol consumption. 

 

Of the genes that contained at least one MPRA-evaluated 3’-UTR variant with p < 0.05 in the GSCAN 

study (Table 1, Table S5), 3’-UTR activities of 38 genes in SH-SY5Y (out of 596) and 50 genes in microglia 

(out of 690) were significantly associated with DPW (FDR < 0.2); 12 were common to both cell lines. 

Among these, 17/31 genes in SH-SY5Y cells (7 could not be tested because of differences in the variants 

available between datasets) and 14/45 in microglia (5 not tested) were also significantly associated with 

AUDIT-C (FDR<0.2); four of these were significant in both cell types (Figure 3A & B). The direction of the 

effect in 16 out of the 17 genes identified based on MPRA in the SH-SY5Y cells and in all 14 genes from 

microglia was consistent across both studies (Table 1; Figure 3A & B).  

 

We also used MGExA to analyze traits related to AUD: the MVP GWAS for AUD
2
 was the discovery study  

and AUDIT-P (questions 4-10; related to AUD
1,16

) in the UK BioBank
1
 was the replication study. Of the 
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441 genes with at least one MPRA-evaluated SNP at p<0.05 in SH-SY5Y cells, 3’-UTR activities of 7 genes 

were significantly associated with AUD (FDR < 0.2), and 1 was replicated using AUDIT-P (Table 1; Figure 

3C & D). Of the eligible genes in microglia, 11 out of 519 were significant (FDR < 0.2) with AUD, 5 of 

which were also significant for AUDIT-P. All significant genes were directionally consistent across the 

two studies (Figure 3).  

 

Combining GWAS and MPRA data using MGExA led to identification of 31 genes whose 3’-UTR activities 

contribute to either alcohol consumption or alcohol use disorder. Interestingly, only 5 among these 

(16%) contain 3’-UTR SNPs that were genome-wide significant (p < 5x10
-8

) in either GWAS
2,6

. The 

increased statistical power is in part the result of combining the effects of multiple functional variants 

affecting the same gene with GWAS summary statistics.  For example, the weighted contributions of 

each SNP to the trait and the effect size in the MPRA and GWAS analysis for Diazepam Binding Inhibitor-

Like 5 Pseudogene 2 (DBIL5P2), TAO Kinase 2 (TAOK2), INO80 Complex Subunit E (INO80E), and 

Dopamine Receptor D2 (DRD2) are depicted in Figure S4B&C.  Each gene’s 3’-UTR contains multiple SNPs 

evaluated in both the MPRA and GWAS for drinks per week. The combined effects suggest that their 

gene expression levels positively (for DBIL5P2) or negatively (for TAOK2, INO80E, and DRD2) associate 

with the phenotype. None of these SNPs nor any SNPs in LD with them (r
2
 > 0.8) had GWAS signals that 

reach genome-wide significance. 

 

Of the genes identified by MGExA as associated with alcohol consumption or alcohol use disorder, 29 

are expressed in microglia or neurons in the single cell transcriptome collated in the Human Brain Cell 

Atlas
30

. Several, including Alcohol Dehydrogenase 4
31

 (ADH4), AGBL Carboxypeptidase 2
32

 (AGBL2), and 

Microtubule Associated Protein Tau
33

 (MAPT), have previously been shown to be associated with 

alcohol-related phenotypes. Other MGExA-identified genes, such as Signal Transducer And Activator Of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2024. ; https://doi.org/10.1101/2024.01.31.578270doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.31.578270
http://creativecommons.org/licenses/by-nc-nd/4.0/


Transcription 6
34

 (STAT6) and TAOK2
35

 have been found to be involved in the response to ethanol in 

animal models. MGExA also identified genes associated with addiction to other substances, including 

nicotine (KAT8 Regulatory NSL Complex Subunit 1
36

; KANSL1) and opioids (DRD2
37

). MGExA genes were 

also associated with other disorders of the brain such as Alzheimer’s disease (Protein Tyrosine Kinase 2 

Beta
38

; PTK2B), and schizophrenia (SREBF2
39

). 

 

CRISPR inhibition of target genes identified potential mechanisms 

To identify the downstream pathways of the genes identified by MGExA, we used a KRAB-dCas9-based 

CRISPRi assay followed by single-cell RNA-seq (Perturb-seq
40

) to measure global gene expression 

changes after knocking down the target genes in SH-SY5Y cells. We designed 5 single-guide RNAs 

(sgRNAs) targeting each of the 31 candidate genes whose 3’-UTR variant-determined gene expression 

levels are associated with alcohol consumption and AUD traits in the discovery studies and replicated.  

In addition to the 155 candidate sgRNAs, 18 positive control sgRNAs and 18 negative template control 

sgRNAs were included (Table S6). Lentivirus containing the 191 sgRNAs were transduced into a modified 

SH-SY5Y cell line that stably expresses KRAB-dCas9 (see Methods). After 8 days of transfection, 

10XGenomics single cell RNA-seq assays were conducted; feature barcoding was used to identify the 

sgRNA transduced into each cell. We found that 8,842 cells were transduced with one target gene 

sgRNA, and 1,331 cells were transduced with a negative template control. Using Seurat Mixscape
41

, 

seven genes were found to have robust perturbation responses: CUL3, INO80E, KANSL1, PLEKHM1, 

RBM14, SNRNP40, and TAOK2 (Figure 4A&B).  For each of these genes, we evaluated differential gene 

expression between perturbed cells compared with non-targeting control (NTC) cells using the Wilcoxon 

Rank-Sum test. Four target genes had more than 10 significant (adjusted p < 0.05) differentially 

expressed genes: CUL3 (17), KANSL1 (199), RBM14 (505), and SNRNP40 (49) (Table S7).  
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To evaluate the downstream effects of the inhibition of each perturbed gene, we performed gene set 

enrichment analysis (GSEA) on the differentially expressed genes using pathways from Kyoto 

Encyclopedia of Genes and Genomes (KEGG)
42

. Of the 186 KEGG pathways used for GSEA, 31 were 

significantly enriched (FDR < 0.05) by at least one perturbed gene (Table S8), and 16 pathways were 

enriched by at least two perturbed genes (Figure 4C). Alzheimer’s, Huntington’s, and Parkinson’s 

disease-related pathways were enriched by multiple CRISPRi target genes. Oxidative phosphorylation 

was enriched in 5 target genes; oxidative stress may be involved in response to alcohol consumption and 

AUD
43,44

. The Perturb-seq analysis in the SH-SY5Y cell system suggests that these genes, implicated in 

alcohol consumption and alcohol use by MPRA, are involved in multiple pathways including important 

signaling cascades and brain-related diseases.  

 

Stratification of brain tissue samples by MPRA-derived 3’-UTR activity identified neuroinflammation as a 

key pathway 

To further understand the identified downstream genes and pathways at the tissue level, we utilized 

genotype and transcriptomics data of pre-frontal cortex from 991 subjects from the CommonMind 

Consortium (CMC)
45

. For each CommonMind sample, we inferred the 3’-UTR activity of each gene based 

on the genotypes of 3’-UTR variants and MPRA-derived activity (see Methods). For each gene, we 

compared global gene expression between samples with the lowest 1/3 and highest 1/3 of these 

inferred activities, using a generalized linear model with sex and the sample’s institution of origin as 

covariates. In total, 1,957 (SH-SY5Y) and 8,401 (microglia) unique genes were differentially expressed 

(FDR < 0.05) between the samples with high and low activities in at least one candidate 3’-UTR identified 

by MGExA (Table S9). Next, we conducted GSEA of these differentially expressed genes to identify 

enriched pathways in KEGG (Figure 5). Among the most commonly enriched pathways were Oxidative 

Phosphorylation, Ribosome, and Parkinson’s disease (Table S10 & S11). Others included toll-like 
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receptor signaling and cytokine-cytokine receptor interaction, two pathways involved in inflammation. 

Taken together, the cell- and tissue-level analyses of downstream effects suggest that genes identified 

by combining GWAS and MPRA are also involved in several brain disorders.  

 

In summary, we screened the functional effects of 13,515 3’-UTR variants on gene expression in a 

neuroblastoma cell line and a microglial cell line and found many that differentially affect gene 

expression. These functional SNPs explain more of the heritability of alcohol consumption and alcohol 

use disorder than equivalent random sets selected from the pool of candidate variants we evaluated. 

We developed a model, MGExA, to aggregate SNP MPRA-derived functional activity with their GWAS 

effect size to identify genes whose 3’-UTR may contribute to their propensity to increase alcohol 

consumption or develop AUD. Knocking down these genes in neuronal cells showed that they are 

involved in oxidative stress pathways, a pathway involved in alcohol consumption and AUD, and other 

brain disease pathways. By examining differences in tissue-level gene expression between brain samples 

with different levels of inferred effect of 3’-UTR variants, we found a potential link between 

neuroinflammation and alcohol use disorder.  
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Methods 

Identification of candidate 3’-UTR SNPs 

Candidate SNPs were identified from the GWAS catalog
26

 (v1.0, release 2019-08-24, accessed 2019-08-

27) and a meta-analysis of alcohol phenotypes
27

 by first selecting lead SNPs that were marginally 

associated (p < 10
-5

) with traits that mapped to the Experimental Factor Ontology
46

 category 

“neurological disorders.” For each lead SNP, a linkage disequilibrium (LD) region was defined as the 

genomic region between the most upstream and downstream distal SNPs with r
2
 > 0.8 within the 

European populations of the 1000 Genomes Project
28

. A total of 13,515 candidate SNPs were selected 

from within these LD regions by identifying SNPs within 3’-UTRs defined by dbSNP
47

 build 151 that had 

minor allele frequency larger than 5% in at least one 1000 Genomes super population. 

 

Massively Parallel Reporter Assay for 3’-UTR variants 

PASSPORT-seq
21,22

, a massively parallel reporter assay (MPRA), was used to evaluate the effect of 3’-UTR 

SNPs on the expression of a luciferase reporter gene contained in the pIS-0 vector
48

. This method is 

similar to MPRAu
49

 another MPRA for 3'-UTRs. The overall flow of the protocol is shown in Figure S3. A 

pool of 24,780 oligonucleotides was synthesized by Agilent (Santa Clara, CA, USA), with each 

oligonucleotide containing either the reference or alternative allele of 13,515 SNPs flanked by the 25 

nucleotides upstream and downstream of its genomic position plus vector-specific sequence at both 

termini (5’ end: 5’-GCCGTGTAATTCTAGGAGCTC; 3’ end: CGTTCTAGAGTCGGGGCGG-3’) to allow 

assembly into the pIS-0 plasmid. The oligo pool (10 fmol) was amplified by the polymerase chain 

reaction (PCR) for 15 cycles with Invitrogen Platinum SuperFi DNA Polymerase mastermix (Thermo 

Fisher Scientific, Waltham, MA) using 0.25 µM each of PCR primers HJ7207 (5’-

GCCGTGTAATTCTAGGAGCTC-3’) and HJ7208 (5’-GCCCCGACTCTAGAACG-3’) in a 50 µL reaction. The 
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products of four independent PCRs were combined and purified using MinElute columns (Qiagen, 

Germantown, MD). 

 

To construct the plasmid library, the pIS-0 vector
48

 (RRID: Addgene_12178, Addgene, Cambridge, MA) 

was first linearized using SacI-HF and BmtI-HF restriction enzymes (New England Biolabs (NEB), Ipswich, 

MA), separated in a 0.8% agarose gel, excised, and purified using a QIAquick gel extraction kit (Qiagen). 

The linearized vector was assembled with the amplified oligo pool using the NEBuilder HiFi DNA 

assembly kit (NEB) by mixing 50 ng of the linearized pIS-0 vector and 2 µL of the amplified 

oligonucleotide pool in a 20 µL reaction volume (Figure S2A). Four independent assembly reactions were 

conducted, and 3-4 independent transformations were carried out from each assembly reaction, using 

1.5 ul of each PCR. Transformation was performed into 50 µL of chemically competent NEB 5-alpha 

competent E. coli cells (NEB), which were spread on two 150-mm LB-agar plates containing 100 µg/ml 

ampicillin and incubated overnight at 37°C. Bacteria were harvested by adding 4 mL LB to each dish and 

scraping with an L-shaped cell spreader (Thermo Fisher Scientific). Plasmid DNA was isolated from the 

bacteria using PureLink HiPure Plasmid Filter Miniprep Kit (Thermo Fisher Scientific) and pooled to 

produce the final plasmid library. 

 

The MPRA was performed in two cell lines. SH-SY5Y neuroblastoma cells (CRl-2266, ATCC, Manassas, VA) 

were cultured in a 1:1 mixture of EMEM (American Type Culture Collection; ATCC) and F12K medium 

(10025-CV, Thermo Fisher Scientific) with 10% (vol/vol) fetal bovine serum (ATCC) and 1% penicillin and 

streptomycin. Cells were plated in six 10-cm dishes at a density of 5 x 10
6
 cells per dish.  After 24 h 

incubation at 37°C and 5% CO2, cells were transfected with X-tremeGENE HP DNA transfection reagent 

(Millipore Sigma, St. Louis, MO) using 10 µg of plasmid library and 40 µL reagent in 1000 µL Opti-MEM 

(Thermo Fisher Scientific). A second cell line, SV40-immortalized human microglia cells (Cat.No: T0251, 
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Applied Biological Materials Inc, Richmond, QC, Canada), was cultured in Prigrow III medium with 10% 

(vol/vol) fetal bovine serum (16000-044, Thermo Fisher Scientific) and 1% penicillin-streptomycin in type 

I collagen-coated (1:30; Sigma-Aldrich, C3867) six 6-well plates at a density of 4 x 10
5
 cells per wells 

(Corning™ 3516, Corning, NY). After 24 h, cells were transfected with 1 µg of plasmid library using 3 µl 

Lipofectamine 3000 reagent (L3000008, Invitrogen, Carlsbad, CA; 3:1 reagent-to-DNA ratio) in Opti-MEM 

reduced serum medium (31985-070, Thermo Fisher Scientific).   

 

Six independent transfections of each cell line were conducted. After 42 h, the cells were harvested, and 

DNA and RNA were isolated from each transfection, using the AllPrep DNA/RNA mini kit (Qiagen). Poly-A 

RNA was isolated using Dynabeads oligo(dT)25 (Thermo Fisher Scientific) and mRNA treated with gDNA 

wipeout buffer (Qiagen) before preparing sequencing libraries.  Sequencing libraries were prepared as 

described previously
22

 with some modifications. Poly(A)RNA (500 ng) from each independent 

transfection was reverse transcribed to cDNA using QuantiTech Reverse Transcription kit (Qiagen) using 

a reporter-specific first strand primer (HJ7211, Table S6 contains primer sequences) that contains the R1 

Illumina adapter sequence, a 9-12 nt barcode (with staggered starts to reduce sequencing errors caused 

by low library complexity) and a 10 nt unique molecular index (UMI, a random sequence to reduce PCR 

bias). The resulting cDNA was then PCR-amplified with a primer containing the R2 Illumina adapter 

sequence and one of 6 barcodes, one for each independent transfection (HJ7214-HJ7219, Table S6). 

Similarly, the DNA was PCR-amplified with another first strand primer (HJ7212) and one of 6 barcodes 

(HJ7214-HJ7219).  The barcoding scheme is shown in Figure S2B. Both RNA and DNA samples underwent 

a second PCR using primers HJ7220 and HJ7221, after which the resulting libraries were pooled and 

prepared for sequencing on an Illumina NovaSeq SP (v 1.5) flow cell lane for 121 nt single-end reads.  
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Bioinformatics processing and statistical analysis for MPRA data 

The pooled samples were differentiated using the barcodes. The FASTQ files were demultiplexed using 

cutadapt
50

 (v2.7), and the UMI for each read was appended to the read name using umi_tools
51

 (v1.0.0). 

After trimming the barcodes, UMI, and primer sequences, the remaining oligonucleotide insert 

sequences (51 nt) were mapped to the reference and alternative alleles of the SNPs. Finally, the reads 

containing mismatches or duplicated UMIs were discarded (20% of the reads), and the number of 

unique reads for each sequence was counted using umi_tools. 

 

To calculate the amount of RNA expressed relative to its corresponding plasmid DNA for each 

oligonucleotide sequence, a generalized linear model implemented within the edgeR package
52,53

 (v. 

3.26.8) in R (v. 3.6.0) was used to estimate the coefficient associated with a sequence’s cDNA count 

compared to what is expected based on its plasmid DNA count (analogous to the ratio of cDNA counts to 

plasmid DNA counts).  The “glmFit” function was used to calculate the coefficients, and the “glmLRT” 

function was used to perform likelihood ratio tests.  

 

The goal of this MPRA is to evaluate whether the variant allele of a SNP alters the activity of a sequence 

in the 3’-UTR. A generalized linear mixed model was used: 

 log��� �  
� � 
��� � 
��� � 
������ � �� � � (Eq. 1) 

 

where � is the number of unique reads associated with allele �� (reference or alternative), sample type 

�� (DNA or cDNA), and replicate number ��  (1 to 6). The coefficients of the fixed effects are 
�, 
�, 
�, 

and 
��, while the coefficient for the random effect is . The effect of the variant on gene expression 

was estimated using 
��, the coefficient of the interaction between allele and sample type. Our null 

hypothesis (��) is 
�� � 0, analogous to stating that the relative counts of the reference and alternative 
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alleles in the cDNA is equal to that in the plasmid DNA. A false discovery rate (FDR; Benjamini-Hochberg 

procedure
54

) < 0.05 was used as the threshold for significance. 

 

Heritability enrichment analysis of MPRA-derived significant SNPs 

Heritability enrichment analysis was conducted using LDAK
55

 (v. 5.0) by comparing the heritability 

contribution of SNPs significant in our MPRA (FDR ≤ 0.05; ref. 
54

) with the heritability contribution of 

1000 sets containing the same number of candidate SNPs randomly drawn from the full 13,515 SNPs. 

LDAK estimates the expected heritability contribution of each GWAS SNP using the GWAS summary 

statistics, linkage disequilibrium patterns, and minor allele frequency for each SNP. A permutation p-

value was determined by calculating the fraction of the 1000 values that were greater than the share of 

heritability of the FDR-significant SNPs. 

 

MPRA-mediated Gene Expression Association Analysis (MGExA) to identify genes whose 3’-UTRs are 

associated with Alcohol Consumption and AUD 

We developed a computational framework, MPRA-mediated Gene Expression Association Analysis 

(MGExA), to evaluate the association of the 3’-UTR component of gene expression with a phenotype. 

First, we defined for each gene in an individual the genetic component of gene expression due to 3’-UTR 

effects by summing the MPRA-derived effects of the 3’-UTR SNPs weighted by alternative allele counts 

of the SNPs: 

 ��
� � � �����

�

 (Eq. 2) 

where ��
�  is the calculated genetic component of 3’-UTR activity for gene �, ��  is the MPRA-derived 

effect of SNP �, and ���  is the number of alternative alleles of SNP �.  Here, ��  is defined as the z value 

associated with 
�� from Eq. 1. A GWAS-like approach could be used to determine whether the genetic 

component of a gene’s 3’-GWAS activity is associated with a trait of interest. However, this requires 
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individual-level data for each target phenotype. Inspired by Summary Mendelian Randomization
25

, 

Transcriptome-Wide Association Study (TWAS)
24

, and S-Predixcan
56

, our approach instead utilizes GWAS 

summary statistics for a disease of interest and uses individual-level data from a reference population to 

estimate the variance of ��
�

 in the GWAS population. Here we used the 2504 samples from phase 3 of 

the 1000 Genomes Project
28

 as the reference population.  To evaluate the association of the 3’-UTR 

component of gene expression with a phenotype using GWAS summary statistics, we calculated the 

following test statistic: 

 �� � � �� ���	�
��� � ���

�

 
(Eq. 3) 

where �� is the Z-score for gene �, ��  is the MPRA-derived effect of SNP i, ��	�  is the standard 

deviation of the alternative allele count ���  of SNP � for individuals in the reference population, ���  is 

the standard deviation of ��
�

 (the individual-level genetic component of 3’-UTR activity, Eq. 2) for all 

individuals in the reference population, and ���  is the test statistic derived from GWAS summary 

statistics by dividing the effect size by the standard error. A p-value was derived by assuming �� to be 

normally distributed. 

 

To apply MGExA to a GWAS, we collected the SNPs evaluated in both the MPRA and the GWAS. For each 

gene containing at least one SNP, we calculated ��. We applied MGExA to genes with SNPs evaluated 

with our MRPA and GWAS summary statistics of alcoholic drinks per week from GSCAN
6
 The significant 

genes (FDR < 0.2) were then replicated with a GWAS of a broader alcohol consumption phenotype, 

AUDIT-C, from the Million Veteran Program (MVP)
2
. Similarly, we identified genes associated with 

alcohol use disorder by initially applying MGExA to GWAS summary statistics of AUD (defined by ICD 

codes) from MVP
2
, and further evaluated the significant genes (FDR < 0.2) using UK BioBank (UKBB) 

AUDIT-P (AUDIT-Problems)
1
. 
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Generation of an SH-SY5Y cell line that stably expresses KRAB-dCas9 

SH-SY5Y cells stably expressing KRAB-dCas9 were generated following the protocol for CRISPRi by Sigma-

Aldrich. Briefly, cells were seeded in 6-well culture plates at 2 x 10
5
 cells per well (10% confluency) and 

incubated at 37°C for 24 h.  The medium was replaced with growth medium containing 8 µg/mL 

polybrene, cells were transduced with a KRAB-dCas9 lentiviral construct at multiplicity of infection (MOI) 

0.2. After 24 h, media was replaced with fresh growth medium, and the cells were incubated for another 

24 h. To begin antibiotic selection, medium was replaced with fresh medium containing Blasticidin (5 

µg/mL). Antibiotic-containing medium was replaced every other day for 8 days, and the resulting cell 

line was cryopreserved for future experiments. 

 

Perturb-seq single cell CRISPR-induced inhibition of target genes 

We performed Perturb-seq
40

 with candidate genes derived from MGExA. For each of these 31 genes, 5 

guide RNA sequences were generated to target the region near the transcriptional start site of each 

gene. Additionally, 18 positive controls and 18 negative controls were also included, for a total of 191 

sgRNAs in the CRISPRi library. The pooled lentiviral construct for the library was generated by Sigma-

Aldrich. 

 

Using the KRAB-dCas9 SH-SY5Y cell line, cells were seeded at 3 x 10
6
 cells per dish. After 24 h incubation, 

cells were transduced with the pooled lentiviral construct at a target MOI of 0.2. After another 24 h, 

medium was changed, then after 24 h incubation, antibiotic selection began using medium containing 

1.5 µg/mL Puromycin. Medium with antibiotic was changed every other day for 7 more days. Cells were 

then harvested for single cell sequencing library preparation using 10X Genomics Chromium X.  
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Approximately 33,000 cells were loaded to target 20,000 cells in each well of a chip N, and two wells 

were used. The libraries were constructed following the 10X Genomics protocol for Chromium NEXT 

GEM Single Cell 5’ HT Reagent Kits (Dual Index) with Feature Barcode technology for CRISPR Screening. 

To identify the sgRNAs present in each gel bead, CRISPR primers were included in the reverse 

transcription step to amplify sgRNA as well as mRNA. After cDNA amplification, cDNA from sgRNA was 

separated from mRNA using size selection with SPRISelect and prepared for sequencing. The final cDNA 

and CRIPSR libraries were sequenced on an Illumina NovaSeq 6000. The cellranger multi algorithm of 

Cell Ranger 7.0 (http://support.10xgenomics.com/) was used to process the sequence data. Of the 

30,972 cell barcodes identified, 18,507 contained at least one sgRNA barcode. Of these, 8,842 cells were 

identified to have been transduced with one target gene sgRNA, and 1,331 cells were identified to be 

transduced with NTC. 

 

To identify which cells were successfully perturbed, we used Seurat’s mixscape function
41

 closely 

following their recommended vignette. Briefly, the sequencing results for cells with only one sgRNA 

were loaded into Seurat and normalized using SCTransform
57

. The perturbation signature of each cell 

was calculated using the CalcPerturbSig function using ndims = 40 and num.neighbors=20 with “pca” as 

the dimensional reduction method. Only 7 genes were successfully perturbed. The RunMixscape 

function was then run with default parameters using default pooling mode then fine mode. Default 

mode treats all five sgRNA IDs for one target gene as the same class, while fine mode treats each sgRNA 

ID as its own class. To evaluate differential expression for each target gene, the expression of perturbed 

cells was compared to NTC cells using Wilcoxon Rank-Sum test with the FindMarkers function. 

Perturbation responses across cells were visualized using Linear Discriminant Analysis (LDA), a method 

that maximizes the separation between labels. The MixscapeLDA function was used to do dimensional 

reduction, and RunUMAP was used to visualize the resulting UMAP clusters. 
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Identifying relevant pathways using gene set enrichment analysis 

We performed gene set enrichment analysis (GSEA) using the fgsea
58

 package in R for each set of 

expression changes from either target gene perturbation or MPRA-derived gene activity stratification 

using pathways from Kyoto Encyclopedia of Genes and Genomes (KEGG)
42

. For each analysis, we used a 

list of genes ordered by -log10(p-value of differential expression analysis) multiplied by the direction of 

effect as the gene set input. We applied Benjamini-Hochberg correction to report the false discovery 

rate of each pathway. 

 

Differential Expression and Pathway Analysis of Genes Downstream of MPRA-derived 3’-UTR Activity 

RNA sequencing data from 991 brain samples were obtained from the CommonMind Consortium
45

 

(accessed 7/6/2020). For each MPRA-evaluated SNP in each brain sample, genotypes were determined 

from the RNA-seq data by calculating the frequency of each allele, where loci with the minor allele being 

less than 5% were considered homozygous and all else were heterozygous. Using Eq. 2, the genetic 

component of 3’-UTR activity for each gene of interest was determined for each sample. For each gene 

of interest, the activity score range was stratified into thirds to identify groups of low and high 3’-UTR 

activity, and a generalize linear model using the glmFit
53

 function of edgeR
52

 (v. 3.14) was used to 

perform gene expression analysis comparing these two groups, using sex and the sample’s institution of 

origin as covariates. For each gene of interest identified by MGExA, a set of differentially expressed 

genes was constructed, and over-represented KEGG pathways
42

 in each gene set were identified using 

g:Profiler
59

 (using FDR < 0.05 as the significance threshold). 
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Figures

 

Figure 1. Variant effects on gene expression. 
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(A) Scatterplot comparing the mean counts per million reads (CPM) of RNA (cDNA) and DNA for each 

oligonucleotide following transfection in SH-SY5Y cells. Red dots denote oligos where the RNA and DNA 

mean CPM were significantly different (FDR < 0.05). CPM was calculated by dividing the oligonucleotide 

count by the total number of reads in that sample multiplied by 10
6
. 

(B) Effects of SNPs on gene expression in SH-SY5Y cells. Red dots denote SNPs for which the variant 

significantly (FDR < 0.05) affected gene expression.  

(C) Effects of SNPs on gene expression in microglia cells. Red dots denote SNPs for which the variant 

significantly (FDR < 0.05) affected gene expression. 

(D) Comparison of the effect of SNPs in SH-SY5Y (SH) and microglia (MG) cell lines. Light orange denotes 

SNPs significant (FDR < 0.05) in SH-SY5Y cells, light blue denotes those significant in microglia cells, and 

dark purple denotes SNPs significant in both cell lines. Gray dots represent SNPs that were not 

significant in either cell line. 

(E-G) Examples of assay results in SH-SY5Y and microglia cells for 3 different SNPs: rs2298753 on ADH1C 

(E), rs1139697 on PDLIM5 (F), and rs4736367 on JRK (G). Boxplot of alternative allele frequency in DNA 

and RNA and scatterplot of reference and alternative counts for RNA and DNA. 
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Figure 2. Heritability enrichment of the sets of SNPs with significant effects found by MPRA in SH-SY5Y 

(SH) and microglia (MG) cells. Heritability enrichment was evaluated in GWAS of alcoholic drinks per 

week, from GSCAN, and alcohol use disorder (AUD), from the MVP. Red X marks show the heritability of 

the SNPs shown by MPRA to be functional in each cell line, with the number of functional variants 

shown below. Results of the permutation tests of 1000 random sets of equal size from among all 

candidate SNPs are shown as boxplots.  
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Figure 3. Gene identification using MPRA-mediated Gene Expression Association (MGExA). 

Scatterplots of the results of applying MGExA to identify genes whose aggregated 3’-UTR variants are 

associated with alcohol consumption and alcohol use disorder.  Plots compare the MGExA results 

between drinks per week
6
 and AUDIT-C

2
 in (A) SH-SY5Y and (B) microglia cells and between AUD

2
 and 

AUDIT-P
1
 in (C) SH-SY5Y and (D) microglia cells. The �� values for genes significant (FDR < 0.2) in 

discovery studies (DPW and AUD) are plotted in gray; and those replicated (AUDIT-C and AUDIT-P) (FDR 

< 0.2) were labeled and outlined in red. 
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Figure 4. CRISPRi-based Perturb-seq of alcohol-related genes in SH-SY5Y cells. 

(A) Proportion of cells successfully perturbed by sgRNA for each sgRNA ID. The 7 genes with any 

perturbed cells are shown. (B) UMAP dimensional reduction visualization of linear discriminant analysis 
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(LDA) of genes with successfully perturbed cells with NTC cells. (C) Heatmap of gene set enrichment 

analysis of the change in gene expression in perturbed cells. Heatmap colors indicate the normalized 

enrichment score (NES) for significantly enriched pathways (adjusted p-value < 0.05). Gene column label 

colors indicate the direction of association with an alcohol phenotype predicted by MGExA, and 

pathway row label colors indicate the KEGG pathway category. Heatmap includes KEGG pathways 

significantly enriched in at least two target genes. 
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Figure 5. Pathway analysis of differentially expressed genes downstream of the 3’-UTRs of MGExA-

identified genes.  

Heatmaps of the normalized enrichment score (NES) for KEGG pathways that are significantly enriched 

(adjusted p < 0.05) in the sets of differentially expressed genes downstream of gene 3’-UTRs identified 
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by MGExA to be associated with alcohol consumption or alcohol use disorder. Downstream genes were 

derived by evaluating differential gene expression in brain tissues stratified by the aggregated effect of 

the variants in each gene’s 3’-UTR using MPRA variant effects derived from (A) SH-SY5Y and (B) microglia 

cells. Heatmaps include pathways in KEGG with adjusted p < 0.05 in at least 7 genes and MGExA genes 

that produced at least 50 downstream differentially expressed genes, though all results are shown in 

Table S10 and S11. Gene column label colors indicate the direction of association with an alcohol 

phenotype predicted by MGExA, and pathway row label colors indicate the KEGG pathway category. 
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Tables 

Table 1. Genes identified by MGExA as having 3’-UTRs associated with alcohol consumption or AUD.  

Genes were first identified by MGExA using GWAS summary statistics of drinks per week
6
 phenotype or 

AUD, and genes with FDR < 0.2 were then evaluated by MGExA using AUDIT-C or AUDIT-P. Table 

contains genes with FDR < 0.2 in both the discovery (drinks per week and AUD) and replication (AUDIT-C 

and AUDIT-P) studies. Genes identified in both SH-SY5Y and microglia cell lines are starred (*). Um: the 

statistic derived from MGExA; p: the p-value associated with Um; FDR: the false discovery rate of p; 

SNPs: the number of SNPs used to evaluate each gene. 

  discovery study replication study 

gene gene name Um p FDR SNPs Um p FDR SNPs 

Alcohol Consumption: SH-SY5Y 

ARHGAP27 Rho GTPase activating protein 

27 

3.8 1.58E-04 6.73E-03 7 3.2 1.46E-03 8.75E-03 5 

CHADL* chondroadherin like 2.8 4.61E-03 9.76E-02 3 2.7 7.15E-03 2.73E-02 3 

COA5* cytochrome c oxidase 

assembly factor 5 

-2.6 8.61E-03 1.47E-01 2 -2.5 1.34E-02 3.76E-02 2 

DBIL5P2 diazepam binding inhibitor-like 

5 pseudogene 2 

3.7 2.54E-04 9.47E-03 3 2.5 1.12E-02 3.35E-02 2 

HMG20A high mobility group 20A 2.9 3.31E-03 7.88E-02 1 4.5 8.48E-06 3.56E-04 1 

INO80E* INO80 complex subunit E -4.2 2.59E-05 1.71E-03 3 -3.6 2.64E-04 1.85E-03 2 

INPP4A* inositol polyphosphate-4-

phosphatase type I A 

3.1 1.66E-03 4.70E-02 9 2.5 1.09E-02 3.35E-02 8 

KANSL1 KAT8 regulatory NSL complex 

subunit 1 

-5.3 9.87E-08 1.47E-05 8 -4.0 6.45E-05 6.77E-04 11 

LINC02210-

CRHR1 

LINC02210-CRHR1 readthrough 8.6 0.00E+00 0.00E+00 11 4.1 3.90E-05 5.46E-04 11 

MAPT microtubule associated protein 

tau 

6.7 1.75E-11 5.22E-09 14 3.9 1.03E-04 8.61E-04 14 

PTK2B* protein tyrosine kinase 2 beta -3.2 1.59E-03 4.70E-02 2 -2.9 3.89E-03 2.04E-02 2 

SREBF2 sterol regulatory element 

binding transcription factor 2 

2.9 4.09E-03 9.02E-02 4 2.8 5.18E-03 2.18E-02 2 

STAT6* signal transducer and activator 

of transcription 6 

3.0 2.86E-03 7.40E-02 6 2.8 4.53E-03 2.11E-02 4 

TAOK2 TAO kinase 2 -4.6 4.56E-06 3.88E-04 2 -4.2 2.61E-05 5.46E-04 1 

TFAP2B transcription factor AP-2 beta -2.8 5.03E-03 1.00E-01 12 -2.2 2.83E-02 7.43E-02 9 

WDR82 WD repeat domain 82 2.9 3.23E-03 7.88E-02 5 -2.7 7.85E-03 2.75E-02 4 

ZBTB26 zinc finger and BTB domain -3.3 8.63E-04 2.71E-02 1 -2.0 4.20E-02 1.04E-01 1 
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containing 26 

Alcohol Consumption: microglia 

ACVR2B activin A receptor type 2B 3.7 1.86E-04 1.29E-02 16 2.2 2.80E-02 1.10E-01 15 

ADH1C alcohol dehydrogenase 1C 

(class I), gamma polypeptide 

8.5 0.00E+00 0.00E+00 1 6.1 9.83E-10 4.62E-08 1 

AGBL2 AGBL carboxypeptidase 2 6.1 1.03E-09 2.36E-07 3 2.9 3.57E-03 3.22E-02 2 

C3orf62 chromosome 3 open reading 

frame 62 

3.1 2.18E-03 8.37E-02 2 1.9 5.61E-02 1.65E-01 2 

CHADL* chondroadherin like 2.7 7.37E-03 1.43E-01 3 2.1 4.00E-02 1.34E-01 3 

COA5* cytochrome c oxidase 

assembly factor 5 

-2.7 6.80E-03 1.40E-01 2 -2.5 1.12E-02 4.78E-02 2 

CUL3 cullin 3 3.4 7.62E-04 3.75E-02 11 2.8 4.40E-03 3.22E-02 10 

DRC3 dynein regulatory complex 

subunit 3 

-2.9 3.38E-03 8.41E-02 3 -2.0 4.66E-02 1.46E-01 3 

DRD2 dopamine receptor D2 -6.4 1.52E-10 5.23E-08 3 -3.8 1.41E-04 3.31E-03 4 

INO80E* INO80 complex subunit E -3.8 1.57E-04 1.26E-02 3 -3.3 1.03E-03 1.62E-02 2 

INPP4A* inositol polyphosphate-4-

phosphatase type I A 

3.2 1.27E-03 5.48E-02 10 2.8 5.89E-03 3.22E-02 8 

MTCH2 mitochondrial carrier 2 5.2 2.04E-07 3.52E-05 12 2.7 6.17E-03 3.22E-02 5 

PGAP3 post-GPI attachment to 

proteins phospholipase 3 

3.0 2.82E-03 8.41E-02 4 2.2 3.15E-02 1.14E-01 4 

PTK2B* protein tyrosine kinase 2 beta -3.0 2.59E-03 8.41E-02 2 -1.8 7.48E-02 1.95E-01 2 

RBM14-RBM4 RBM14-RBM4 readthrough 2.9 3.27E-03 8.41E-02 1 3.1 1.76E-03 2.07E-02 2 

STAT6* signal transducer and activator 

of transcription 6 

2.6 1.05E-02 1.69E-01 5 2.8 5.77E-03 3.22E-02 3 

TRIM27 tripartite motif containing 27 2.9 3.41E-03 8.41E-02 2 1.8 6.67E-02 1.84E-01 2 

XYLB xylulokinase -3.4 5.84E-04 3.10E-02 11 -2.6 9.54E-03 4.48E-02 11 

Alcohol use disorder: SH-SY5Y 

ADH4* alcohol dehydrogenase 4 (class 

II), pi polypeptide 

3.5 4.06E-04 2.98E-02 5 2.9 4.18E-03 2.93E-02 5 

Alcohol use disorder: microglia 

ADH1C alcohol dehydrogenase 1C 

(class I), gamma polypeptide 

7.2 6.32E-13 3.28E-10 1 2.3 2.25E-02 7.88E-02 1 

ADH4* alcohol dehydrogenase 4 (class 

II), pi polypeptide 

3.0 2.31E-03 9.97E-02 4 2.4 1.52E-02 7.11E-02 4 

AGBL2 AGBL carboxypeptidase 2 4.2 2.79E-05 3.62E-03 2 3.4 5.62E-04 3.93E-03 2 

CCDC136 coiled-coil domain containing 

136 

-3.0 2.94E-03 1.17E-01 2 -1.7 8.13E-02 1.90E-01 2 

DRD2 dopamine receptor D2 -4.2 2.64E-05 3.62E-03 4 -3.5 4.22E-04 3.93E-03 3 

SNRNP40 small nuclear 

ribonucleoprotein U5 subunit 

40 

3.1 1.68E-03 7.90E-02 1 2.1 3.84E-02 1.08E-01 1 
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