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Abstract 
 
Introduction: Multiple sclerosis (MS) is the most common inflammatory neurodegenerative 
disease of the central nervous system (CNS) in young adults and results in progressive 
neurological defects. The relapsing-remitting phenotype (RRMS) is the most common disease 
course in MS and may progress to the progressive form (PPMS).  
Objectives: There is a gap in knowledge regarding whether the relapsing form can be 
distinguished from the progressive course or healthy subjects (HS) based on an altered serum 
metabolite profile. In this study, we performed global untargeted metabolomics with the 2D 
GCxGC-MS platform to identify altered metabolites between RRMS, PPMS, and HS.  
Methods: We profiled 235 metabolites in the serum of patients with RRMS (n=41), PPMS 
(n=31), and HS (n=91). A comparison of RRMS and HS patients revealed 22 significantly 
altered metabolites at p<0.05 (false discovery rate [FDR]=0.3). The PPMS and HS comparisons 
revealed 28 altered metabolites at p<0.05 (FDR=0.2).  
Results: Pathway analysis using MetaboAnalyst revealed enrichment of four metabolic 
pathways in both RRMS and PPMS (hypergeometric test p<0.05): 1) galactose metabolism; 2) 
amino sugar and nucleotide sugar metabolism; 3) phenylalanine, tyrosine, and tryptophan 
biosynthesis; and 4) aminoacyl-tRNA biosynthesis. The Qiagen IPA enrichment test identified 
the sulfatase 2 (SULF2) (p=0.0033) and integrin subunit beta 1 binding protein 1 (ITGB1BP1) 
(p=0.0067) genes as upstream regulators of altered metabolites in the RRMS vs. HS groups. 
However, in the PPMS vs. HS comparison, valine was enriched in the neurodegeneration of 
brain cells (p=0.05), and heptadecanoic acid, alpha-ketoisocaproic acid, and glycerol 
participated in inflammation in the CNS (p=0.03).  
Conclusion: Overall, our study suggested that RRMS and PPMS may contribute metabolic 
fingerprints in the form of unique altered metabolites for discriminating MS disease from HS, 
with the potential for constructing a metabolite panel for progressive autoimmune diseases such 
as MS. 
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Introduction 
 
Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) that is 
characterized mainly by immune cell infiltration, inflammation, and demyelination (Lucchinetti et 
al., 2000). The disease can occur in younger adults between the ages of 20 and 50 years. 
Relapsing-remitting MS (RRMS) is the most common type of MS and comprises ~85% of the 
diagnoses (Oh et al., 2008). MS relapse was defined as a relapse of MS with periods of 
remission occurring in between. Approximately 90% of RRMS patients eventually progress to 
secondary-progressive MS (SPMS) (Garg et al., 2015; Dobson and Giovannonic, 2019). 
Approximately 10-15% of patients diagnosed with MS progress from the beginning, termed 
primary progressive MS (PPMS), and their neurological function declines much faster than that 
of any other MS type. Approximately half of individuals with a mild disease phenotype progress 
to a secondary progressive phenotype within 10 years. Overall, MS diagnosis encompasses the 
integration of clinical, imaging, and laboratory findings, as there is still no single reliable clinical 
feature or diagnostic laboratory biomarker. Furthermore, there is no single blood-based 
diagnostic test that can diagnose MS and discriminate between RRMS and PPMS (Harris et al., 
2017). Identification and confirmation of such blood-based diagnostic tests will be highly 
beneficial for diagnosing this disease and its progression. 
 
 With the advancement of high-throughput molecular omics platforms, metabolomics has 
emerged as a highly beneficial technology with tremendous potential for the detection of 
therapeutic strategies for MS (Zahoor et al., 2021). Metabolomics is the study of the 
metabolome within cells, biofluids, or tissues to identify and quantify small-molecular-weight 
metabolites. Using biostatistical and bioinformatics tools, metabolomics allows the identification 
of metabolic pathways that could be targeted for the development of therapies. Several studies 
have employed targeted and untargeted metabolomics using MS biofluids to identify metabolic 
changes during the disease course (Zahoor et al., 2021). In this study, we used two-dimensional 
GCxGC/MS, which can detect a much greater number of chromatographic peaks at a lower 
detection limit for small molecules in various biological mixtures than GC/MS or NMR (Storey et 
al., 2020). Here, we provide a comprehensive untargeted metabolomics analysis of RRMS and 
PPMS patients via the 2D GCxGC/MS platform in comparison to the respective control subjects. 
In addition to commonly altered metabolites, significantly altered associated pathways may 
explain the difference in disease course between RRMS and PPMS patients. Ultimately, such a 
metabolite panel would support clinical care after appropriate validation in large-scale samples. 
This approach could lead to the generation of a specific metabolite signature for differentiating 
between relapsing and progressive MS phenotypes. This study has immense potential to aid in 
the early detection of MS in the clinical setting and could aid in identifying the disease in its 
early stages and preventing its progression to a more severe course accompanied by disability, 
thereby rescuing the young, productive population from becoming crippled. This would 
eventually mean saving millions of dollars in investment in the U.S. healthcare system and 
lessening the economic burden of the disease. 
 
Materials and methods 
 

Human subjects: Deidentified serum samples were obtained from the repository of the 
Accelerated Cure Project (ACP). All basic demographic information (age, sex, race, and 
ethnicity) and diagnostic groups (RRMS, PPMS, and HS) were collected from the medical 
records of the ACP. The human participants were recruited for this study by ACP after written 
informed consent was acquired from them following the ethical standards established by the 
World Health Organization (WHO) and the Declaration of Helsinki 1964 and its later 
amendments or comparable ethical standards. Serum samples were acquired from ACP 
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through a Henry Ford Health-approved IRB study of the metabolomics signature in MS patients. 
The sample numbers for the RRMS group were 41, 31 for PPMS patients, and 91 for HS. The 
demographic details of the study subjects are given in Table 1. 
 
Sample preparation: All samples were processed in random order and were blinded to the 
sample group to avoid systemic bias. Then, 400 µL of 100% methanol solution was added to 
100 µL of sample. The mixture was vortexed for 2 min and then placed on ice for 15 min. The 
sample was then centrifuged at 4°C and 15000 rpm for 20 min. After 300 µL of the supernatant 
was transferred into a glass vial, the transferred supernatant was first dried by a Speedvac to 
remove methanol, followed by freeze-drying to remove water. Each metabolite extract was then 
dissolved in 30 µL of pyridine with 20 mg/mL methoxyamine hydrochloride and vigorously 
vortexed for 1 min. Methoxymation was carried out by sonicating the solution for 20 min 
followed by 1 h of incubation at 60°C. Derivatization was conducted by adding 30 µL of N-
methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). The solution was incubated at 60°C for 
another 1 h. The stock solutions were then transferred to GC vials for analysis. The 
methoxymation and derivatization were carried out just before GC×GC-TOF MS analysis. Three 
pooled samples were prepared simultaneously by mixing 50-100 µL sample supernatants and 
then conducting methoxymation and derivatization. Pooled samples were analyzed via GC×GC-
TOF MS after analysis of every five biological samples. 
 
GC×GC-TOF MS analysis: A LECO Pegasus GC×GC-TOF MS instrument was coupled with 
an Agilent 6890 gas chromatograph and a Gerstel MPS2 autosampler (GERSTEL, Inc., 
Linthicum, MD), featuring a LECO two-stage cryogenic modulator and secondary oven. The 
primary column was a 60 m × 0.25 mm 1dc × 0.25 µm 1dp DB-5 ms GC capillary column (a 
phenyl arylene polymer virtually equivalent to 5%-phenyl-methylpolysiloxane). The secondary 
GC column (1 m × 0.25 mm 1dc × 0.25 µm 1df, DB-17 ms (50% phenyl)-methylpolysiloxane) was 
placed inside the secondary GC oven following the thermal modulator. Both columns were 
obtained from Agilent Technologies (Agilent Technologies J&W, Santa Clara, CA). The helium 
carrier gas (99.999% purity) flow rate was set to 1.0 mL/min at a corrected constant flow via 
pressure ramps. The inlet temperature was set at 280°C. The primary column temperature was 
programmed at an initial temperature of 60°C for 0.5 min, ramped at 5°C/min to 270°C, and 
maintained for 11 min. The secondary column temperature program was set to an initial 
temperature of 70°C for 0.5 min and then ramped at the same temperature gradient employed 
in the first column to 280°C. The temperature of the thermal modulator was set to +15°C relative 
to the temperature of the primary oven, and a modulation time of Pm = 2 s was used. The mass 
range was set to 29-800 m/z, and the acquisition rate was 200 mass spectra/second. The ion 
source chamber was set at 230°C with a transfer line temperature of 280°C, and the detector 
voltage was set at 1390 V with an electron energy of 70 eV. The acceleration voltage was 
turned on after a solvent delay of 544 seconds. The split ratio was set at 10:1. 
 
Data extraction and compound identification: LECO’s instrument control software 
ChromaTOF was used to process the GC×GC-TOF MS data for peak picking and tentative 
metabolite identification, followed by retention index matching, peak merging, peak list 
alignment, and normalization. For metabolite identification using ChromaTOF, each 
chromatographic peak was tentatively assigned to a metabolite if its experimental mass 
spectrum and a database spectrum had a spectral similarity score of no less than 500 (a 
maximum spectral similarity score: 1000). Peak merging and peak list alignment were carried 
out using MetPP software, while retention index matching was performed using iMatch with the 
p-value set as p ≤ 0.001. 
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Statistical analysis: Missing intensity values, indicating a technical error or low metabolite 
levels among sample groups, were imputed with the KNN algorithm. This step was followed by 
normalization (Johnson transformation) and batch correction (ComBat, Johnson et al., 2007) of 
the metabolite intensities. Principal component analysis was performed to analyze the 
remaining samples. Partial least squares discriminant analysis (PLS-DA) was used for the 
assessment of the separability of the samples (Figure 1). T-tests, allowing unequal variance, 
were used to compare changes in mean expression, per metabolite, between patients with 
RRMS or PPMS and the corresponding healthy control group (HS). P values <0.05 were 
considered to indicate statistical significance and were visualized with a heatmap. Due to 
multiple testing t-tests, p values were transformed into q values (Storey et al., 2020), both of 
which are reported. KEGG pathway analysis (http://www.genome.jp/kegg) of 80 Homo sapiens-
associated pathways considered both the statistical enrichment of changed intensity using 
GlobalTest (Xia and Wishart, 2016) and the impact of metabolite changes based on pathway 
topology using the relative betweenness centrality measure (Xia and Wishart, 2016). Further 
pathway enrichment testing, based on Fisher’s exact tests, and the construction of metabolite 
networks were conducted using Qiagen’s IPA knowledgebase (Bento et al., 2011). To build a 
classifier, multivariate feature selection was conducted with the biosigner method (Rinaudo et 
al., 2016), which uses SVM, PLS-DA, and random forest classifiers in parallel to create a 
signature for binary classification. In brief, the dataset is partitioned into training and testing 
sets. Each of these models is trained on a training set, and prediction accuracy is evaluated in a 
testing set, with metabolites ranked based on importance. Finally, the biosigner method returns 
a tier for each feature (metabolite) per classifier, with tier S indicating inclusion in the final 
signature after all steps and other tiers (A to E) indicating less preference. Except where noted, 
statistical analyses were conducted with “R” (http://cran-r-project.org/) or “MetaboAnalyst 5.0” 
(http://www.metaboanalyst.ca) (Xia and Wishart, 2016). 
 
 
Results 
 
The demographic data in Table 1 show that the median age of the RRMS patients was 39 
years, whereas the median age of the PPMS patients was 49 years. Twenty-nine patients were 
females in the RRMS group, and 22 patients were females in the PPMS group, with an overall 
preponderance of MS in females (70.7-71%). Most of the MS patients were white, with 85.4% 
having RRMS and 90.3% having PPMS. The global metabolomic profiles of RRMS, PPMS, and 
HS serum samples were generated via fine mapping via a 2D GC�GC�MS platform. A total of 
235 structurally different biochemicals were detected among these samples (Table S1, S2, S3). 
PLS-DA showed a clear separation of the metabolites between RRMS and HS and between 
PPMS and HS (Figure 1). Between the RRMS patients and controls, 20 metabolites were 
significantly altered (8.5% of the 235 metabolites detected), with 11 metabolites increasing and 
9 metabolites decreasing in the RRMS patients relative to the controls (p<0.05, with an FDR of 
0.3) (Table S1). Between the PPMS patients and controls, 26 metabolites were significantly 
altered (10.6% of the 235 metabolites detected), with 10 metabolites increasing and 16 
metabolites decreasing in the PPMS patients relative to the controls (p<0.05, with an FDR of 
0.2) (Figure 2, Table S3). To visualize the relationships between the altered metabolites, 
heatmaps were drawn using hierarchical clustering (Figure 2A, 2B). Six metabolites were 
common between these two comparisons (Figure 2C, Table S3), and the changes were 
directionally consistent for RRMS and PPMS relative to their respective control groups (Figure 
2D). These common metabolites included methyl 11,14-eicosadienoate (S), 11,14-
eicosadienoic acid, L-tyrosine, 2-hydroxypentanoic acid (S), erythrose, and margaric acid (C17) 
(Figure 2D, Table S3). 
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To understand the functional role that these altered metabolites may play in the serum, 

the KEGG metabolic library was analyzed using MetaboAnalyst (Chong et al., 2019; Xia and 
Wishart, 2016). The results of each of the 80 human pathways of KEGG were simultaneously 
tested to determine the most significant pathways in terms of hypergeometric test p values 
<0.05. The top four pathways according to the p-value (top four) were identified as follows: 1) 
aminoacyl-tRNA biosynthesis; 2) phenylalanine, tyrosine, and tryptophan biosynthesis; 3) amino 
sugar and nucleotide sugar metabolism; and 4) galactose metabolism (Figure 3A). In the PPMS 
and control groups, the top four pathways included 1) phenylalanine, tyrosine, and tryptophan 
biosynthesis; 2) galactose metabolism; 3) pentose and glucuronate; and 4) aminoacyl-tRNA 
biosynthesis, with the most significant pathways identified in terms of hypergeometric test p-
values <0.05 being similar to those mentioned for the RRMS and control groups, but aminoacyl-
tRNA biosynthesis was more significant (Figure 3B). An enrichment test with the Qiagen IPA 
knowledgebase identified sulfatase 2 (SULF2) (low in RRMS) and integrin subunit beta 1 
binding protein 1 (ITGB1BP1) (high in RRMS) as upstream regulators at p values of 0.0033 and 
0.0067, respectively, with an activation z score of 2 (absolute value) in RRMS patients and 
controls (Figure 3C). However, in the PPMS and control groups, valine was enriched in the 
neurodegeneration of brain cells at a p-value of 0.05, and heptadecanoic acid, alpha-
ketoisocaproic acid, and glycerol participated in inflammation in the CNS at a p-value of 0.03 
(Figure 3D). 

 
The PLS-DA algorithm that we utilized is flexible and can be applied to both descriptive 

and predictive modeling. On the other hand, the support vector machine (SVM) is a supervised 
learning model that works with associated learning algorithms to analyze data for classification. 
Finally, the random forest algorithm integrates the outputs from several decision trees to 
produce a single result while minimizing the opportunity for overfitting. Among the three models 
we tested in this class (RRMS vs HS) and RRMS-the SVM was the most accurate, focused on 
the results, with an accuracy rate of 77%. Multivariate machine learning with PLS-DA, random 
forest, and SVM identified 12 metabolites that can differentiate between RRMS patients and 
controls at 73%, 75%, and 77%, respectively (Figure 4A, Table 2), and the levels or intensities 
of these metabolites in RRMS patients are presented as a bar graph (Figure 4B). These 12 
metabolites included 2-ethylhexanoic acid, ribose, erythrose, 3-indole-propionic acid, a-D-
glucopyranose, D-glucuronic acid-lactone, heptanoic acid (C7), L-threose (syn), lanthionine, 
linoleic acid 9,12-octadecadienoic acid, succinic acid, and methyl 11,14-eicosadienoate. The 
overall RRMS ‘S’-signature status prediction was low for the PPMS (Figure 5). 

 
Discussion 
 
Treatment of MS in the early stage, such as RRMS, is more beneficial for delaying disability 
than treatment in the more advanced progressive stage (Harris et al., 2017). Several drugs have 
been approved for the treatment of MS, but most of their ability to reduce the onset of disability 
is still under evaluation (Garg et al., 2015; Dobson and Giovannonic, 2019). In addition, there 
are several efforts underway to search for biomarkers in biofluids with different high-dimensional 
omics platforms in MS. The main aim of this study was to investigate altered metabolites in 
different pathways corresponding to the RRMS and PPMS stages of MS with an advanced 
global GC-GC�MS metabolomics platform. Disease mechanisms can be discerned via 
alterations in pathways by comparing RRMS patients with PPMS patients. KEGG and 
enrichment pathway analysis of the RRMS patients and controls revealed galactose metabolism 
and amino sugar and nucleotide sugar metabolism, with alpha-D-glucose and alpha-D-
galactose as significant metabolites altered in these pathways. The level of alpha D-galactose 
was lower in the RRMS group than in the HS group. It is a monosaccharide and an essential 
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component in galactose metabolism and enters glycolysis through its conversion to glucose-1-
phosphate by multiple steps from the Leloir pathway. This glucose-1-phosphate is formed by the 
protein galactokinase encoded by the GALK1 gene. Interestingly, other studies have shown that 
the administration of galactose improved the performance of patients by promoting 
remyelination. This type of galactose administration is beneficial for reducing other 
neurogenerative diseases, such as Alzheimer’s disease (Ravera and Panfoli, 2015). 
Importantly, in our study, we observed a reduction in the alpha-D-galactose concentration, 
suggesting degradation of the myelin sheath in RRMS patients compared to healthy subjects. 
Alpha-D-glucose, another altered metabolite that participates in these pathways, is a hexose 
organic compound and a monosaccharide. We observed that alpha-D-glucose was elevated in 
RRMS patients compared to HS. Elevated glucose levels could be an indication of insulin 
resistance, and many peripheral insulin resistance diseases can impair brain structure and 
function and lead to cognitive impairment (de la Monte, 2017). Our finding of elevated D-glucose 
could subsequently suggest cognitive impairment in RRMS patients. The other two significantly 
affected pathways were phenylalanine, tyrosine, tryptophan biosynthesis, and aminoacyl-tRNA 
biosynthesis, which were enriched with L-tyrosine and L-tryptophan as the altered metabolites in 
these pathways. 
 

Tyrosine is a nonessential amino acid that is generated from L-phenylananine by 
phenylalanine hydroxylase and metabolized into catecholamine neurotransmitters (Chandel, 
2021). We observed a lower level of L-tyrosine in RRMS in our study, suggesting a reduction in 
the biosynthesis of these neurotransmitters. L-tyrosine has also been associated with metabolic 
syndrome and could be an early biomarker for this disease (Hellmuth et al., 2016). Similarly, the 
L-tryptophan concentration was lower in the RRMS group than in the HS group. Likewise, L-
tryptophan is an essential protein amino acid that bears an indole ring, and its derivatives lead 
to the synthesis of the neurotransmitter hormone serotonin (5-HT), penial grand melatonin, and 
the trace amine tryptamine (Chandel, 2021). Abnormalities in 5-HT synthesis are related to the 
pathophysiology of many neurological disorders, such as mood disorders, Parkinson’s disease, 
sleep disorders, dementia, Huntington’s disease, and Tourette’s syndrome. This amino acid 
also participates in the kynurenine pathway. This pathway is involved in the synthesis of 
nicotinamide adenine dinucleotide (NAD) and is upregulated by neurogenerative triggers 
(Palego et al., 2016; Blankfield, 2012; Sandyk, 1992). These findings suggest that alteration of 
L-tryptophan leads to CNS dysfunction. Thus, the phenylalanine, tyrosine, and amino sugar 
pathways play significant roles in the pathology of MS. 

 
In the PPMS cohort, aminoacyl-tRNA biosynthesis was the most significantly altered 

pathway, and L-asparagine, L-valine, and L-tyrosine were altered in this pathway. The serum 
levels of all three of these metabolites were elevated in the PPMS group compared to the HS 
group. L-asparagine is a nonessential common amino acid that contains side chain 
carboxamide, and oxaloacetate is the precursor. L-Asparagine is already known for its use in 
chemotherapeutic applications, but its neuroprotective effect on Parkinson's disease has been 
shown in a study in which it was used as a cell model because it activates autophagy and 
mitochondrial fusion (Zhang et al., 2020). L-asparagine is also known for its immunosuppressive 
and anti-inflammatory properties. L-valine is an essential proteinogenic branch chain amino acid 
and is associated with maple syrup-related urine disease (Manoli and Venditti, 2016). In sickle-
cell disease, a single glutamic acid (hydrophilic) in beta-globin is exchanged with valine 
(hydrophobic), resulting in abnormal hemoglobin aggregation 
(https://themedicalbiochemistrypage.org/galactose-metabolism/). 

 
Furthermore, 6 significantly altered metabolites overlapped between the RRMS and 

PPMS patients: methyl 11,14-eicosadienoate (S), L-tyrosine, 11,14-eicosadienoic acid, margaric 
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acid (C17), erythrose, and 2-hydroxypentanoic acid (S). Most of these altered metabolites 
belong to the polyunsaturated fatty acid (PUFA) group. A study of human brains from 
postmortem patients with moderate and severe Alzheimer’s disease and dementia with Lewy 
bodies (DLB) identified 24 fatty acids (Nasaruddin et al., 2018). Among those identified, fatty 
acids, such as 11,14-eicosadienoic acid, were present at higher levels in patients with moderate 
Alzheimer’s disease and DLB than in patients with severe Alzheimer’s disease. This finding 
suggested a relationship between lipid metabolism and disease pathology. A higher brain fatty 
acid content also leads to ceramide accumulation, which can increase amyloid beta peptide 
levels. Similarly, in our study, we observed that 11,14-eicosadienoic acid was more abundant in 
RRMS patients than in PPMS patients. In addition, another study showed that eicosadienoic 
acid can alter the response of macrophages to inflammatory stimulation (Huang et al., 2011). 
Likewise, many studies have shown that PUFAs are highly enriched in the CNS. The benefits of 
alcohol intake include many psychiatric and neurological disorders, including neurodegenerative 
conditions (Dyall and Michael-Titus, 2008). Moreover, the reduced level of ethyrose in RRMS 
patients observed in comparison to that in PPMS patients in our study indicates that in many 
other neurogenerative diseases, such as Alzheimer’s disease, a reduction in glucose 
metabolism leads to disease progression. This finding suggested that the decreased intensity of 
erythrose in RRMS patients may intensify their progression to more advanced stages of MS and 
could lead to disease progression (Gibson et al., 2013). 

 
Taken together, the results of the present study explored the alteration of metabolites in 

RRMS and PPMS using an advanced 2D GC-GC�MS platform via significantly affected 
pathways for the development of a targeted metabolite panel to monitor disease progression in 
MS. The specific altered metabolites and associated pathways found in MS in the present study 
reflect their role in myelination, maintenance of brain structure, cognitive function, and 
inflammation, as confirmed by reports on other neurodegenerative disorders. However, further 
validation of these altered metabolites in a large sample cohort is needed before any clinical use 
of these materials. 
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Figures 

 

 

Figure 1: Partial least squares discriminant analysis (PLS-DA). PLSDA plot showing the 
results between (A) RRMS and HS and (B) PPMS and HS for the X and Y matrices. 
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Figure 2: Metabolite profile of metabolites across HS, RRMS, and PPMS. (A) Heatmap of 
differential metabolites between RRMS patients and HS. (B) Heatmap of differential metabolites 
between PPMS and HS. (C) Overlap between differential metabolites between RRMS and 
PPMS patients. (D) Intensity plots depicting the differences among the HS, RRMS, and PPMS 
patients. 
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Figure 3: Pathway analysis using KEGG and IPA. (A&B) KEGG pathway analysis in which 
the pathways and raw p values are shown for the RRMS and PPMS patients. (C&D) IPA of the 
molecules SULF2 3 and ITGB1BP1 8 in RRMS and PPMS. Associations of differentially 
expressed metabolites between RRMS and HS with biological processes and upstream 
regulators determined via IPA. In addition, SULF2 3 and ITGB1BP1 8, which are the primary 
regulators activated for activation based on the different levels of metabolites in the chain below, 
exhibited connectivity. The prediction of activation is shown by the broken orange lines, 
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whereas the prediction inhibition is represented by the broken blue line. The red color shows the 
upregulation of RRMS. The last layer shows the different metabolites in RRMS and HS. 

 

 

 

Figure 4: Heatmap and signature of metabolites. (A) Different tiers of selected features with 
PLS-DA and SVM random forest to binary classifiers on a scale of red to green showing their 
intensities to select a smaller subset of metabolites with the highest predictive accuracies. (B) S 
signatures of different metabolites identified through the classifiers for control and disease 
patients. 
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Figure 5: S-signature across the HS, RRMS, and PPMS cohorts. The RRMS signature 
obtained by binary classifier intensities in PPMS patients and healthy controls, prediction of the 
metabolites, and prediction via the PPMS were low. 

 

Tables 
 
Table 1: Demographics and characteristics of relapsing-remitting (RRMS) patients, progressive 
MS (PPMS) patients, and matched healthy individuals (HS). 
 

Variable RRMS CTRL for RRMS PPMS CTRL for PPMS 
N 41 44 31 47 
Age, median [IQR] 39 [34, 48] 39.5 [33.75, 49] 49 [46, 58.5] 53 [46.5, 60.5] 
Sex, N (%) Male 12 (29.3) 13 (29.5) 9 (29.0) 12 (25.5) 
 Female 29 (70.7) 31 (70.5) 22 (71.0) 35 (74.5) 
Race+, 
N (%) Black 4 (9.8) 4 (9.1) 1 (3.3) 1 (2.1) 

White 35 (85.4) 39 (88.6) 28 (90.3) 44 (93.6) 
Other* 2 (4.8) 1 (2.3) 2 (6.4) 2 (4.3) 

* Other includes “American Indian or Alaskan Native”, “Asian, other than Middle East or South Asian”, and 
“Native Hawaiian or Pacific Islander.” The categories are collapsed here to protect patient identities. 
+ No patients were identified as “Hispanic or Latino”, so ethnicity was not separately reported. 
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Table 2: The accuracy of different models for control and RRMS patients. 

 Name of Classifier PLS-DA Random Forest SVM 

Accuracy 73% 75% 77% 

 

Supplementary Tables: 

Table S1: Differentially altered metabolites in the RRMS group compared to the HS group 

Table S2: Differentially altered metabolites in the PPMS group compared to the HS group 

Table S3: Differentially altered metabolites in MS (RRMS and PPMS) compared to HS 
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