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Abstract 

 

Motivation 

Recently, single-cell DNA sequencing (scDNA-seq) and multi-modal profiling with the addition 

of cell-surface antibodies (scDAb-seq) have provided key insights into cancer heterogeneity. 

Scaling these technologies across large patient cohorts, however, is cost and time prohibitive. 

Multiplexing, in which cells from unique patients are pooled into a single experiment, offers a 

possible solution. While multiplexing methods exist for scRNAseq, accurate demultiplexing in 

scDNAseq remains an unmet need.  

 

Results 

Here, we introduce SNACS: Single-Nucleotide Polymorphism (SNP) and Antibody-based Cell 

Sorting. SNACS relies on a combination of patient-level cell-surface identifiers and natural 

variation in genetic polymorphisms to demultiplex scDNAseq data.  We demonstrated the 

performance of SNACS on a dataset consisting of multi-sample experiments from patients with 

leukemia where we knew truth from single-sample experiments from the same patients. Using 

SNACS, accuracy ranged from 0.948 – 0.991 vs 0.552 – 0.934 using demultiplexing methods 

from the single-cell literature. 

 

Availability Implementation 

SNACS is available at https://github.com/olshena/SNACS. 

 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2024. ; https://doi.org/10.1101/2024.02.07.579345doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.07.579345
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction 

 

Single-cell DNA sequencing (scDNA-seq) is an emerging microfluidic technology used in 

cancer research. Over the past several years, this technology has provided several key insights 

into cancer biology, intratumor heterogeneity, and clonal evolution1,2. Through direct 

measurement of mutational co-occurrence and acquisition, scDNA-seq can be used to reconstruct 

tumor phylogeny3-7, and serial measurements have further provided insight into treatment 

resistance and outcomes8-10. Through precise genetic profiling, scDNA-seq also provides 

improved ability to detect low-level disease and can thus distinguish clinically meaningful 

residual disease from non-cancerous populations1,11. More recently, scDNA-seq has been 

combined with single-cell measurements of cell-surface protein expression in a technology 

known as “scDAb-seq” for SC DNA and Antibody-seq3,4,12. This multi-omic technology 

provides novel insight into the complex relationship between cancer genotype and 

phenotype3,4,12. Taken together, scDNA-seq and scDAb-seq have opened a new frontier in cancer 

research. 

 

Despite these abilities, there are several limitations to employing these technologies at scale. 

Both scDNA-seq and scDAb-seq are costly1 in terms of material and time needed to perform 

single cell assays, restricting adoption to highly-resourced research laboratories. To date, most 

scDNA-seq studies on human samples have included fewer than 10 patients and analysis of large 

patient cohorts and/or multiple timepoints per patient remains cost prohibitive. These costs limit 

the translation of single-cell technologies from research to viable clinical assays13.  
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One strategy for mitigating such challenges is multiplexing, in which cells from multiple unique 

individuals are pooled into a single microfluidic run and then subsequently demutiplexed using 

diverse bioinformatic tools. If employed successfully, this strategy can result in lower per sample 

library preparation costs and increased efficiency. Multiplexing, however, is highly error prone. 

In addition to incorrectly assigning cells to parent samples, multiplexing can result in multiplets 

where single cells from two or more individuals are encapsulated into a single droplet causing 

information from multiple individuals to be falsely associated with a single cell barcode. Without 

accurate identification and removal, multiplets may incorrectly appear to be unique cell 

populations and thus lead to inaccurate downstream analyses. 

 

To date, single-cell multiplexing and multiplet identification has primarily been described in the 

single-cell RNAseq literature. Methods include barcode-based and single nucleotide 

polymorphism (SNP)-based approaches (Figure 1A). In barcode based approaches, cells from 

unique samples are labeled with sample-level DNA barcodes and attached either via cell-surface 

antibodies14,15, lipid-bound cell membrane tags16, or viral integration of DNA barcodes directly 

into the genome17. In SNP-based approaches, multiplexed samples are demultiplexed based on 

natural genetic polymorphisms or “endogenous” barcodes18-21. Both strategies have limitations. 

In barcode-based multiplexing, cells may be bound by multiple different sample-level barcodes, 

the incorrect barcode, or no barcode entirely. In SNP-based demultiplexing, multiplexed samples 

may be unclassifiable if sufficient discriminatory SNPs are not present or if sequencing depth is 

inadequate. Importantly, SNP-based demultiplexing is also dependent on a priori knowledge to 

assign cells to their sample of origin.  
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In this work, we describe a novel scDNA-seq multiplexing approach, algorithm, and 

visualization methodology. Based upon DAbseq technology, this approach combines both SNP 

and barcoding based approaches for demultiplexing and multiplet identification, thus increasing 

accuracy. We have called this approach SNACS, for SNP and Antibody-based Cell Sorting. Our 

formulation is novel because previously, as far as we know, SNP and barcoding information 

have not been used in tandem for demultiplexing. 

 
2 Algorithm 

The SNACS algorithm described in detail here is outlined in Figure 1B. For each multiplexed 

experiment, SNPs are treated as binary (mutated or wildtype) and hash antibody expression is 

treated as continuous. SNP data are first filtered to remove both SNPs and single cells with high 

missingness.  We used a threshold of 40% missing data for both, but results should not be 

sensitive to these choices. Hash antibody counts are normalized using the centered log ratio 

transformation, as is common in both SC DAbseq and CITEseq analysis22.  In this normalization, 

the hash antibody count for every cell is divided by the geometric mean across cells and then log 

base 2 transformed.     

 

2.1 Hash antibody data provides initial classification 

First, hash antibody data is used to classify cells into n preliminary groups, where n is the 

number of parent samples and thus hash antibodies. For each hash antibody, the antibody 

expression for a multiplexed experiment is expected to be bimodal, with one right mode 

comprised of antibody-stained cells belonging to a single parent sample and one left mode 

comprised of unstained cells from alternate parent samples. To estimate the background antibody 

distribution, we generate a symmetric distribution by reflecting the data to the left of the left 
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mode about that mode (Figure S1). Cells are assigned to a specific hash antibody if the antibody 

expression of that cell is expressed highly; we used a threshold of the 95th percentile of the 

background distribution to estimate a cell as positive for a hash. Cells that were assigned to 

either multiple hashes or to no hashes were excluded in this step. 

 

2.2 SNPs that separate preliminary groups are identified 

Next, we select the SNPs that best distinguish the hash-antibody-defined groups from the initial 

preliminary classifications of the previous step. For each SNP, we compare the proportion of 

mutated (i.e., 1) values pairwise between hash groups and rank these comparisons using a one-

sided chi-square test.  Our test is one-sided to identify SNPs that have a higher proportion of 

positivity for each comparison. For each of n groups, n – 1 comparisons are performed, and for 

each comparison, we choose the top k SNPs.  The value of k is user-defined and we have set the 

default as three. The result of our comparisons identifies a total of n*(n – 1)*k SNPs that separate 

groups, but as the same SNPs may be chosen for more than one comparison, we limit ourselves 

to the unique subset of SNPs.  

 

2.3 SNPs are hierarchically clustered and hash antibody data refines those clusters and 

assigns them to parent samples 

Next, we perform agglomerative hierarchical clustering of the binary SNP data from all cells 

using the unique subset of SNPs identified in the previous step. Prior to clustering, missing SNP 

data is imputed utilizing a majority vote of the five nearest neighbors from the kNN function of 

the VIM R Package.  Clustering is performed using cosine as the distance function and Ward’s 

method for joining clusters.  The resulting dendrogram is cut into n clusters. Clusters are further 
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identified by traversing down the hierarchical tree and splitting if a significant difference is 

found when comparing the daughter nodes of any current node.  The comparisons are made for 

every hash antibody, and the two-sample t-test with equal variances is used to test for differences 

with an unadjusted p-value threshold of 10-5. The process is stopped when no additional 

differences are found.  We do not allow clusters of fewer than two cells. 

 

Clusters are then assigned to a specific hash antibody and parent sample by comparing the 

antibody expression of the cluster to the hash background distributions as described in Section 

2.1. In our analysis we assigned a cluster to a hash if > 50% of cells from that cluster have a hash 

expression that exceeded the 95th percentile of the background distribution. Clusters assigned to 

multiple hashes are designated as multiplets, and clusters not assigned to a hash antibody are 

designated “no call”. In the SNACS R package, the output and visualization of this initial 

demultiplexing is designated “SNACS Round 1” (Figures S2-4). 

 

2.3 Refined multiplet detection using Circular Binary Segmentation  

As accurately detecting multiplets is a significant concern in multiplexed SC data, we perform up 

to two additional steps to improve multiplet detection. First, we refined the calling of multiplets 

at the multi-cell level using hash antibody data. To do this, we estimate the mean hash antibody 

expression for each hash based on the cell clusters that were uniquely assigned to that hash in 

SNACS Round 1 (Section 2.3).  Then, we calculate the Euclidean distance to the cluster center 

for every cell and hash.  Within each cluster, using the ordering of the cells determined by the 

clustering, we next segment the distance value for every hash by using circular binary 

segmentation (CBS), an algorithm designed to identify contiguous regions of homogenous DNA 
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copy in the genome by estimating changepoints in sequential data23. The superset of all 

changepoints is then used to form new clusters, and those new clusters are then, possibly, 

reassigned in multiplets using the same approach as described in Section 2.3.   

In this analysis, only narrow segments are considered; we chose 100 or fewer cells as narrow.  

To provide additional power in this step, our hash background cutoff was the 75th percentile 

instead of the 95th. In the SNACS R package, the output and visualization of this optional 

subsequent refinement step is designated “SNACS Round 2” (Figures S2-4). 

 

2.4 Additional multiplet detection via combination with doubletD 

We also include the capability to call multiplets at the single-cell level by incorporating the 

previously-published doubletD algorithm24. In doubletD, matrices of total and alternate allele 

depth for each single-cell barcode are used to identify doublets based on increased allele 

frequency and/or drop-out via an expectation-maximization approach. For each single cell in our 

multi-sample experiments, we considered the cell a multiplet if it was called a multiplet by 

SNACS, as detailed above, or by doubletD. In the SNACS R package, the output and 

visualization of this optional subsequent refinement step is designated “SNACS plus doubletD”. 

Of note, although the mathematics of the doubletD algorithm are identical to those previously 

published, we translated the author-supplied code from python to R for seamless incorporation 

into our software.  

 

3 System and Methods 
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3.1 Generation of empiric data from leukemia patient samples 

To evaluate the SNACS algorithm, we generated empiric data by conducting seven scDAb-seq 

experiments on combinations of pooled samples from four adult patients with acute myeloid 

leukemia using a microfluidic approach via the Tapestri platform (MissionBio). Briefly, 

cryopreserved cells were thawed, normalized to 10,000 cells/μL in 180 μL PBS (Corning), and 

then incubated with Human TruStain FcX (BioLegend) and salmon sperm DNA (Invitrogen) for 

15 minutes at 4C. Cells were then incubated with oligo-conjugated cell-surface antibodies 

(TotalSeq “hashtag” antibodies, BioLegend) for 30 minutes to provide patient-level identifiers. 

Each patient was assigned a unique hash antibody, and patients were pooled together as 

described in Table 1.  

 

Next, pooled samples were resuspended in cell buffer (MissionBio), diluted to 4-7e6 cells/mL, 

and loaded onto a microfluidics cartridge, where individual cells were encapsulated, lysed, and 

barcoded using the Tapestri instrument. DNA from barcoded cells was amplified via PCR using 

a targeted panel that included 288 amplicons across 66 genes associated with acute myeloid 

leukemia (Supplementary Table 1). DNA PCR products were isolated, purified with AmpureXP 

beads (Beckman Coulter), used as a PCR template for library generation, and then repurified 

with AmpureXP beads. Protein PCR products from hash antibodies were isolated from the 

supernatant via incubation with a 5’ Biotin Oligo (ITD). Protein PCR products were then 

purified using Streptavidin C1 beads (Thermo Fisher Scientific), used as a PCR template for 

library generation, and then repurified using AmpureXP beads. Both DNA and protein libraries 

were quantified and assessed for quality via a Qubit fluorometer (Life Technologies) and 

Bioanalyzer (Agilent Technologies) prior to pooling for sequencing on an Illumina Novaseq. 
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FASTQ files were processed via an open-source pipeline as described previously12. Valid cell 

barcodes were called using the inflection point of the cell-rank plot in addition to the requirement 

that 60% of DNA intervals were covered by at least eight reads. Variants were called using 

GATK (v 4.1.3.0) according to GATK best practices25.  

 

3.2 Estimation of accuracy 

 

To test the accuracy of SNACS and other demultiplexing algorithms, we compared multi-sample 

experiments (Experiments 5-7) to single-sample experiments (Experiments 1-4).  Our rationale 

was that the SNP profiles of the single-sample experiments would be reflected in the multi-

sample experiments, thus allowing for an estimation of “truth”. Specifically, for each single cell 

in a multi-sample experiment, we assigned a “truth call” for each single cell by comparing the 

SNP profile of that cell against the SNP profile of the constituent single-sample experiments. We 

considered only SNPs that were genotyped in both the multi-sample and constituentsingle-

sample experiments. Supplemental Figures 5-7 provides visualization of accuracy calculations 

and assessments.  

 

We determined truth calls as follows. For each single-sample experiment, if a SNP was mutated 

(i.e., 1) in >= 99.5% of cells, then it was considered to be positive. Similarly, if a SNP was 

wildtype (i.e., 0) in >= 99.5% of cells, then it was considered to be negative. A SNP was 

considered ambiguous if mutated in > 0.5% and < 99.5% of cells. Next, in the multi-sample 

experiment, we considered a single cell a true “singlet”, that is belonging to a specific single 
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sample, when the SNP profile was an exact match for a constituent single-sample experiment, 

inconsistent with other single samples, and not a multiplet. A true multiplet was when the 

positive SNPs present were not possible from the positive or ambiguous SNPs present in any 

constituent single-sample experiment. An ambiguous call was made when a cell was not a singlet 

nor a multiplet.  

 

For each of the three multi-sample experiments, we estimated total accuracy as the proportion of 

truth calls that were matched by the demultiplexing algorithm. We also came up with measures 

of sensitivity and specificity to characterize how well a demultiplexing algorithm identified 

multiplets. Sensitivity was defined as the proportion of true multiplets that were called multiplets 

and specificity as the proportion of true singlets that were called singlets. We additionally 

calculated the proportion of singlets assigned to an alternative single sample. 

 

3.3 Comparison against Alternative Multiplexing Approaches 

Using our benchmarking dataset, we evaluated SNACS against the following five diverse 

multiplexing approaches: 

 

(1) HTOdemux is a barcode-based approach from the Seurat package developed to demultiplex 

cells in scRNA-seq experiments based on k-medoid clustering of cell-surface hash antibody 

values14. We used this method with default parameters and without modifications.  

 

(2) CiteFuse is a barcode-based approach developed to demultiplex cells in scRNA-seq 

experiments using a Gaussian mixture model fit to log-transformed cell-surface hash antibody 
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values15. We used this method with default parameters and without modifications. 

 

(3) scSplit is a SNP-based approach developed to demultiplex scRNA-seq data using initial k-

means clustering followed by an expectation-maximization approach19. To modify this approach 

to scDNA-seq data, we used this method starting with an allele count matrix of SNPs x single-

cell barcodes and then as-written without modifications.  

 

(4) While there are currently no named algorithms for demultiplexing scDNA-seq data, a SNP-

based approach is described in a publication by Robinson et al26. This method uses initial k-

means clustering followed by additional multiple identification by generating artificial multiplets 

and comparing them to true cells26.  We refer to this method as the “Robinson method.”  

 

(5) doubletD is a SNP-based approach for detecting doublets in scDNA-seq data using an 

expectation-maximization approach, and is based on the observation the scDNA-seq multiplets 

tend to have an increase in number of allele copies and/or drop-out24. doubletD only detects 

whether a cell is a doublet vs not a doublet and does not demultiplex single cells or assign them 

to parent samples. Thus, in our comparison to doubletD, we compared only its ability to 

accurately identify a multiplet.  

 

3.4 Implementation Details 

SNACS software and associated documentation is freely available at 

https://github.com/olshena/SNACS. Version 1.0.3.4 was used in this analysis. Code used to 

generate truth calls and accuracy assessments is available as well at 
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https://github.com/olshena/SNACS/tree/master/analysis. For experiments 1-7, both unprocessed 

FASTQ files as well as SNP and antibody matrices following FASTQ alignment and variant 

calling have been deposited in NCBI’s Gene Expression Omnibus (accession number 

GSE255224) and are available for public use.  

 
4 Results 

 

4.1 Performance of SNACS on Patient Data 

 

We evaluated the performance of SNACS using empiric data from scDAb-seq of leukemia 

patients as outlined above. SNACS was able to accurately demultiplex multiplexed samples and 

identify multiplets (Figure 2; Table 2; Tables S2-4).  

 

Experient 5 contained multiplexed samples from two individual patients. Of the 2,651 input 

cells, 2,521 (95.1%) had sufficient genotyping information to be included in the SNACS 

algorithm. Of the 70,476 unique input SNPs, SNACS identified a total of 6 unique SNPs that 

best defined the initial antibody-based classifications and were used in subsequent hierarchical 

clustering (Table S5). Of the 2,651 single cells, SNACS assigned 1,585 (59.8%) to Patient A, 

735 (27.7%) to Patient B, and 200 (7.5%) as multiplets. When compared against the truth 

assessments, SNACS provided a total accuracy of 0.991, sensitivity (called multiplets/true 

multiplets) of 0.980, and specificity (called singlets/true singlets) of 0.992. With the addition of 

doubletD, sensitivity improved to 0.985, while specificity and total accuracy decreased to 0.990 

and 0.981, respectively.  
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Experiment 6 contained multiplexed samples from three individual patients. Of the 3365 input 

cells, nearly all (99.6%) had sufficient genotyping information and were included in downstream 

analysis. SNACS assigned 799 (23.7%) to Patient A, 576 (17.1%) to Patient B, 1110 (33.0%) to 

Patient C, and 849 (25.2%) as multiplets. When compared against the truth assessments, SNACS 

provided a total accuracy of 0.964, sensitivity of 0.976, and specificity of 0.959. With the 

addition of doubletD, sensitivity again improved marginally to 0.992, while specificity decreased 

to 0.953. 

 

Finally, Experiment 7 contained multiplexed samples from four individual patients. Of the 

11,228 input cells, all (100%) had sufficient genotyping information and were included in 

downstream analysis. SNACS assigned 3,753 (33.4%), 490 (4.4%), 2,822 (25.1%), and 1,452 

(12.9%) to Patients A, B, C and D, respectively; 1,588 (14.1%) were assigned as multiplets. 

SNACS provided a total accuracy of 0.948, sensitivity of 0.919, and specificity of 0.953. Like 

Experiments 5 and 6, the additional of doubletD improved sensitivity (0.948) while decreasing 

specificity (0.910).  

 

Crucially, across all three multi-sample experiments, SNACS very rarely assigned singlets to 

incorrect parent samples, occurring in 0% of cells in Experiment 5, 0.04% of cells in Experiment 

6, and 0.02% of cells in Experiment 7.  

 

4.2 Comparison of SNACS vs Alternate Barcode- and SNP-based approaches 
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We also compared SNACS to 4 demultiplexing approaches and 1 doublet identification tool as 

outlined in section 2.3. Relative to these comparison methods, SNACS preserved a high number 

of single cells, with < 5% of input cells filtered in Experiment 5 and <1% in Experiments 6 and 7 

compared to 0.15% -81.1%, 3.5% - 89.5%, and 0.4% - 92.2% for the same experiments with the 

comparison methods (Figure 2A, Table 2). There was only once instance across methods and 

experiments (scSplit applied to Experiment 5) where an alternative method filtered fewer cells 

than SNACS.  

 

SNACS also offered superior sensitivity and specificity in all experiments with sensitivities of 

0.98, 0.98, and 0.92 relative to 0.19 – 0.97, 0.72 – 0.83, and 0.68 – 0.88 for Experiments 5, 6, 

and 7 for the comparison methods (Table 2).  Similarly, the specificity of SNACS was 0.99, 

0.96, and 0.95 compared to 0.53 – 0.98, 0.86 – 0.92, and 0.85 – 0.93 for Experiments 5, 6, and 7 

for the alternate methods (Table 2). Finally, SNACS misidentified the lowest proportion of 

singlets as belonging to a true alternative parent sample across all 3 multi-sample experiments. 

After SNACS, there was no one demultiplexing approach that provided the best accuracy, 

sensitivity, and specificity metrics across all experiments. Interestingly, there was also not a 

consistent pattern of superior performance between SNP-based vs barcode-based algorithms 

(Figure 2B).  

 

Compared to the SNP-based methods scSplit and the Robinson method, SNACS employs 

minimal filtering, an approach chosen to both maximize the final number of assigned cells as 

well as to simplify our algorithm. SNACS does not filter for SNPs known to be common 

germline variants at the population level, but instead allows for unbiased selection for the most 
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discriminatory SNPs. This differs from other SNP-based demultiplexing approaches, as scSplit 

first filters against SNPs of maximal variation detected via the 1000 Genomes Project19 and the 

Robinson method filters against SNPs extracted from NCBI dbSNP Build 14426.  

 

When compared to the Robinson method, SNACS identified a relatively similar number of SNPs 

as contributing to final clustering with 7, 13, and 20 SNPs identified by SNACS vs 11, 5, and 16 

SNPs identified by the Robinson method for Experiments 5, 6 and 7, respectively (Table S5). By 

contrast, scType included 1142, 663, and 1620 SNPs as contributing to the initial clustering. 

These SNPs had incomplete overlap, with SNACS and the Robinson method sharing 1, 3, and 5 

SNPs and SNACS and scType sharing 5, 8, and 14 SNPs for Experiments 5, 6 and 7, 

respectively. Taken together, these data suggest that filtering SNP data through population-level 

databases may miss a large proportion of highly discriminatory SNPs.  

 

5 Discussion 

 

In recent years, the field of single-cell genomics has shifted from a handful of expert research 

laboratories to multiple research groups across diverse cancer histologies27. A robust 

demultiplexing approach provides one avenue for scaling and democratizing this emerging 

technology. While demultiplexing approaches have been developed for scRNA-seq, the robust 

translation of these methods to scDNA-seq remains an unmet need.  

 

Here, we offer SNACS, a SNP-and-barcode-based algorithm for demultiplexing scDNA-seq 

data. SNACS is able to accurately assign singlets to parent samples without a priori knowledge 

of genetic features and, relative to existing approaches, provides greater sensitivity and 
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specificity while simultaneously preserving a greater number of single cells. Finally, SNACS 

offers an accompanying data visualization, allowing the user to readily assess the quality of 

demultiplexing and decide whether additional optional multiplet refinement is appropriate for a 

particular dataset. While our experimental patient data was processed in an open source 

alignment pipeline12, SNACS is also compatible with output from the commercially available 

Mission Bio Tapestri Analysis system, although the SNP matrix must be formatted as binary 

(i.e., zygosity is not considered) and hash antibodies must first be normalized, such as by using 

the centered log ratio transformation.  

 

It is clear from our investigations that there is demultiplexing information in data from both 

natural genetic variation and in patient-level hash antibodies. We chose to combine these two 

data types in a particular way, but other combinations might be effective as well.  Specifically, 

we utilized the hash data to choose an initial discriminatory set of SNPs, we clustered those 

SNPs, and we used the hash data to further divide cells with similar genotypes.  If more cells 

were available for each genotype, we would explore independently classifying each genotype by 

its hash distribution.  Since we are limited, our classification borrows strength across similar 

genotypes. 

 

Our experimental data was derived from a targeted DNA panel. This panel includes genomic 

markers of greatest interest in leukemia, similar to what is commonly used in biological and 

clinical investigation and was not designed to include SNPs with maximal variation. While this 

panel provided adequate SNP coverage for accurate demultiplexing, it is possible SNACS and 

other barcode-based approaches could be further optimized through rational design of DNA 
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panels to include genomic regions of high population-level variation. A future panel could be 

designed to include SNPs previously identified in population studies as maximally variable28,29, 

or those commonly used in forensic analyses30,31. Y-chromosome encoded SNPs or short tandem 

repeat polymorphisms could also be included, and male and female patients could be 

intentionally multiplexed together32,33. 

 

While SNACS provides many strengths in an area of unmet need, there are limitations to our 

approach that should be considered when it is used. Although accuracy was greater than against 

established methodologies, there were still a small proportion (<1.5%) of mis-classified singlets 

that were true multiplets. Should a biological experiment be conducted to identify small, rare cell 

populations, these mis-classified cells could result in false positive results. scDNA-seq 

experiments using SNACS will need to account for this, such as by discarding all cell 

populations smaller than a specific threshold. SNACS also requires that samples from different 

patients be multiplexed together. If an investigator wanted to analyze multiple timepoints from a 

single patient, samples from those timepoints would likely not be amenable to demultiplexing via 

SNACS.  

 

Finally, SNACS is optimized to detect across-sample multiplets, in which multiplets are derived 

from different parent samples. In the single-cell literature, discussion also exists regarding 

within-sample multiplets, in which two or more cells from genotypically distinct subclones from 

the same parent sample are captured in a single droplet, resulting in a novel genotype derived 

from a single parent sample15,24,34. Unlike across-sample multiplets, within-sample multiplets 

may be present in single-sample experiments as well as multiplexed experiments. The true 
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incidence of within-sample doublets in scDNAseq is unknown, and given their nature, they may 

not be detected by our truth-calling approach and algorithm. While SNACS does not directly 

detect within-sample multiplets, doubletD, which relies upon variant allele frequencies to detect 

multiplets, is optimized for both across- and within-sample doublets24, and it is possible the 

“SNACS plus doubletD” output identifies within-sample multiplets as well. Indeed, the 

decreased sensitivity of “SNACS plus doubletD” may in fact reflect the identification of within-

sample multiplets not identified by our truth calling approach. 

 

Questions also remain regarding the number of patients that could successfully be multiplexed 

together. While our approach found a slight decrease in sensitivity and specificity with an 

increase from two to four multiplexed samples, we do not know whether this decrease would 

continue with increasing sample numbers, and if so, at what rate, Similarly, while we did not 

observe an increase in proportion of multiplets with an increasing number of multiplexed 

samples, it is unknown whether multiplexing higher numbers of patients together would result in 

a greater proportion of multiplets. It may be that multiplexing is in fact limited by technical 

considerations. Assuming 20% multiplets per experiment, for an output of 7,500 cells, the 

median output from the Tapestri microfluidics platform used in our study, scaling beyond 6 

patients would cause the number of singlets per patient to fall below 1,000; scaling beyond 60 

would cause the number of singlets per patient to fall below 100. While the optimal number of 

cells per patient is largely dependent upon the scientific or clinical research question of interest 

and the importance of detecting rare populations, there are likely practical limitations to our 

approach.  
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Multiplexing scDNA-seq allows for efficient scaling of an emerging technology, and SNACS 

enables rapid and accurate demultiplexing and multiplet identification. Future studies are 

planned to validate and refine SNACS and evaluate it on larger numbers of multiplexed samples. 
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Table 1. Experimental Plan for Generation of Empiric Single-Cell DNAseq Data  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Experiment Patient Hash 

Experiment 1 Patient A TS-1 

 Patient A TS-2 

Experiment  2 Patient B TS-2 

 Patient B TS-3 

Experiment  3 Patient C TS-3 

 Patient C TS-4 

Experiment 4 Patient D TS-1 

 Patient D TS-4 

Experiment  5 Patient A TS-1 

 Patient B TS-2 

Experiment 6 Patient B TS-2 

 Patient C TS-3 

 Patient D TS-4 

Experiment 7 Patient A TS-1 

 Patient B TS-2 

 Patient C TS-3 

 Patient D TS-4 
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Table 2. Accuracy Metrics for SNACS and other Demultiplexing Approaches 
 

Algorithm % Cells 
Filtered 

Total 
Accuracy  

Sensitivity Specificity No. of True 
Singlets 

No. of True 
Multiplets 

Fraction of Called 
Singlets which are True 
Alternative Singlets 

Experiment 5 (N = 2651 Cells) 
SNACS  4.90% 0.991 0.980 0.992 2320 200 0.000 
SNACS or doubletD 4.90% 0.989 0.985 0.990 2320 200 0.000 
HTOdemux 24.44% 0.917 0.581 0.979 1692 310 0.005 
CiteFuse 8.49% 0.934 0.822 0.971 2099 326 0.001 
scSplit 0.15% 0.885 0.187 0.984 2319 327 0.008 
Robinson 81.10% 0.552 0.969 0.526 468 32 0.000 
doubletD 0.0% 0.978 0.942 0.983 2320 330 N/A 
Experiment 6 (N  = 3365 Cells) 
SNACS  0.446% 0.964 0.976 0.959 2484 837 0.0004 
SNACS or doubletD 0.446% 0.963 0.992 0.953 2484 837 0.0004 
HTOdemux 35.00% 0.887 0.758 0.905 1617 561 0.005 
CiteFuse 3.45% 0.898 0.828 0.922 2408 812 0.004 
scSplit 3.95% 0.870 0.719 0.916 2455 752 0.004 
Robinson 89.48% 0.842 0.790 0.863 249 105 0.000 
doubletD 0.0% 0.919 0.771 0.970 2485 849 N/A 
Experiment 7 (N = 11,228 Cells) 
SNACS  0.0% 0.948 0.919 0.953 8517 1588 0.0002 
SNACS or doubletD 0.0% 0.916 0.948 0.910 8517 1588 0.0002 
HTOdemux 12.31% 0.852 0.759 0.872 7392 1558 0.015 
CiteFuse 10.22% 0.898 0.771 0.925 7557 1562 0.008 
scSplit 0.39% 0.905 0.677 0.948 8494 1573 0.009 
Robinson 92.20% 0.835 0.705 0.845 776 61 0.003 
doubletD 0.0% 0.917 0.876 0.923 8517 1588 N/A 
Total Accuracy is defined as proprtion correctly called cells/all called cells.  Sensitivity is defined as proportion of True Multiplets that were 
called Multiplets. Specificity is defined as proportion of True Singlets that were called Singlets. Accuracy, Sensitivity, and Specificity are only 
calculated for cells that were both not filtered by the demultiplexing algorithm and non-ambiguous by truth call.  
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Figure Legends 

 

Figure 1.  

A. Existing demultiplexing approaches described in scRNA-seq include barcode- and SNP-based 

approaches. Both are imperfect and require identification of multiplets. B. Schematic of SNACS 

algorithm. SNACS offers a novel, combinatory approach using both SNPs and barcoded “hash” 

antibodies to demultiplex samples and resolve mutiplets.  

 

Figure 2 

Comparison of SNACS to Alternate Demultiplexing Algorithms 

A. Bar plots comparing relative proportions of singlets, multiplets, and filtered cells for SNACS 

plus alternative demultiplexing methods for multi-sample Experiment 5 (top left, patients 1 + 2), 

6 (top right, patients 2 + 3 + 4) , and 7 (bottom right, patients 1 + 2 + 3 +4) . Relative to the 

comparison method s, SNACS filtered fewer cells. 

B. Heatmap of total accuracy for SNACS plus alternative demultiplexing methods (columns) for 

multi-sample Experiments 5-7 (rows).  

C. Heatmap of single cells (columns) vs SNPs used in final clustering by SNACS (rows) for 

multi-sample Experiments 5, 6, and 7. Rows at the top of the heatmap represent, in order from 

top to bottom, hash antibody signals; sample calls by HTOdemux, CiteFuse, scSplit, the 

Robinson method, doubletD, SNACS, SNACS plus doubletD, and truth calls.  
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