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Abstract 1 

BACKGROUND: Genetic risk modeling for dementia offers significant benefits, but studies 2 

based on real-world data, particularly for underrepresented populations, are limited.  3 

METHODS: We employed an Elastic Net model for dementia risk prediction using single-4 

nucleotide polymorphisms prioritized by functional genomic data from multiple 5 

neurodegenerative disease genome-wide association studies. We compared this model with 6 

APOE and polygenic risk score models across genetic ancestry groups, using electronic health 7 

records from UCLA Health for discovery and All of Us cohort for validation. 8 

RESULTS: Our model significantly outperforms other models across multiple ancestries, 9 

improving the area-under-precision-recall curve by 21-61% and the area-under-the-receiver-10 

operating characteristic by 10-21% compared to the APOE and the polygenic risk score models. 11 

We identified shared and ancestry-specific risk genes and biological pathways, reinforcing and 12 

adding to existing knowledge.  13 

CONCLUSIONS: Our study highlights benefits of integrating functional mapping, multiple 14 

neurodegenerative diseases, and machine learning for genetic risk models in diverse populations. 15 

Our findings hold potential for refining precision medicine strategies in dementia diagnosis. 16 
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1 Background 21 

Dementia, a complex and multifaceted syndrome, is characterized by a progressive decline in 22 

cognitive function beyond what might be expected from normal aging. Etiologies include 23 

Alzheimer's disease (AD), vascular dementia, Lewy body dementia (LBD), Frontotemporal 24 

dementia (FTD), and Parkinson’s disease dementia (PDD), among others.1 The prognosis of 25 

dementia is generally a gradual and continuous decline in cognitive function, which can 26 

significantly impact an individual's ability to perform daily activities.2 Dementia represents a 27 

significant public health concern, with a global prevalence estimated at around 36 million in 28 

2020. Owing to an aging population, this number is projected to triple by 2050.3 The economic 29 

burden of dementia is also substantial, with global costs estimated to be around $594 billion 30 

annually.4  31 

Dementia has a strong genetic predisposition, with numerous significant genetic variants 32 

associated with the disease identified through Genome-Wide Association Studies (GWASs). For 33 

example, the Apolipoprotein E (APOE) gene, which encodes a protein responsible for binding 34 

and transporting low-density lipids, significantly influences the risk of late-onset AD, the most 35 

prevalent form of dementia.5,6 Similarly, the Microtubule-associated protein tau (MAPT) is a 36 

recognized genetic mutation in FTD,7 and Synuclein Alpha (SNCA) is associated with PDD.8 37 

While these studies have deepened our understanding of the genetic architecture of dementia, 38 

additional research is necessary to successfully model personal dementia genetic risk and 39 

understand the potential limitations. 40 

Polygenic risk scores (PRSs), which aggregate the effects of many genetic variants associated 41 

with a disease, have recently been used to quantify an individual's genetic predisposition for 42 

complex diseases like dementia.9 A growing number of studies have underscored the robust links 43 
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between AD PRS and AD phenotype,10–13 declines in memory and executive function,14–17 44 

clinical progression,15 and amyloid load18 in the non-Hispanic white population. However, the 45 

performance of PRSs in non-European ancestries has been suboptimal. The weights for SNPs in 46 

PRSs are predominantly calculated based on European ancestry GWASs, leading to a lack of 47 

generalizability in representing genetic risks for non-European individuals.19–22 Using PRSs for 48 

245 curated traits from the UK Biobank data, Privé et al.23 revealed notable disparities in the 49 

phenotypic variance explained by PRSs across different populations. Specifically, compared to 50 

individuals of Northwestern European ancestry, the PRS-driven phenotypic variance is only 51 

64.7% in South Asians, 48.6% in East Asians, and 18% in West Africans. Similarly, using a 52 

population from the Health and Retirement Study, Marden et al. demonstrated that the estimated 53 

effect of the AD PRS was notably smaller for non-Hispanic black compared to non-Hispanic 54 

white in both dementia probability score and memory score.24 55 

Another limitation of current genetic risk modeling is differentiating between causal and 56 

uninformative variants. Causal variants, such as APOE in AD, have been suggested to be 57 

included as separate variables in genetic risk modeling due to their independent risk 58 

contribution.25 On the other hand, including uninformative, non-causal variants in prediction 59 

models may introduce "noise" that obscures the effects of important variants. In a study by 60 

Dickson et al.,26 a model incorporating allelic APOE terms and just 20 additional Single-61 

Nucleotide Polymorphisms (SNPs) outperformed the model that included thousands of SNPs in 62 

AD risk prediction (area under the receiver operating characteristic (AUROC): 0.75 vs. 0.63).  63 

Moreover, most current studies used longitudinal cohorts, which perform extensive testing and 64 

consensus criteria27 applied by clinicians with expertise in dementias to determine dementia 65 

diagnosis. While this approach ensures precision within research cohorts, it does not necessarily 66 
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mirror the practicalities of real-world community settings. In real-world clinical care, the 67 

expertise in dementia may vary, and the criteria used for diagnosis may not always align with the 68 

stringent standards of research cohorts. Diagnoses documented in the Electronic Health Records 69 

(EHRs) capture these real-world data and, by routinely capturing patient data over extended 70 

periods, form an expansive longitudinal cohort ideal for real-world research. Compared to 71 

traditional cohorts, EHR cohorts offer additional benefits, such as vast sample sizes, diverse 72 

phenotypes, and a more inclusive representation of often underrepresented groups, like 73 

minorities and older adults.28 However, only a few genetic studies on dementia have been 74 

conducted within the context of EHR, and have predominantly focus on AD11,29 75 

Finally, prior studies have primarily focused on the genetic risk prediction of AD. However, 76 

while AD accounts for a significant portion of dementia cases, concentrating solely on it risks 77 

overlooking the broader scope of cognitive disorders. In real-world scenarios, many dementia 78 

cases display mixed pathologies,30,31 with mixed dementia being a common occurrence 32. 79 

Addressing dementia as a whole, rather than exclusively focusing on AD, could better reflect the 80 

clinical landscape and lead to interventions and therapies that benefit a larger cohort of affected 81 

individuals.33  82 

Unfortunately, dementia remains significantly underdiagnosed in real-world community settings. 83 

Research comparing diagnoses from real-world sources like Medicare claims or EHR to the gold 84 

standard diagnoses from longitudinal cohort studies reveals a sensitivity range of just 50-65%.34–85 

39 Early detection of all-cause dementia with genetic modeling can empower healthcare providers 86 

to pinpoint the appropriate diagnostic processes, streamline care coordination, manage symptoms 87 

effectively, and begin suitable treatments. The above-mentioned limitations underscore the need 88 
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for more refined methodologies to develop genetic risk models across diverse populations 89 

accurately. 90 

In the present study, we hypothesized that the risk SNPs associated with dementia, and their 91 

corresponding weights, may vary across diverse populations, namely Amerindian, African, and 92 

East Asian genetic ancestry. We further proposed that the prediction performance of dementia 93 

phenotypes in non-European populations could be enhanced by identifying biological-94 

meaningful SNPs followed by sparse machine learning models within each genetic ancestry 95 

group. Thus, we present a novel approach for assessing individual dementia genetic risks across 96 

diverse populations.  97 

Our approach addresses the previously noted limitations through several innovative measures. 98 

Firstly, we utilized functional and biological information to prioritize SNPs based on GWAS 99 

results, thereby targeting causal SNPs with the highest likelihood of contributing to dementia 100 

risk. Secondly, we employed machine learning algorithms to select important genetic variants. 101 

Our method allows for the fine-tuning of models across different ancestry groups, offering a 102 

significant advantage for non-European populations that are often underrepresented in GWAS 103 

studies. Finally, we developed and validated our models within real-world EHR settings, 104 

focusing on predicting dementia as an encompassing condition. This innovative approach holds 105 

promise for enhancing our understanding of individual dementia genetic risks and promoting 106 

health equity in genetic research.  107 
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2 Methods 108 

2.1 Data source 109 

2.1.1 UCLA ATLAS Community Health Initiative 110 

Our discovery cohort for model development was derived from the biobank-linked EHR of the 111 

UCLA Health System.40 The UCLA ATLAS Community Health Initiative collects biosamples 112 

from participants of a diverse population. Upon obtaining patient consent, these biological 113 

samples undergo genotyping using a customized Illumina Global Screening Array.41 Detailed 114 

information regarding the biobanking and consenting procedures can be referenced in our 115 

previous publications.42,43 After the genotype quality control described below, there were 54,935 116 

individuals with genotype and UCLA EHR data. As all genetic data and EHRs utilized in this 117 

study were de-identified, the study was deemed exempt from human subject research regulations 118 

(UCLA IRB# 21-000435). 119 

2.1.2 All of Us Research Hub 120 

We validated our models and findings using All of Us Research Hub data. As one of the most 121 

diverse biomedical data resources in the United States, the All of Us Research Program serves as 122 

a centralized data repository, offering secure access to de-identified data from program 123 

participants.44 For our validation, we utilized data release version 7, encompassing 409,420 124 

individuals, of which 245,400 have undergone whole genome sequencing. 125 
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2.2 Patient genetic data preprocessing 126 

2.2.1 Quality control 127 

The quality control process was conducted using PLINK v1.9,45 adhering to established 128 

guidelines.40 We removed samples with a missingness rate exceeding 5%. Low-quality SNPs 129 

with >5% missingness and monomorphic and strand-ambiguous SNPs were excluded. Post- 130 

quality control, we performed genotype imputation via the Michigan Imputation Server.46 This 131 

step was crucial to augment the coverage of genetic variants and enable the comparison of results 132 

across diverse genotyping platforms. SNPs with imputation r2 <0.90 or MAF <1% were pruned 133 

from the data. After quality control measures and imputation, there were 21,220,668 genotyped 134 

SNPs across a sample of 54,935 individuals. Finally, we restricted our analyses to SNPs that 135 

overlapped between UCLA ATLAS and All of Us, amounting to a total of 8,705,988 SNPs. This 136 

approach ensured consistency in the genetic variables under consideration across both datasets. 137 

2.2.2 Inferring genetic ancestry 138 

Genetic ancestry refers to the geographic origins of an individual's genome, tracing back to their 139 

most recent biological ancestors while largely excluding cultural aspects of their identity.47 140 

Genetic Inferred Ancestry (GIA) employs genetic data, a reference population, and inferential 141 

methodologies to categorize individuals within a group likely to share common geographical 142 

ancestors.48 In our UCLA ATLAS sample, we used the reference panel from the 1000 Genomes 143 

Project49 and principal component analysis50 to infer a patient’s genetic ancestry. GIA groups 144 

included European American (EA), African American (AA), Hispanic Latino American (HLA), 145 

East Asian American (EAA), and South Asian American (SAA). For instance, we designated 146 

individuals within the United States whose recent biological ancestors were inferred to be of 147 
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Amerindian ancestry as "HLA GIA".51 In addition, we calculated ancestry-specific principal 148 

components within each GIA group using principal component analysis.  149 

2.3 Genetic predictors 150 

2.3.1 GWAS selection  151 

Our study's initial step is identifying potential risk SNPs as candidate predictors for dementia 152 

GWASs. A summary of the GWASs used and steps to select candidate SNPs in our study can be 153 

found in Supplementary Table 1 and Supplementary Figure 1. 154 

We selected GWASs for AD,5,52,53 PDD,54 PSP,55 LBD,56 and stroke57 phenotypes. For AD 155 

GWASs, we included three different GWASs conducted on diverse populations, including 156 

European,5 African American,52 and multi-ancestries.53 The summary statistics from all these 157 

GWAS are publicly available. Detailed information regarding the recruitment procedures and 158 

diagnostic criteria can be found in the original publications. 159 

2.3.2 Candidate SNPs identification and annotation 160 

A significant proportion of GWAS hits are found in non-coding or intergenic regions,58 and 161 

given the correlated nature of genetic variants in Linkage disequilibrium (LD), distinguishing 162 

causal from non-causal variants often proves challenging based solely on association P-values 163 

from GWASs.59 Pinpointing the most likely relevant causal variants typically involves 164 

understanding the regional LD patterns and assessing the functional consequences of correlated 165 

SNPs, such as protein coding, regulatory, and structural sequences.60 Several functionally 166 

validated variants have been proved to be clinically relevant to the pathogenesis of diseases, as 167 

confirmed through in vitro or in vivo experimental validation.61 To address this, we utilized the 168 

Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA), a tool that 169 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.24302355doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.05.24302355
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

leverages information from biological data repositories and other resources to annotate and 170 

prioritize SNPs.59  171 

For each GWAS summary statistic, we first identified genomic risk loci using a P-value 172 

threshold (<5e-8) and a pre-calculated LD structure (r2<0.2) based on the relevant reference 173 

population from the 1000 Genomes.49 Subsequently, we identified two distinct sets of SNPs: 174 

1. Independent genome-wide-significant SNPs: We selected the SNP with the most significant 175 

GWAS P-value within each genomic risk locus. This process was iterated until all SNPs were 176 

assigned to a risk locus cluster or considered independent.  177 

2. Independent gene-annotated SNPs: We prioritized SNPs based on their functional 178 

consequences on genes. In FUMA, the mapping from SNPs to genes was achieved by performing 179 

ANNOVAR62 using Ensembl genes (build 85). SNPs were mapped to genes through positional 180 

mapping, eQTL associations, and 3D chromatin interactions. The Combined Annotation-181 

Dependent Depletion (CADD) score63 was used to select potential causal SNPs, with the SNP 182 

possessing the highest CADD score within each genomic risk locus being chosen, indicating a 183 

higher probability of the variant being deleterious.  184 

The identified independent genome-wide-significant SNPs and independent gene-annotated 185 

SNPs were subsequently used in constructing the disease PRSs and as candidate features in 186 

dementia prediction models. To ensure the robustness of our findings, we also adopted a 187 

stringent r2 cut-off (<0.1) to define independent genome-wide-significant SNPs, ensuring the 188 

selected SNPs were independent.  189 

2.3.3 Polygenic risk scores and APOE-ε4 190 

We computed the disease-specific PRS as the sum of an individual's risk allele dosages, each 191 

weighted by its corresponding risk allele effect size from the GWAS summary statistics, as 192 
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shown in the PRS equation 𝑃𝑅𝑆𝑖 = ∑ 𝛽̂𝑗 × 𝑑𝑜𝑠𝑎𝑔𝑒𝑖𝑗
𝑀
𝑗 . All PRSs were then standardized to a 193 

mean of 0 and a standard deviation of 1. The standardization process used the 1000 Genome 194 

European genetic ancestry as the reference population, ensuring that the scores' range and values 195 

are comparable across different GWASs. For each phenotype, we employed two distinct sets of 196 

SNPs identified by FUMA, namely the independent genome-wide-significant SNPs and 197 

independent gene-annotated SNPs, to calculate two respective PRSs: PRS.psig and PRS.map.  198 

The APOE gene has two variants, rs7412 and rs429358, which determine the three common 199 

isoforms of the apoE protein: E2, E3, and E4, encoded by the ε2, ε3, and ε4 alleles.64 Previous 200 

research has demonstrated that out of the three polymorphic forms of APOE, carriers of APOE-201 

e4 are at a higher risk of developing AD, and this association exhibits a dose-dependent effect.65 202 

Therefore, to quantify the APOE genotype in our study, we created a numerical variable, 203 

"APOE-e4count", with the two variants mentioned above, representing the number of ε4 alleles 204 

(0, 1, or 2) carried by each individual. 205 

2.4 Dementia definition and demographic features 206 

The primary outcome of interest was dementia, which we defined using the ICD-10 codes 207 

(Supplementary Table 2). The demographic variables considered in our study were self-208 

reported sex and age. The age of each participant, measured in years, was calculated based on 209 

their self-reported birth date and the dates of their encounters. For individuals diagnosed with 210 

dementia, we determined the age at dementia onset.  211 

2.5 Analytical sample selection 212 

To focus on patients with longitudinal records, our analyses included patients with complete 213 

demographic data (age and sex) who had at least two medical encounters after age 55. We also 214 
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applied a restriction of age at the last recorded encounter to be less than 90 as patients in the 215 

UCLA EHR dataset are censored when older than 90. 216 

We identified eligible dementia cases as patients with at least one encounter with a recorded 217 

dementia diagnosis, provided that the initial onset of the condition occurred after age 55. To 218 

qualify as an eligible control, subjects were required to meet the following criteria: 1) not have 219 

any recorded dementia or related diagnoses, as determined by a set of predefined exclusion 220 

phenotypes;66 2) age at the last recorded visit >=70, to exclude younger patients who may not 221 

have manifested signs of dementia; and 3) a minimum of five years’ length of records with an 222 

average of at least one encounter per year, thereby minimizing the potential for bias associated 223 

with misdiagnosis.  224 

Upon the application of these selection criteria, the resultant sample served as the pool for 225 

permutation resampling and subsequent modeling in our study.  226 

2.6 Prediction of dementia risk with machine learning models 227 

In our discovery study, we developed a series of logistic regression models to predict the binary 228 

dementia phenotype in the UCLA ATLAS sample, stratified by GIA groups.  229 

2.6.1 Permutation resampling 230 

In order to fortify the reliability of our findings, we employed the permutation resampling 231 

methodology to assess model performance, ascertain feature importance, and evaluate statistical 232 

significance. Specifically, we conducted random sampling from the pool of eligible controls, 233 

maintaining a case-to-control ratio of 1:3, and utilized the amalgamated case and control samples 234 

for the following modeling process. This iterative procedure was repeated 1000 times.  235 
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2.6.2 Regress out demographic variable effects 236 

To distinctly assess genetic influences, our analysis commenced by mitigating the impact of 237 

demographic factors, encompassing age, sex, and ancestry-specific principal components (PCs), 238 

from the predictive model. We first employed a logistic regression model that exclusively 239 

utilized these variables to predict dementia status. Subsequently, we derived the predicted values 240 

for each patient through this model. Applying an appropriate inverse link function (e.g., logit), 241 

we then subtracted these predicted values from the ultimate outcome (dementia status), 242 

generating an "offset" value. These offset values encapsulated the dementia status, after 243 

regressing out the effects of demographic variables and genetic population structure. 244 

2.6.3 Genetic prediction models 245 

Next, we trained genetic risk models to predict the outcome (dementia status) with the offset 246 

corrections applied in the linearized space, i.e., 𝑦̂𝑖 = 𝑔−1(𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑖), 247 

where 𝑦̂𝑖 represents the predicted dementia status, and 𝑔−1() is the inverse of the link function.67 248 

We compared four different sets of predictors: 1) APOE status, 2) AD PRS, 3) multiple PRSs, 249 

and 4) smaller SNP sets with Elastic Net regularization. The latter involved the application of a 250 

regularization technique known as Elastic Net to smaller sets of SNPs.68 For multiple PRS 251 

models, we crafted models utilizing diverse AD PRSs of varying ancestries or PRSs derived 252 

from other GWASs focused on neurodegenerative diseases. Across all models, we employed a 5-253 

fold cross-validation methodology to authenticate their predictive efficacy, with the final results 254 

reported on the combined hold-out testing set. 255 

The primary assessment criterion was the Area Under the Precision-Recall Curve (AUPRC), 256 

specifically chosen for its appropriateness in scenarios involving imbalanced datasets where the 257 

number of cases is significantly outnumbered by controls.69 Additionally, the AUROC was 258 
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reported as a comprehensive metric for model evaluation. To determine the optimal threshold, 259 

we selected the point that maximized the Matthews Correlation Coefficient (MCC).28 Subsequent 260 

performance metrics, such as the F1 score, accuracy, precision, recall, and specificity, were 261 

computed based on this threshold. The 95% confidence intervals (CIs) and p-values (𝑃 =262 

1

1000
{𝑚𝑒𝑡𝑟𝑖𝑐𝑚𝑜𝑑𝑒𝑙1 ≥ 𝑚𝑒𝑡𝑟𝑖𝑐𝑚𝑜𝑑𝑒𝑙2}) were derived through 1000 permutations as described 263 

previously. 264 

2.7 Validations in the All of Us sample 265 

We conducted a validation study using the All of Us cohort to assess the generalizability of our 266 

findings derived from the UCLA ATLAS sample. We selected a comparable sample from the All 267 

of Us Research Hub, adhering to the same criteria and sampling scheme for the GIA groups in 268 

the UCLA ATLAS sample. The same methodologies were employed to define dementia cases 269 

and controls. We extracted the same genetic risk loci from the All of Us Whole Genome 270 

Sequencing data for PRS construction or those identified through Elastic Net models in the 271 

UCLA ATLAS sample. We employed a consistent methodology to regress out demographic 272 

variables and genetic population structure (i.e., PCs) as a preliminary step. This approach was 273 

undertaken to derive offset corrections, mirroring the procedures employed in our prior research. 274 

By regressing out these factors, we aimed to ensure that the statistical models accurately reflect 275 

the intrinsic genetic associations, unconfounded by extraneous demographic or population 276 

structure influences. 277 

We compared three models in the All of Us sample: 1) the APOE-e4 model; 2) the best-278 

performing PRS model; and 3) the best-performing Elastic Net SNP model. The same evaluation 279 

metrics were utilized for model comparisons. 280 
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2.8 Gene mapping and gene set analysis  281 

To facilitate biological interpretations, we employed FUMA's positional, eQTL, and chromatin 282 

interaction mapping to associate dementia risk SNPs, identified from the top-performing Elastic 283 

Net SNP models, with specific genes.59 We then tested these mapped genes against gene sets 284 

procured from MsigDB, such as positional gene sets and Gene Ontology (GO) gene sets, to 285 

assess the enrichment of biological functions through hypergeometric tests. To correct for 286 

multiple testing, we implemented the Benjamin-Hochberg adjustment.70 Using heatmaps, we 287 

reported and visualized gene sets with an adjusted P-value ≤0.05 and more than one overlapping 288 

gene. 289 

3 Results 290 

3.1 Sample description 291 

The study's primary dataset for model development was derived from EHR linked to the biobank 292 

of the UCLA Health System.40 A detailed depiction of the sample selection steps and resampling 293 

scheme is provided in Figure 1A.  294 

Figure 1B illustrates the finalized UCLA ATLAS samples, stratified by GIA groups. Notably, 295 

the HLA sample comprised 610 patients, while the AA sample consisted of 440 patients, with 296 

126 and 84 dementia cases, respectively, within each group. The distribution of International 297 

Classification of Diseases, 10th Revision (ICD-10) diagnosis codes remained relatively 298 

consistent across the two GIA samples, with Alzheimer's disease (G30) and unspecified 299 

dementia (F03) being the most prevalent diagnoses. However, it is important to highlight that the 300 

AA group exhibited a higher proportion of patients diagnosed with vascular dementia (F01) 301 
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compared to the HLA group. The EAA group, with a limited case count (N = 75), was excluded 302 

from primary analyses but included in sensitivity analyses. 303 

 304 
Figure 1. Sample selection steps and dementia patient characteristics by genetic inferred ancestry groups, 305 
UCLA ATLAS sample. A) Inclusion criteria and case-control selection steps. B) Distribution of diagnosis in ICD-306 
10 codes by genetic inferred ancestry groups. Abbreviations: AA, African Americans; HLA: Hispanic Latino 307 
Americans. ICD-10 codes descriptions: G30, Alzheimer's disease; F03, Unspecified dementia; F02, Dementia in 308 
other diseases classified elsewhere; F01, Vascular dementia; G31, Other degenerative diseases of nervous system, 309 
not elsewhere classified. 310 
Within each GIA group, we found that eligible controls, due to the more stringent inclusion 311 

criteria, displayed a longer span of records and more encounters. There were no significant 312 

differences in other EHR features between dementia cases and controls (Table 1).  313 

Table 1. Descriptive statistics of demographic and electronic health record features by case/control groups, UCLA ATLAS sample, 

stratified by genetic inferred ancestry group 

  Hispanic Latino Americans (N = 610)   African Americans (N = 440)  

  Cases Controls P value   Cases Controls P value  

N 126 484 -   84 356 -  

Age 78.4 (71.3, 81.7) 75.3 (72.6, 79.6) 0.2   78.0 (70.1, 82.6) 75.7 (72.7, 79.9) 0.7  

Sex (Female) 72 (57%) 300 (62%) 0.30   46 (55%) 218 (61%) 0.30  

Span of records (in yrs) 5.9 (2.8, 8.8) 9.6 (7.7, 10.9) <0.001*   6.2 (3.1, 10.1) 9.9 (8.1, 11.4) <0.001*  

Encounters per year 16 (7, 25) 14 (8, 20) 0.05   14 (6, 28) 13 (9, 21) 0.60  
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Number of encounters 73 (26, 156) 124 (73, 205) <0.001*   65 (28, 183) 140 (84, 210) <0.001*  

Number of unique diagnosis 68 (36, 113) 71 (47, 108) 0.40   61 (41, 99) 73 (47, 103) 0.20  

Notes: Continuous variables were reported as median (IQR), and categorical variables were reported as n (%). P-values were calculated based on Wilcoxon 

rank sum test or Pearson's Chi-squared test as appropriate. * Statistically significant at level 0.05. 

 

 
 314 

3.2 Performance comparison for dementia phenotype prediction task 315 

We developed and evaluated a series of logistic regression models to predict the binary dementia 316 

phenotype within the UCLA ATLAS sample, stratified by GIA groups. After regressing out the 317 

effects of age, sex, and ancestry-specific genetic variations as represented by PCs, we 318 

constructed genetic risk models for dementia, incorporating offset corrections within a linearized 319 

framework. The predictive capabilities of these models were assessed using four distinct sets of 320 

genetic markers: 1) APOE-e4 counts, 2) AD PRS, 3) a composite of multiple PRSs, and 4) select 321 

SNPs refined through Elastic Net regularization.68 For the selection of SNP sets, we utilized the 322 

FUMA tool59 to prioritize independent genome-wide-significant SNPs or independent gene-323 

annotated SNPs. We employed the permutation resampling methodology (1000 times) to assess 324 

model performance, ascertain feature importance, and evaluate statistical significance (details see 325 

Methods). 326 

The overall performances of models for predicting dementia phenotypes are visually represented 327 

in Figure 2. No discernible differences were observed among APOE-e4 and all PRS models, 328 

irrespective of the SNP set employed for PRS construction—whether derived from ancestry-329 

specific GWASs, genome-wide-significant SNPs, or gene-annotated SNPs. Notably, the 330 

predictive performance of APOE-e4 and all PRS models within the AA GIA sample exhibited 331 

inferior outcomes compared to the HLA GIA sample, particularly evident in the AUPRC. 332 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.24302355doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.05.24302355
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

 333 
Figure 2. Overall model performance of APOE-e4 count, polygenic risk score, and Elastic Net SNP models in 334 
dementia genetic prediction, UCLA ATLAS sample, stratified by genetic inferred ancestry group. All models 335 
(if not other specified) have regressed out age, sex, and ancestry-specific principal components. Abbreviations: AD, 336 
Alzheimer's Disease; AUROC, Area Under the ROC Curve; AUPRC, Area Under the Precision-Recall Curve; EUR, 337 
European; PRS, Polygenic Risk Score; SNP, Single-Nucleotide Polymorphism. 338 
Elastic Net SNP models demonstrated an overall improvement in dementia prediction across 339 

both GIA groups. The model incorporating gene-annotated SNPs from AD and other dementia-340 

related disease GWASs emerged as the most effective, indicating a collective contribution from 341 

SNPs associated with various dementia-related diseases. Specifically, the leading Elastic Net 342 

SNP model for HLA GIA sample significantly enhanced the AUPRC by 22% (0.451 vs. 0.371, 343 

p-value = 0.003), and the AUROC by 11% (0.715 vs. 0.648, p-value = 0.008) compared to the 344 
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best PRS model. Furthermore, this model outperformed the APOE-e4 count model, with 345 

increments of 21% in AUPRC (p-value = 0.003) and 10% in AUROC (p-value = 0.007).  346 

This model's efficacy was even more pronounced within the AA GIA sample, with an increase in 347 

AUPRC by 61% (p-value < 0.001) and the AUROC by 21% (p-value < 0.001) in comparison to 348 

the best PRS model. Relative to the APOE-e4 count model, the improvements were 47% in 349 

AUPRC (p-value < 0.001) and 17% in AUROC (p-value < 0.001).  350 

We also noted a substantial enhancement in the other performance metrics (based on the 351 

threshold that maximized the MCC) of the Elastic Net SNPs models compared to other models 352 

across both GIA samples (Supplementary Table 3). This was evidenced by marked 353 

improvements in accuracy, precision, and the F1 score. In our sensitivity analysis, applying a 354 

more stringent r2 cut-off (<0.1) for defining independent genome-wide-significant SNPs yielded 355 

results consistent with our initial findings, as detailed in Supplementary Table 4. 356 

In summary, models leveraging SNPs as features identified through machine learning methods 357 

possess the potential to surpass those relying solely on summary scores such as PRSs. 358 

Furthermore, selecting SNPs mapped to genes using functional genomic data holds promise for 359 

further refining predictive performance. 360 

3.3 Featured risk variants and mapped genes 361 

In our analysis of the best-performing Elastic Net SNPs models, we further examined the 362 

features selected by each model. The HLA and AA models identified 15 and 10 risk SNPs, 363 

respectively. A detailed list of SNPs, including related information, is provided in Table 2.  364 

Table 2. Featured risk SNPs from the best-performing Elastic Net SNP model, UCLA ATLAS sample, stratified by genetic ancestry 

rsID CHR POS 
Variable Importance 

(percentage, 95% CI) 
Nearest Gene 

AD 

EUR 

AD 

AFR 

AD 

multi 
LBD PD PSP Stroke 

Hispanic Latino American ancestry (HLA) 

rs429358 19 44908684 0.088 (0.02, 0.143) APOE   x           
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rs2075650 19 44892362 0.086 (0.02, 0.14) TOMM40   x x x       

rs483082 19 44912921 0.071 (0.019, 0.113) APOC1   x x         

rs157581 19 44892457 0.06 (0.015, 0.097) TOMM40   x   x       

rs412776 19 44876259 0.059 (0.019, 0.099) PVRL2 x   x         

rs62120578 19 44713297 0.049 (0.021, 0.075) CTB-171A8.1 x             

rs4803765 19 44855191 0.045 (0.015, 0.076) PVRL2 x             

rs80100206 4 705856 0.044 (0.016, 0.083) PCGF3         x     

rs6857 19 44888997 0.038 (0.011, 0.068) NECTIN2   x           

rs2276412 11 121590137 0.032 (0.008, 0.062) SORL1 x             

rs2220427 4 110793733 0.031 (0.007, 0.056) RP11-777N19.1             x 

rs13067212 3 39404095 0.027 (0.004, 0.055) RPSA           x   

rs435380 19 44903861 0.026 (0.003, 0.063) TOMM40   x x         

rs10422350 19 44725238 0.025 (0.005, 0.048) snoZ6 x   x         

rs1551890 19 44829875 0.023 (0.004, 0.046) BCAM x   x         

African American ancestry (AA) 

rs2627641 19 45205500 0.092 (0.05, 0.166) BLOC1S3 x             

rs8073976 17 44955857 0.077 (0.041, 0.128) C1QL1           x   

rs429358 19 44908684 0.065 (0.031, 0.111) APOE   x           

rs77283277 7 143386852 0.064 (0.03, 0.125) ZYX x             

rs2075650 19 44892362 0.06 (0.028, 0.101) TOMM40   x x x       

rs13032148 2 127107524 0.057 (0.02, 0.107) BIN1 x   x         

rs73936967 19 44890485 0.056 (0.022, 0.101) TOMM40   x           

rs71352239 19 44926286 0.053 (0.023, 0.086) APOC1P1 x   x x       

rs11223641 11 133950127 0.04 (0.012, 0.064) IGSF9B         x     

rs435380 19 44903861 0.035 (0.004, 0.073) TOMM40   x x         
Abbreviations: AD, Alzheimer's Disease; AFR, African American; CI, confidence interval; EUR, European; LBD, Lewy body dementia; PD, Parkinson's 

disease; PRS, Polygenic Risk Score; PSP, progressive supranuclear palsy; SNP, Single-Nucleotide Polymorphism. Note: SNPs marked in red are 

overlapped SNPs identified by both samples.  
 365 

By assessing the feature importance of the SNPs chosen by the models, we discovered that 366 

rs429358 (chr19:44908684, nearest gene: APOE), rs2075650 (chr19:44892362, nearest gene: 367 

TOMM40), and rs483082 (chr19: 44912921, nearest gene: APOC1) were selected as the top 368 

three important predictor for the HLA GIA group, together accounting for ~25% of the total 369 

predictive importance. Conversely, for the AA GIA group, the most influential predictors were 370 

identified as rs2627641 (chr19:45205500, nearest gene: BLOC1S3), rs8073976 371 

(chr17:44955857, nearest gene: C1QL1), and rs429358 (chr19:44908684, nearest gene: APOE). 372 

Two AD-associated risk SNPs, rs429358 and rs2075650, were pinpointed by both GIA Elastic 373 

Net SNPs models, albeit with slight variations in their relative importance. Moreover, both 374 

models identified several risk SNPs of PDD and progressive supranuclear palsy (PSP) as crucial 375 
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predictors of dementia. However, there were notable differences between the models. For 376 

instance, the AA GIA model ascribed significant importance to a PSP-associated risk SNP, 377 

rs8073976, located on chromosome 17. Interestingly, stroke-risk SNPs were only identified as 378 

important predictors by the HLA GIA model, underscoring the distinct genetic underpinnings 379 

influencing these different ancestry groups. 380 

To better understand the biological functions and pathways associated with the identified risk 381 

variants, we then mapped those featured risk SNPs to genes. This was also achieved using 382 

FUMA, which incorporates positional, eQTL, and 3D chromatin mapping.59  383 

Notably, four genes were identified by both non-European GIA models (Figure 3 & 384 

Supplementary Table 5). All shared genes were located near chr19q13, which includes the 385 

well-established AD risk gene cluster, APOE-TOMM40-APOC1.71 According to the enrichment 386 

analysis results, these shared genes are predominantly involved in biological pathways associated 387 

with lipid metabolism. These pathways encompass processes such as the assembly and 388 

organization of protein-lipid complexes, as delineated by the GO terms. Additionally, these 389 

genes play an essential role in regulating cholesterol, triglyceride, amyloid proteins, and 390 

lipoprotein particles, further underscoring the significance of lipid metabolic processes in 391 

dementia. In addition, we investigated ancestry-specific genes. For instance, genes near the 392 

chr17q21 (e.g., CCDC43, GFAP, and C1QL1), and the chr11q25 region (e.g., GSF9B and 393 

JAM3) were uniquely pinpointed by the AA GIA model. 394 
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 395 
Figure 3. Shared and ancestry-specific risk genes identified by the best-performing Elastic Net SNP models, 396 
UCLA ATLAS sample.  397 
In the sensitivity analyses, we performed dementia risk modeling in the EAA GIA sample (N = 398 

673). Similar to other GIA groups, the model incorporating gene-annotated SNPs from AD and 399 

other dementia-related disease GWASs performed the best compared to all other models, 400 

enhancing the AUPRC by 11% (0.511 vs. 0.459), and the AUC by 7% (0.754 vs. 0.703) 401 

compared to the best PRS model. Despite these improvements, the differences in performance 402 

between the leading Elastic Net SNP model and other models did not reach statistical 403 

significance (AUPRC: p-value = 0.438; AUROC: p-value = 0.376). Among the featured 12 risk 404 

SNPs, rs429358 (chr19:44908684, nearest gene: APOE), rs35106910 (chr19:44781009, nearest 405 

gene: CBLC), and rs66626994 (chr19:44924977, nearest gene: APOC1P1) were the most 406 

significant predictors for the EAA GIA group, collectively accounting for ~32% of the overall 407 

predictive importance. After mapping featured SNPs to gene, we also identified the AD-risk 408 

gene cluster, APOE-TOMM40-APOC1, as well as the gene region near chr17q21 (e.g., FMNL1 409 

and SPPL2C) (Supplementary Table 6A-D). 410 
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3.4 Validations in the All of Us sample 411 

We conducted a validation study using the All of Us cohort to evaluate the broad applicability of 412 

our findings obtained from the UCLA ATLAS sample. A comparable sample was selected from 413 

the All of Us Research Hub, employing the same selection scheme to their corresponding GIA 414 

groups in the UCLA ATLAS sample. However, due to the limited number of eligible dementia 415 

cases (N case = 8) in the All of Us EAA GIA sample, we could only validate our models and 416 

findings in the HLA (N_case = 81, N_control = 445) and AA (N_case = 181, N_control = 2,463) 417 

samples. In contrast to the UCLA ATLAS samples, the All of Us cohort samples exhibited a 418 

younger demographic profile, with participants having comparatively shorter durations of EHR 419 

documentation and fewer recorded healthcare visits. Within each GIA sample, we found similar 420 

distributions of demographics and EHR features between dementia cases and eligible controls 421 

(Supplementary Table 7-8).  422 

We applied the model weights trained from the UCLA ATLAS sample to the All of Us sample, 423 

stratified by GIA groups. In the comparison of three representative models, namely 1) the APOE-424 

e4 model; 2) the best-performing PRS model; and 3) the best-performing Elastic Net SNP model, 425 

our results mirrored those from the UCLA ATLAS sample, with the Elastic Net SNP model, 426 

which included gene-annotated SNPs from GWASs of AD and other dementia-related diseases, 427 

outperforming all other models in terms of the AUPRC and AUC in both the HLA and AA GIA 428 

samples (Table 3).  429 

Table 3. Overall model performance of APOE-e4 count, polygenic risk score, and Elastic Net SNP models in 

dementia genetic prediction in validation of All of Us sample, stratified by genetic inferred ancestry  
    HLA (N = 526)   AA (N = 2,644)  

N case   Cases Controls   Cases Controls  

  N 81 445   181 2,463  

Model   AUPRC AUROC   AUPRC AUROC  

APOE e4 count 0.425 (0.39, 0.468) 0.64 (0.62, 0.67)   0.352 (0.317, 0.39) 0.603 (0.573, 0.632)  
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Best 

single 

AD 

PRS 

AFR gene-

annotated  
0.395 (0.34, 0.484) 0.62 (0.58, 0.68)   0.347 (0.299, 0.404) 0.599 (0.549, 0.646)  

Best 

SNPs 

Gene-

annotated 

Neuro SNPs 

0.475 (0.384, 0.533) 0.69 (0.61, 0.73)   0.371 (0.328, 0.414) 0.628 (0.591, 0.66)  

Abbreviations: AA, African Americans; AD, Alzheimer's Disease; AFR, African American; APOE, apolipoprotein E; AUROC, Area Under the ROC 

Curve; AUPRC, Area Under the Precision-Recall Curve; HLA: Hispanic Latino Americans; PRS, Polygenic Risk Score; SNP, Single-Nucleotide 

Polymorphism.  

 

 
 430 

In particular, the Elastic Net SNP model demonstrated a substantial improvement in the AUPRC, 431 

outperforming the APOE-e4 model by 12% in AUPRC (p-value = 0.082), and the best AD PRS 432 

model (AD AFR PRS.map) by 20% in AUPRC (p-value = 0.034) in the HLA GIA sample. 433 

Similarly, in the AA GIA sample, the Elastic Net SNP model showed an enhancement of 5.4% 434 

(p-value = 0.083) and 6.9% (p-value = 0.528) in the AUPRC over the APOE-e4 and best AD 435 

PRS model, respectively. 436 

4 Discussion 437 

Traditional genetic risk models have faced limitations in effectively capturing causal disease risk 438 

variants and accurately assessing genetic risks across diverse populations. To address these 439 

challenges, our present study introduces a novel approach to predicting dementia risks by 440 

leveraging functional mapping of genetic data in conjunction with machine learning methods in 441 

the real-world EHR setting. Our proposed method shows remarkable improvements in prediction 442 

performance compared to well-known approaches like APOE gene and PRS models. We 443 

successfully identified shared and ancestry-specific risk genes and biological pathways 444 

contributing to dementia risks for each non-European GIA group. Finally, we bolstered the 445 

reliability and generalizability of our findings by validating our models using a comparable EHR 446 

sample from the All of Us cohort. 447 
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Our study highlights the significance of prioritizing biologically meaningful SNPs in genetic 448 

prediction. GWASs often identify genomic regions with multiple correlated SNPs, which may 449 

encompass several closely located genes. However, not all of these genes are relevant to the 450 

disease.72 Functional annotation of genetic variants enabled us to target potential causal SNPs by 451 

considering various factors, such as regional LD patterns, functional consequences of variants, 452 

their impact on gene expression, and their involvement in chromatin interaction sites.59 In our 453 

models developed on UCLA ATLAS samples, we achieved significant improvements in model 454 

performance by prioritizing biologically meaningful SNPs, ranging from 21-61% in AUPRC and 455 

10-21% in AUROC across different GIA groups, compared to the APOE-e4 count and the best-456 

performing PRS models. These results underscore the critical role of considering functional and 457 

biological information in enhancing the performance of genetic prediction models, especially in 458 

diverse populations. 459 

It is worth highlighting that no discernible performance differences were observed between PRSs 460 

constructed using genome-wide-significant and gene-annotated SNPs. This can be attributed to 461 

the strong LD between genome-wide-significant and gene-annotated SNPs within the same 462 

genomic region. As a result, these SNPs tend to have similar effect estimates in the GWASs. 463 

Thus, it is expected that the PRSs built with these two sets of SNPs would exhibit a high 464 

correlation (Supplementary Table 9), which further supports the notion that the choice of 465 

genome-wide-significant or gene-annotated SNPs does not significantly impact the predictive 466 

performance of the PRSs in our study. 467 

Moreover, our study emphasizes the significance of incorporating risk factors from multiple 468 

dementia-related diseases when developing predictive models for complex conditions like 469 

dementia. Both ancestry-specific Elastic Net SNP models highlighted several PD and PSP risk 470 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.24302355doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.05.24302355
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

variants as significant predictors of dementia. This finding aligns with the well-known 471 

complexity of dementia as a multifactorial disorder that shares common features with these 472 

related conditions.73 However, it is worth noting that including PRSs of those diseases did not 473 

significantly improve the overall performance (Figure 2). This result is consistent with research 474 

conducted by Clark et al.,74 in which they demonstrated that a combined genetic score, which 475 

incorporated risk variants for AD and 24 other traits, had an equivalent predictive power as the 476 

AD PRS on its own. One possible explanation is that many traits were not dementia etiologies 477 

and diluted the effects of the true causal SNPs in the models. 478 

Our proposed Elastic Net SNPs models identified several shared risk factors across different 479 

ancestries. Notably, a substantial proportion of the identified shared genes were found near the 480 

chr19q13 region, which is well-known for the AD risk gene cluster comprising APOE-481 

TOMM40-APOC1. These findings align with previous research,6,52,64 further supporting the 482 

significance of this genomic region in contributing to the genetic risks associated with dementia. 483 

At the same time, we have discovered compelling evidence supporting our hypothesis that risk 484 

SNPs associated with dementia, along with their corresponding weights, exhibit significant 485 

variations across diverse populations. Notably, our analysis of PRS models revealed that the 486 

performance of PRS built with the European population GWAS was worse when predicting a 487 

non-European GIA group. On the other hand, we also observed that the APOE-e4 count model 488 

performed better than most PRS models in HLA and AA GIA samples. These finding further 489 

reinforces the limitations of standard PRS when applied to non-European populations, in which 490 

attempting to transfer GWAS effect size from one GIA to another GIA, or when using matched 491 

genetic ancestry GWAS with smaller sample size, as demonstrated in several AD and other 492 

phenotype studies.75–78  493 
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In addition, we observed notable differences in the feature importance of various SNPs within 494 

the best-performing Elastic Net models across distinct GIA groups. Consequently, this led us to 495 

identify ancestry-specific genes and distinct biological pathways implicated in the genetic 496 

predisposition to dementia in diverse ancestral samples. These findings highlight the uniqueness 497 

of genetic risk factors and functional pathways in diverse population groups. 498 

Finally, we validated our models using samples from separate EHR linked with genetic data (All 499 

of Us). Our proposed Elastic Net SNP model consistently outperformed the APOE-e4 and the 500 

best PRS models. While the Elastic Net SNP model demonstrated effective performance in both 501 

HLA and AA populations, we observed a decrease in the general performance and significance 502 

(AUPRC and AUROC) in the All of Us sample compared to the UCLA ATLAS sample, 503 

particularly in the AA samples. One potential explanation for this discrepancy is the distinct 504 

population structure within each sample, as revealed by comparing patient characteristics 505 

(Supplementary Table 7). These findings underscore the influence of population-specific 506 

factors on the generalizability of genetic risk models, highlighting the critical need to account for 507 

population diversity in predictive models for complex diseases.  508 

Our study boasts several notable strengths that contribute to its significance and impact. Firstly, 509 

machine learning techniques applied in our study allowed us to infer crucial dementia risk factors 510 

for underrepresented populations, such as HLA and AA, with GWAS summary statistics from 511 

extensively studied populations like Europeans. This approach enabled a deeper understanding of 512 

the genetic landscape of dementia in underrepresented populations, particularly valuable given 513 

the current limitations in large-sample-size GWASs specific to these groups. Secondly, we 514 

fortified the robustness and generalizability of our findings through the validation of our model 515 

on an independent dataset from the All of Us cohort. Furthermore, our innovative approach, 516 
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which incorporated biologically relevant genetic markers and functional annotations, 517 

significantly enhanced the accuracy of disease prediction. This approach can be readily adapted 518 

to predict other complex diseases, extending the scope of its applications and enriching our 519 

understanding of diverse human populations' genetic traits. 520 

However, we acknowledge certain limitations. Firstly, we observed variations in the composition 521 

of dementia subtypes among different GIA groups' case samples. Consequently, the distinct 522 

genes and biological pathways identified by different ancestry models should be interpreted with 523 

this consideration. Secondly, although our study identified potential risk SNPs and genes 524 

associated with dementia, additional experimentation is necessary to understand the precise 525 

mechanisms underlying the association of these factors with dementia. Thirdly, due to the 526 

limited number of dementia cases in the All of Us EAA GIA sample after applying our inclusion 527 

criteria, we could only validate our models and findings in the HLA and AA samples. As a 528 

result, the generalizability of our findings to the EAA ancestry is constrained.  529 

In light of these limitations, further research with more extensive and diverse datasets, 530 

encompassing a broader range of dementia subtypes and GIA groups is imperative to strengthen 531 

the validity and applicability of our study's outcomes. Such efforts will contribute to a more 532 

comprehensive understanding of the genetic complexities underlying dementia across diverse 533 

populations. 534 

5 Conclusions 535 

Our study introduces a novel and robust approach to assessing individual genetic risks for 536 

dementia across diverse populations in a real-world setting. Our study demonstrates the 537 

importance of considering functional and biological information and population diversity when 538 

developing predictive models for complex diseases like dementia. The findings from our 539 
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research provide valuable insights into the intricate genetic factors underlying dementia. 540 

Moreover, this work opens up promising avenues for developing more accurate and efficient 541 

predictive models for complex genetic traits in diverse human populations. Such advancements 542 

can potentially be paired with the development of targeted treatments tailored to the specific 543 

genetic profiles of individuals affected by dementia and related conditions. 544 

6 List of abbreviations 545 

Abbr. Description 

AA African American  

AD Alzheimer's disease  

APOE Apolipoprotein E 

AUPRC Area Under the Precision-Recall Curve 

AUROC area under the receiver operating characteristic  

CADD Combined Annotation-Dependent Depletion  

CI confidence intervals  

EA European American 

EAA East Asian American  

EHR Electronic Health Records 

FTD Frontotemporal dementia 

FUMA Functional Mapping and Annotation of Genome-Wide Association Studies 

GIA Genetic Inferred Ancestry  

GO Gene Ontology  

GWAS Genome-Wide Association Studies  

HLA Hispanic Latino American  

LBD Lewy body dementia  

LD Linkage disequilibrium 

MCC Matthews Correlation Coefficient  

PC principal components 

PDD Parkinson’s disease dementia  

PRS Polygenic risk scores  

SAA South Asian American  

SNP Single-Nucleotide Polymorphisms 
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