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Integration of population-level data sources into an 
individual-level clinical prediction model for dengue 
virus test positivity
Robert J. Williams1, Ben J. Brintz1,2, Gabriel Ribeiro Dos Santos3, Angkana T. Huang3,4,  
Darunee Buddhari4, Surachai Kaewhiran5, Sopon Iamsirithaworn5, Alan L. Rothman6,  
Stephen Thomas7, Aaron Farmer4, Stefan Fernandez4, Derek A. T. Cummings8,9,  
Kathryn B. Anderson4,7, Henrik Salje3*, Daniel T. Leung1,10*

The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, from 
other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. While tradi-
tional clinical prediction models focus on individual patient-level parameters, we hypothesize that for infectious 
diseases, population-level data sources may improve predictive ability. To create a clinical prediction model that 
integrates patient-extrinsic data for identifying DENV among febrile patients presenting to a hospital in Thailand, we 
fit random forest classifiers combining clinical data with climate and population-level epidemiologic data. In cross-
validation, compared to a parsimonious model with the top clinical predictors, a model with the addition of climate 
data, reconstructed susceptibility estimates, force of infection estimates, and a recent case clustering metric signifi-
cantly improved model performance.

INTRODUCTION
Acute febrile illness (AFI) is a common reason for seeking health 
care in low- and middle-income countries (LMICs) (1). Determina-
tion of AFI etiology is often limited by diagnostic testing capacity, 
given the wide spectrum of potential infectious agents. Inappropriate 
use of testing and treatment resources may result in poor outcomes, 
such as the high case fatality rates seen in admitted AFI patients (5 to 
20%) (2–7). Dengue virus (DENV) is a major cause of AFI in LMICs, 
accounting for an estimated 390 million infections, 96 million ill-
nesses, 2 million severe cases, and 21,000 deaths per year (8). The 
differentiation between dengue and other common causes of febrile 
illness is important to avoid misdiagnosis, which can lead to delays in 
initiation of effective treatment and inappropriate use of antibiotics 
(9). Because of the lack of pathognomonic clinical features that reli-
ably distinguish dengue from other febrile illnesses, virological or 
serological laboratory confirmation is required for definitive diagno-
sis. While multiplexed tests that can quickly identify the causative 
pathogen are ideal, they are often unavailable in LMICs due to cost 
and insufficient laboratory infrastructure. Even rapid, point-of-care 
tests may be cost-prohibitive in LMICs (10). Accurate and cost-
effective tools to better determine etiology of fever at the point of care 
are greatly needed to guide the use of diagnostics and therapeutics, 
conserving scarce health care resources.

Clinical decision support systems (CDSS) incorporating prediction 
models may offer a solution to better management of infectious dis-
eases in low resource settings. CDSSs, such as applications on smart-
phone devices, can gather data from a range of online sources and 
implement sophisticated clinical prediction models that would be im-
practical for clinicians to calculate manually. CDSS have proven effec-
tive at improving therapeutic management and reducing unnecessary 
diagnostic tests in both high-income countries (11) and LMICs (12–
14). In Bangladesh, an electronic CDSS was shown to improve clinical 
dehydration assessment and World Health Organization (WHO) diar-
rhea guideline adherence, as well as reduce nonindicated antibiotic use 
in children under five by 29% (12). Traditional predictive models gen-
erally incorporate clinical information that is obtained solely from 
the presenting patient. Predictive models that incorporate additional 
information—such as seasonal or climate predictors, location-specific 
historical prevalence, and characteristics of prior patients—have been 
shown to increase diagnostic accuracy and limit inappropriate anti-
biotic use (14–16).

The underlying probability of being infected by DENV varies by 
both space and time. The risk of DENV transmission depends on con-
ditions that promote mosquito breeding, including when tempera-
tures are warmer (17–19), and the risk of infection is influenced by 
local population immunity, as large outbreak years are typically fol-
lowed by periods of low transmission (20–22). As most DENV trans-
mission is highly focal, it means that population susceptibility profiles 
can be spatially heterogeneous at any time (21, 23–25). Thus, our 
objective is to develop an improved clinical prediction model for den-
gue by integrating temporal and spatial (location-specific) parameters 
including climate data, clustering of recent cases, and population sus-
ceptibility estimates derived from seroprevalence or hospital data in 
the surrounding community. We demonstrate the potential for inte-
grating location- and population-specific data sources into clinical 
prediction models. This approach has the potential to inform the develop-
ment of improved tools to aid clinicians in diagnostic and therapeutic 
decision making for patients presenting with suspected dengue.
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RESULTS
Of the 12,833 participants in the clinical dataset, 5731 (45%) were 
confirmed to have DENV infection by polymerase chain reaction 
(PCR). DENV-positive patients were significantly younger (18 versus 
22 years, P < 0.001; Table 1). Nearly all cases (97.8%) came from the 
11 districts within Kamphaeng Phet province (Table 1). There was no 
significant difference between the probability of testing positive for 
males and females (P = 0.07); no other genders were reported. The 
probability of testing positive differed substantially by age, ranging 
from 26% for those <4 years to 58% for those 15 to 19 years of age 
(Table 2). Patients between the ages of 10 and 14 years, 15 and 19 years, 
and 5 and 9 years comprised the largest proportion of cases (23, 18, 
and 16%, respectively), while older patients comprised a much smaller 
proportion of cases (30 to 34 years, 5%; 35 to 39 years, 4%).

We found that there were significant differences in many of the 
clinical symptoms reported by DENV-positive and DENV-negative 
patients. Table 1 lists the top discriminative symptoms between the 
groups based on random forest and logistic regression. The most 
common symptom reported was fever, followed by headache. In 
univariate analysis, we found that individuals with fever, chills, 
malaise, retro-orbital pain, nausea, headache, and vomiting were 
significantly more likely to test positive for DENV, and individuals 
with cough, rhinitis, and pharyngitis were significantly less likely 
to test positive for DENV (table S2).

When we examined the proportion of positive cases to total 
cases by year and month, we found that both total and positive 
cases significantly increased in the months between June and 
September (P < 0.001, χ2 test). The proportion of positive cases 
differed substantially by year (P < 0.001, χ2 test), ranging from 
19% in 2016 to 90% in 2017. The period of lowest test positivity 
in 2016 and 2017 coincided with the Zika virus epidemic in the 
country (Fig. 1).

Model performance evaluation using only clinical predictors 
and parsimonious variable selection
We first assessed the performance of the model using a tradi-
tional clinical prediction model, which only includes the pre-
senting patient’s information. A random forest classifier using all 
23 clinical features resulted in an average area under the receiver 
operator characteristic curve (AUC) of 69.5% [95% confidence 
interval (CI): 67.5 to 71.5] from repeated cross-validation. To de-
termine the optimal number of variables for a parsimonious pre-
diction model, we used a random forest classifier to analyze the 
improvement in model performance with each additional clini-
cal variable included. Figure 2 shows the improvement in AUC 
with each additional variable using two random forest classifi-
ers—one with all other predictors and the other using only clini-
cal data—as well as a logistic regression model using only clinical 

Table 1. Age, gender, and top discriminative symptoms by DENV positivity. Locations listed are the 11 provinces in Kamphaeng Phet.

Overall (N = 12,833)* DENV negative 
(N = 7,102)*

DENV positive (N = 5,731)* P value†

Age (mean, SD) 21 (15) 22 (18) 18 (11) <0.001

Female 6,401 (50) 3,491 (49) 2,910 (51) 0.068

Symptoms

Cough 4,741 (37) 3,057 (43) 1,684 (29) <0.001

Nausea 6,227 (49) 3,051 (43) 3,176 (55) <0.001

Fever 11,467 (89) 6,129 (86) 5,338 (93) <0.001

Headache 9,146 (71) 4,797 (68) 4,349 (76) <0.001

Rhinitis 2,165 (17) 1,455 (20) 710 (12) <0.001

Pharyngitis 3,534 (28) 2,113 (30) 1,421 (25) <0.001

Location

District <0.001

Bueng Samakkhi 226 (1.8) 166 (2.3) 60 (1.0)

Khanu Woralaksaburi 910 (7.1) 522 (7.4) 388 (6.8)

Khlong Khlung 733 (5.7) 397 (5.6) 336 (5.9)

Khlong Lan 945 (7.4) 645 (9.1) 300 (5.2)

Kosamphi Nakhon 750 (5.8) 407 (5.7) 343 (6.0)

Lan Krabue 556 (4.3) 333 (4.7) 223 (3.9)

Mueang Kamphaeng Phet 5,780 (45) 2,910 (41) 2,870 (50)

Pang Sila Thong 571 (4.4) 324 (4.6) 247 (4.3)

Phran Kratai 1,186 (9.2) 684 (9.6) 502 (8.8)

Sai Ngam 609 (4.7) 363 (5.1) 246 (4.3)

Sai Thong Watthana 288 (2.2) 178 (2.5) 110 (1.9)

Province

Kamphaeng Phet 12,554 (97.8) 6,929 (97.5) 5,625 (98.2)

*Mean (SD); n (%).    †Wilcoxon rank sum test; Pearson’s chi-square test.
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variables. Performance leveled off with three clinical variables: 
age, cough, and nausea. Using a model with only these three pre-
dictors, we achieve an average AUC of 67.0% (95% CI: 65.0 to 
69.1). Table S3 shows the relative frequency of these variables 
by age group. We demonstrate the direction and magnitude of 
the effect of the top predictors by generating partial dependence 
plots from random forest and logistic regression classifiers (fig. S1).

Addition of climate data to the clinical parameter model 
resulted in an improved AUC
Next, we fit models using climate data. To appropriately adjust 
lag time for each climate variable, we fit a random forest classi-
fier using only climate variables and assessed the variables of im-
portance by AUC. A random forest model with recent and lagged 
aggregated climate data without clinical predictors resulted in an 
AUC of 58.7% (95% CI: 56.5 to 60.9). We found that the best 
performing climate variables were visibility, relative humidity, 
wind speed, and precipitation, all lagged by 3 months. We exam-
ined the relationship between the top two performing climate 
predictors—visibility and relative humidity—with the propor-
tion of positive cases each month (Fig. 3). For each climate predictor, 

table S4 lists the odds ratio and compares the mean of each predic-
tor by DENV-positive or DENV-negative groups. When combined 
with the top three clinical variables, climate data performed 
similarly (AUC of 67.2%, 95% CI: 65.2 to 69.3) as clinical data 
alone (AUC of 67.0%, 95% CI: 65.0 to 69.1) (median P = 0.60, 2% 
P < 0.05). However, when climate data were combined with all 
other predictors, model performance improved from an AUC of 
68.4% (95% CI: 66.4 to 70.4) to an AUC of 70.0% (95% CI: 67.9 
to 71.0; median P = 0.07, 45% P < 0.05). To assess whether inte-
grating more location-specific climate data would improve perfor-
mance, we fit models using climate data from each case’s home 
district; however, model performance did not noticeably change. 
Table 2 shows the AUCs for the clinical base model, compared to 
the base model plus the inclusion of additional data sources.

Addition of RS estimates to the clinical parameter model 
resulted in an improved AUC
Using historical hospital case data from the province, we obtained 
estimates of the size of the susceptible population by age for each 
year (across all subdistricts in the province). In our predictive model, 
we used the prior year’s reconstructed susceptibility (RS) estimates. 

Table 2. The AUCs and CIs by base model, compared to base model plus inclusion of additional data sources. “Clinical” indicates the inclusion of the top 
three clinical predictors, “Climate” indicates the inclusion of climate predictors, “RS” indicates the inclusion of reconstructed susceptibility estimates derived 
using national surveillance data, “FOI” indicates the inclusion of force of infection estimates derived using cohort data, and “Cluster” indicates the recent case 
cluster metric.

Model AUC (%) 95% CI

Clinical*Climate*RS*FoI*Cluster 70.0 67.9–71.9

Clinical*Climate*RS*Cluster 69.5 67.5–71.5

Clinical*Climate*FoI*Cluster 69.2 67.2–71.2

Clinical*Climate*Cluster 68.8 66.8–70.8

Clinical*Climate*RS*FoI 68.7 66.7–70.7

Clinical*Cluster 68.7 66.7–70.7

Clinical*FoI*Cluster 68.5 66.5–70.6

Clinical*Climate*RS 68.4 66.4–70.5

Clinical*RS*FoI*Cluster 68.4 66.4–70.4

Clinical*RS*Cluster 68.2 66.1–70.2

Clinical*Climate*FoI 68.1 66.1–70.1

Clinical*FoI 67.7 65.7–69.8

Clinical*RS*FoI 67.6 65.5–69.6

Climate*RS*FoI*Cluster 67.5 65.5–69.6

Clinical*RS 67.5 65.4–69.5

Clinical*Climate 67.2 65.2–69.3

Clinical 67.0 65–69.1

Climate*RS*Cluster 66.8 64.8–68.9

Climate*RS 65.7 63.6–67.8

RS*Cluster 65.7 63.6–67.7

RS 65.6 63.5–67.7

Climate*FoI*Cluster 64.7 62.6–66.8

Climate*Cluster 60.5 58.3–62.7

Climate 58.7 56.5–60.9

Cluster 56.4 54.2–58.6

FoI 57.0 54.8–59.2
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Using logistic regression, we found that secondary RS estimates per-
formed better than primary RS estimates [60.7% (95% CI: 58.6 to 
62.9) versus 52.3% (95% CI: 50.1 to 54.6)]. When added to a random 
forest classifier with climate and/or clinical predictors, the inclusion 
of RS estimates consistently resulted in higher AUCs (Table  2). 
When added to the top three clinical parameters alone, RS estimates 
nonsignificantly improved model performance from an AUC of 
67.0% (95% CI: 65.0 to 68.8) to an AUC of 67.5% (95% CI: 65.4 to 
69.5) (median P = 0.40, 9% P < 0.05). Last, a model including all 
predictors resulted in higher AUCs than a model without RS (me-
dian P = 0.09, 32% P < 0.05).

Addition of subdistrict-specific FoI estimates to the clinical 
parameter model resulted in an improved AUC
We incorporated force of infection (FoI) estimates for each age by 
subdistrict using data from a local cohort study. This assumes that 

the underlying differences in the FoI are constant in time. Using 
logistic regression, FoI estimates had an AUC of 57.0% (95% CI: 
54.8 to 59.2). The inclusion of FoI estimates leads to increases in 
AUC when added to the top clinical predictors, when added to clin-
ical predictors and climate data, and when added to clinical predic-
tors, climate predictors, and RS estimates (Table 2). When included 
with all other predictors, a model with FoI estimates nonsignificantly 
improved performance compared to a model without FoI estimates 
(median P = 0.30, 23% P < 0.05).

Addition of the case clustering metric to the clinical 
parameter model resulted in an improved AUC
Last, we fit a model that assessed for clustering of recent cases based 
on prior patients presenting to the Kamphaeng Phet Provincial Hos-
pital (KPPH). Using logistic regression, we found that the case clus-
tering metric (the number of positive cases in the subdistrict over 

Fig. 1. DENV cases at KPPH, Thailand, 2007–2021. The number of DENV cases (green) over total cases (blue) as proportion of AFI cases by year (A) and month (C) and 
the percentage of positive cases by year (B) and month (D) over the study period. A map of Kamphaeng Phet Province and its 11 districts. Colors indicate the number of 
positive cases (E) and the annual case rate per 100,000 persons (F) within each district between 2007 and 2021.
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the past 30 days divided by the total number of cases from that sub-
district in the study period) had an AUC of 56.4% (95% CI: 54.2 to 
58.6). We found that the use of the case clustering metric consis-
tently improved model performance. Stratifying by the finer spatial 
size of subdistrict consistently outperformed models with prior pa-
tients stratified by province. When added to the top performing 
clinical variables, model performance significantly improved (median 

P =  0.02, 60% of P < 0.05). When compared to a model with all 
predictors except cluster of recent cases, the inclusion of this predic-
tor significantly improved model performance (median P = 0.007, 
79% P < 0.05).

Last, when comparing a model including all predictors with a 
model including only the top clinical predictors, model perfor-
mance improved from an AUC of 67.0% (95% CI: 65.0 to 69.1) to 
an AUC of 70.0% (95% CI: 67.9 to 71.9) (median P = 0.006, 87% 
P < 0.05). Our model had a sensitivity of 55.3%, a specificity of 
70.2%, a positive predictive value (PPV) of 60.0%, and a negative 
predictive value (NPV) of 66.1%.

DISCUSSION
Insufficient diagnostic testing capacity in LMICs necessitates inno-
vative approaches to support clinical decision-making. Here, we 
present a predictive model for DENV infection that integrates mul-
tiple sources of information both intrinsic and extrinsic to the 
patient, including climate data, clinical data, seroprevalence-based 
susceptibility estimates, and historical information from prior 
patients, which results in improved predictive performance. While 
the model with all predictors included did significantly outperform 
the base parsimonious model with only clinical predictors (median 
P = 0.006, 87% P < 0.05), whether the additional 3.0% improvement 
in AUC is clinically useful may be case and clinician dependent. Cer-
tain components of our model require data from sero-surveillance, 
which may not be accessible in all communities. However, simplify-
ing the model by including only the top clinical predictors and the 
case cluster metric alone results in an AUC decrease of only 1.3%. 
These metrics are more readily obtainable and, notably, do not 
necessitate laboratory resources. Nevertheless, we believe that the 
results demonstrate a proof of concept that seroprevalence-based 
susceptibility estimates and climate data can be used to improve 
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predictive performance and may be useful to augment prediction in 
other communicable diseases.

There is a lack of information on the deficiency of testing capac-
ity both in Thailand and globally in LMICs. Accurately quantifying 
the true extent of diagnostic testing deficiencies is challenging as 
LMICs often lack robust national surveillance systems. In a Brazil-
ian study between the years 2010 and 2019, where every suspected 
case of dengue was recorded in a national surveillance database, 
only 11% of the 350,000 cases of suspected dengue infection were 
ultimately tested (26). If we extrapolate the results from Brazil to 
other LMICs, as much as 90% of dengue-like illness may go undiag-
nosed, highlighting the need for tools to bridge the diagnostic gap.

In contrast to most dengue diagnostic models, which rely in part 
on laboratory data, our model relies solely on clinical indicators, 
making it accessible to clinicians without laboratory resources. For 
reference, when compared to a multiple regression model from 
Honduras that used only clinical predictors, our model had a lower 
sensitivity (55% versus 86%) and PPV (60% versus 75%) and a high-
er specificity (70% versus 27%) and NPV (66% versus 44%) (27). 
Models that integrate laboratory values, such as complete blood 
count and hepatic function tests, tend to perform better than mod-
els using only clinical predictors, such as a Bayesian network model 
from Thailand (sensitivity, 74%; specificity, 79%; PPV, 75%; NPV 
79%) (28), a multiple regression model from Sri Lanka (sensitivity, 
49%; specificity, 85%; PPV, 70%; NPV, 70%) (29), and a multiple re-
gression model from Brazil (sensitivity, 80%; specificity, 71%) (30).

DENV transmission can exhibit temporal and geographical het-
erogeneity even at fine spatial scales, with variations observed even 
among neighboring villages (31–33). We thus used patient-extrinsic 
(location-specific) data sources in our models. The improvement in 
AUC with finer spatial units suggests that population-level spatial 
heterogeneity exists at the district level and can be applied to 
individual-level clinical prediction. We expect further improve-
ments in predictive performance if finer-scale location became rou-
tinely available for case data, such as to the community level. The 
improvement with the use of either the province or district level case 
clustering metric highlights the utility of temporal predictors in 
clinical prediction DENV models.

Spatial heterogeneity in dengue incidence may be explained in 
part by micro-climates, which can modify transmission dynamics at 
small scales. For example, within urban heat islands, temperature 
variations of up 10°C compared to other city areas may create condi-
tions more conducive to dengue transmission in cooler tempera-
tures (34). We collected all climate data from the provincial weather 
station in Kamphaeng Phet. We attempted to integrate climate data 
at a more localized level; however, several subdistricts do not have 
weather stations or weather station data were incomplete. When fit-
ting models using data from all districts in Kamphaeng Phet, how-
ever, we found similar results.

Transmission of DENV occurs in a seasonal pattern, and several 
climate variables have been found to increase DENV transmission 
and/or vector populations (17–19, 35, 36). While prior studies have 
demonstrated associations between climate variables like average 
precipitation, relative humidity, temperature, and wind speed, with 
varying lag times between 0 and 3 months, and dengue incidence 
(37–40), our predictive-based analytic framework is not intended to 
examine causal or associative relationships between climate vari-
ables and the outcome of dengue incidence. Our findings suggest 
that site-specific climate variables aid in site-specific models to predict 

DENV infection. While visibility has not been found to be associ-
ated with dengue incidence, we found that it was the most impor-
tant climate predictor. It is plausible that visibility serves as a proxy 
indicator for an underlying factor that affects dengue incidence, 
such as air pollution, which has been postulated as a contributing 
factor (41, 42). Appropriate lag times would need to be tuned to dif-
ferent sites. For use in a clinical decision support tool, the most 
recent climate variables could be gathered from online weather 
sources based on smartphone-based detection of GPS location. An 
optimal utilization of this model would be through a smartphone 
application, as there is a scarcity of electronic medical record avail-
ability in LMICs. This would necessitate access to a smart phone 
device and internet connection; however, clinicians and frontline 
health care workers increasingly have access to smartphone devices, 
even in remote areas of LMICs (43).

There were significant differences between DENV-positive and 
DENV-negative patients in 16 of the 22 clinical symptoms collected 
on presentation, consistent with features known to distinguish 
dengue from other illnesses (44, 45). To minimize clinician input 
requirements (46), we used random forest regression to identify the 
optimal variables to derive a parsimonious model. We were able to 
achieve near-optimal performance with only three clinical variables—
age, nausea, and cough. Numerous multivariable models based 
on clinical presentation have been developed to identify dengue 
infection in patients with AFI. In a review of published logistic 
regression prediction models, rash and/or petechiae was the most 
frequently identified predictor (four of seven models) to dis-
criminate between DENV-positive and DENV-negative patients. 
When evaluated, the absence of cough was found to be a predictor 
in 33% of models. Nausea, which was evaluated in four logistic 
regression models, did not achieve significance in any model. Our 
results differ from those found in many logistic regression models 
and align with more intricate models for DENV diagnosis. Models 
using deep neural networks (47), random forest (48), and gradient 
boosting (XGBoost) (49) noted that age was the best clinical discrim-
inative predictor. These models did not include cough or nausea as 
variables for assessment. We found that with the input of as little as 
one clinical variable—age—along with other predictors can provide 
useful clinical information (AUC: 67.9%, 95% CI: 65.6 to 70.0), 
especially in cases where other symptoms cannot be easily obtained, 
such as in nonverbal or comatose patients.

We show that RS estimates, which reflect the transmission dy-
namics of disease and the susceptible proportion of a population, 
improve individual-level clinical prediction on their own. However, 
there are several factors that make the use of RS estimates problem-
atic, and we favor the use of other location-specific predictors. First, 
RS estimates may be more difficult to obtain across different set-
tings. Moreover, RS estimates may not serve as a reliable indicator 
of protection against DENV, as they represent a mixed concept—
immunity may reflect protection due to herd immunity or may 
indicate increased risk of dengue infection, as higher levels of im-
munity may reflect higher viral circulation of the multiple DENV 
serotypes with substantial immunologic cross-reactivity. Last, RS 
estimates are themselves derived from a model and so should be 
considered with caution.

Our study has several limitations. First, our model was con-
structed using data from a single center and testing was limited to 
patients suspected of having dengue infection, potentially hindering 
the model’s generalizability to a broader population. Similarly, as 
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there was inherent heuristic bias in the patients selected for testing, 
the clinical components of the model reflect this specific population, 
meaning that other important predictors of dengue infection, such 
as fever, were already included in the clinician’s decision-making. 
Our results were limited to internal cross-validation; further studies 
for external validation are necessary. Last, our assessment of the use 
of spatial dynamics in DENV transmission was limited as cases were 
only matched to each district rather than subdistrict or village. In 
the future, models that integrate cases based on a finer spatial scale 
may better assess the role of a patient’s residing location in predic-
tion. Despite these limitations, we demonstrate that predictive 
models that include patient-extrinsic location-specific elements can 
improve prediction and allow for parsimonious models that mini-
mize clinician input and should be considered in future work on 
clinical prediction and decision support tools.

METHODS
Location
Kamphaeng Phet is a province in north-central Thailand, which is 
located 350 km north of Bangkok and has a population of 725,000 
people in a mostly rural and semirural setting (33, 50). We used data 
collected from patients presenting to KPPH, a large, tertiary care 
hospital in the province to identify clinical predictors that could dis-
criminate between DENV-infected and uninfected patients (33, 50).

Hospital-based suspected dengue patient data
We used data on over 12,000 patients presenting to KPPH with sus-
pected dengue between August 2007 and December 2021. The data 
were collected by the U.S. Army Medical Directorate–Armed Forces 
Research Institute of Medical Sciences. As DENV testing in this hos-
pital is provided free of charge and this is a highly DENV-endemic 
region, individuals will be tested for DENV infection if there is any 
suspicion of dengue, however minor. This provides an excellent test 
case to understand whether individual or location-specific risk fac-
tors are associated with testing positive for DENV.

For all suspected dengue cases, we used demographic and clini-
cal information including patient age, sex, home village, admission 
diagnosis, date of admission, presenting symptoms, and DENV 
PCR status. The following signs and symptom were recorded as 
binary variables: fever, chills, malaise, rhinitis, rash, sore throat, 
seizure, cough, nuchal rigidity, eye pain, nausea, headaches, vomit-
ing, joint pain, abnormal movements, anorexia, myalgias, diarrhea, 
dark urine, abdominal pain, and bleeding. DENV infection was 
evaluated using reverse transcription PCR. We recorded the resi-
dence of each patient to the district (Amphoe) level using detailed 
base maps of the region.

Climate variables using NOAA data
Climate and seasonal factors such as temperature, precipitation, 
and humidity influence vector populations and DENV transmission 
(17–19, 35). We used the R package GSODR to gather climate data 
from the central most National Oceanic and Atmospheric Adminis-
tration (NOAA) weather station in the province of Kamphaeng 
Phet, Thailand, which included mean daily temperature, precipita-
tion, dew point, relative humidity, sea level pressure, visibility, and 
wind speed. To better reflect seasonal trends, we aggregated data 
in 14-day increments before the day of the DENV infection predic-
tion. As climate can alter vector feeding behavior (19, 36), we used 

aggregated climate predictors in the 2 weeks before case presenta-
tion. In addition, climate in the months before outbreaks can influ-
ence both vector population dynamics and viral replication (19, 35). 
To determine the appropriate lag time for each climate variable, we 
constructed a random forest classifier with climate variables lagged 
at 1, 2, and 3 months. Using the R package “vip,” we calculated each 
variable of importance by AUC and used the best performing lag 
time for each climate variable.

Estimates of temporal changes in population susceptibility 
using national surveillance system data
We estimate population susceptibility data using age-specific case data 
from the national surveillance system using data from Kamphaeng 
Phet province only. We note that most of the cases in this dataset are 
suspected DENV cases (i.e., without confirmatory testing). We have 
previously developed models to explicitly link underlying infection 
risks to the observed age distribution of cases by age and year to 
estimate annual age-specific FoI in provinces of Thailand up until 
2017 (51). The estimates can be used to reconstruct the buildup of 
immunity in populations by age. Here, we reconstruct population 
susceptibilities in Kamphaeng Phet going into each year, using only 
data before the year, to mimic the real-world use, where only prior 
years’ data are available. As dengue disease severity is greatest for 
secondary infections, we consider two alternative formulations to 
define susceptibility to disease. First, we consider complete sus-
ceptibility, where we use the estimates of the proportion of individu-
als of an age group and year that are completely seronaive. Second, 
we consider the proportion of individuals of an age group and year 
that have experience one prior infection and are therefore at risk of 
increased risk of severe disease.

Estimates of spatial differences in the underlying FoI using 
seroprevalence data from a cohort study
To estimate underlying spatial differences in the FoI in the province, 
we make use of a DENV cohort study in the region, where healthy 
individuals of all ages from throughout Kamphaeng Phet province 
have provided blood (52). The cohort is ongoing. We use data from 
samples collected during baseline blood draws that occurred be-
tween 2015 and 2021. Hemagglutination inhibition assays were 
used to characterize immunity to the four DENV serotypes; indi-
viduals were considered seropositive if they had a titer of 10 or 
greater to any serotype. We have previously used these seropreva-
lence data to estimate the underlying mean FoI and the proportion 
of the population that are susceptible to DENV infection in different 
subdistricts in the province (53). Here, we use these subdistrict-
specific estimates to characterize underlying heterogeneity in the 
FoI in the province. As the cohort data come from 2015 to 2021, 
however, much of the hospital case data we are working with come 
from before the cohort, we are assuming that the FoI is stable in time 
within any location.

Spatial clustering of positive cases based on prior patients 
presenting to the hospital
The local clustering of positive cases from a single area may signal 
local ongoing transmission. To assess for a temporal and spatial 
relationship between cases, we stratified cases that presented to 
KPPH by both district and province and then summed the number 
of positive cases in the 30 days before presentation divided by the 
total cases over the study period from that area.
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Statistical analysis and modeling
We fit random forest classifiers to predict DENV infection. Random 
forests are a machine learning method that constructs a multitude of 
decision trees and averages over them to obtain a prediction robust 
to nonlinearities and interactions between covariates and has been 
widely applied to biomedical sciences for both classification and 
regression (54, 55).

We initially identified the subset of clinical symptoms that were 
most informative of true infection status. To do this, we fit random 
forest models using only clinical predictors and then used the R 
package vip to calculate the variable of importance by AUC for each 
clinical variable. We determined a variable’s importance by calculat-
ing the change in AUC after permuting, or randomly shuffling each 
predictor. To attempt to achieve the most parsimonious prediction 
rule (i.e., the best predictive model requiring the fewest variables to 
be input by clinicians), we fit random forest and logistic regression 
models using training data with consecutively increasing clinical 
predictor set sizes based on the order of importance and applied this 
to the test set to determine the smallest model with the best perfor-
mance. Next, we incorporated the patient-extrinsic factors. We fit 
each random forest classifier using 1000 decision trees and used the 
default number of variables to be randomly considered at each node 
split (mtry = square root of number of candidate variables). In the 
construction of our predictive models, we input climate predictors, 
age, susceptibility estimates, and the case clustering metric as con-
tinuous variables, and we input the optimized clinical predictors as 
binary presence or absence categorical variables. Missing predictor 
data were imputed using the R package “RandomForest.”

We used logistic regression for each predictor to create a uni-
variate comparison between DENV-positive and DENV-negative 
cases. We fit multiple logistic regression models to compare the 
performance of parsimonious models with a random forest clas-
sifier using the same number of predictors.

To assess predictive performance for both random forest and 
logistic regression models, we used repeated cross-validation using 
80% training/20% testing splits with 100 iterations. No testing data 
were used when training the model. In each iteration, predictions on 
the test set were produced and corresponding measures of perfor-
mance were obtained. To determine overall model performance, we 
averaged the AUC and CIs for the 100 iterations. To determine sta-
tistical significance between models, we used a bootstrap method 
over 100 iterations, which involves resampling the data with 
replacement multiple times, creating bootstrap samples. For each 
bootstrap sample, receiver operating characteristic (ROC) curves 
were generated and the differences between the curves were com-
puted. All analyses were completed using R version 4.2.0, and 
model development/validation was completed in accordance with 
the TRIPOD checklist (table S1).

Ethical considerations
This study was approved by the institutional review boards of the 
Thai Ministry of Public Health and Walter Reed Army Institute of 
Research (no. 2119) and the University of Utah (IRB_00150106).
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