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Abstract 
Motivation: A major challenge in cancer care is that patients with similar demographics, tumor types, and medical histories can respond 
quite differently to the same drug regimens. This difference is largely explained by genetic and other molecular variabilities among the 
patients and their cancers. Efforts in the pharmacogenomics field are underway to understand better the relationship between the genome 
of the patient’s healthy and tumor cells and their response to therapy. To advance this goal, research groups and consortia have 
undertaken large-scale systematic screening of panels of drugs across multiple cancer cell lines that have been molecularly profiled by 
genomics, proteomics, and similar techniques. These large data drug screening sets have been applied to the problem of drug response 
prediction (DRP), the challenge of predicting the response of a previously untested drug/cell-line combination. Although deep learning 
algorithms outperform traditional methods, there are still many challenges in DRP that ultimately result in these models’ low generalizability and 
hampers their clinical application.
Results: In this article, we describe a novel algorithm that addresses the major shortcomings of current DRP methods by combining multiple 
cell line characterization data, addressing drug response data skewness, and improving chemical compound representation.
Availability and implementation: MMDRP is implemented as an open-source, Python-based, command-line program and is available at 
https://github.com/LincolnSteinLab/MMDRP.

1 Introduction
Cancer subtypes differ at the pathway activity level, their pat
terns of clinical progression, and their response to radiation, 
immunotherapy, and chemotherapy (Fert�e et al. 2010). 
However, due to inter-patient molecular heterogeneity, even 
patients with the same cancer subtype have widely varying 
responses to the same therapy. This heterogeneity is thought 
to be primarily due to a combination of germline genetic dif
ferences among patients and somatic mutational variations 
within their tumors (Marusyk and Polyak 2010).

Over the past decade, substantial technological advance
ments in biological profiling have given rise to the high 
throughput “omics” era of biology, revolutionizing our un
derstanding of cancer and many other diseases. Going be
yond research insights, ‘omics technologies have opened the 
door to identifying molecular biomarkers that predict when 
cancer will respond to a particular therapy or when a patient 
is at risk of having an adverse reaction to a therapy 
(Karczewski and Snyder 2018). This is the goal of precision 
oncology, which seeks to match a patient and their tumor to 
the therapy most likely to benefit them (Strimbu and Tavel 
2010). Pharmacogenomic screening of cancer cell lines has 
emerged as a critical approach for understanding the role of 
biological background in the sensitivity to therapeutics. Like 
other pre-clinical models, cell lines do not perfectly simulate 
cancer in patients. However, by systematically measuring the 

change induced by different drugs on the viability or growth 
rate of a large panel of cell lines, these studies allow us to un
derstand better how variations in the genome alter treatment 
response. In addition to discovering predictive biomarkers 
that help better match drugs to patients, these efforts can 
help guide the development of new drugs.

Unfortunately, the cross-product of all promising com
pounds, cell lines, and genetic backgrounds is too large to 
evaluate empirically. For this reason, there is considerable in
terest in using the data from high-throughput cell line screen
ing studies to build computational models capable of 
predicting drug efficacy in untested cell lines and compounds. 
This task is referred to as drug response prediction (DRP), 
and it is hoped that the ability to predict cell line response to 
drugs will be a stepping stone to predicting drug response in 
patients. In 2014, the USA’s National Cancer Institute (NCI) 
sponsored a DREAM community competition for DRP 
(Costello et al. 2014). One key insight emerging from this 
competition was that those models that learn complex and 
nonlinear (e.g. nonadditive) patterns within the data outper
form those that do not. Another is that some models leverage 
one data type better than others. Thus, applying the same al
gorithm to multiple data types may not be ideal. A final in
sight from this challenge is that different representations of 
the same data type can provide improved predictive capabili
ties. Despite the prominence of deep learning in many fields, 
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none of the approaches in NCI-DREAM’s challenge applied 
neural networks. Since then, new programmable deep learn
ing frameworks such as TensorFlow (Abadi et al.) and 
PyTorch (Paszke et al. 2019), new cell line characterization 
datasets such as the Cancer Cell Line Encyclopedia (Barretina 
et al. 2012) (CCLE), and new drug response datasets such as 
the Cancer Therapeutics Response Portal version 2 (Basu 
et al. 2013) (CTRPv2) and Genomics of Drug Sensitivity in 
Cancer version 2 (Garnett et al. 2012, Yang et al. 2013, Iorio 
et al. 2016) (GDSC2) have been published (Adam et al. 2020, 
Baptista et al. 2021). In this report, we apply the insights 
from previously published studies to the new drug response 
datasets to develop a Multi-Modal Drug Response Predictor 
(MMDRP), a Python-based program that uses a multi-modal 
neural network to predict the efficacy of drugs on cell lines. 
Some of the innovations of this model include (i) the assign
ment of stronger weights to less frequently observed samples 
during training, which prevents overfitting to the prevalence 
of ineffective drug and cell line combinations; (ii) a modular, 
multi-modal framework that can take advantage of multiple 
omic data types simultaneously for better predictions, with
out requiring that they all be present throughout the training 
dataset; (iii) a graph neural network for drug representation, 
which allows for a more informative representation of drug 
molecules and their structure; and (iv) a final step in which 
the multi-modal input is combined using a suitable fusion 
method, which combines the complementary information 
from various omic sources. We assessed the model’s perfor
mance under various scenarios using a set of custom cross- 
validation schemes, which revealed the benefits of the 
proposed methods compared to previous approaches and 
illuminated the general strengths and weaknesses of the 
model. This work also assesses the utility of previously un
used cell line profiling data for DRP, and acts as a guideline 
for future work in this area.

2 Methods
To train and test MMDRP, we use used the following promi
nent pharmacogenomic datasets:

• Cancer Therapeutics Response Portal version 2 (CTRPv2)— 
A dataset containing the sensitivities of numerous cancer 
cell lines to small-molecules. 

• DepMap (Barretina et al. 2012, Ghandi et al. 2019)—An 
online database that hosts the Cancer Cell Line 
Encyclopedia, which contains various omic profiling data 
on more than a thousand cancer cell lines. 

Exploratory data analysis of these datasets found chal
lenges in data quantity, quality, and coverage. Two issues 
emerged. First, the molecular profiling data is sparse in the 
sense that different cell lines have been profiled for molecular 
characteristics that do not completely overlap (Fig. 1a). 
Furthermore, the distribution of prediction targets, mainly 
the area above the dose–response curve (AAC), is nonuni
form (Fig. 1b). Although this reflects real-world pharmacol
ogy, the data skewness can hamper both the training and the 
testing of any model and should be given extra consideration 
when designing a model.

The major challenges to effective DRP are data quantity, 
quality, skewness, and completeness. To overcome these 
challenges, we devised a modular, multimodal neural 

network that first independently learns from each type of cell 
line profiling data and then intelligently combines these 
learned representations to predict the responses of each cell 
line to each tested drug. This approach overcomes the central 
challenge of data sparsity. It allows the algorithm to learn 
across datasets in which cell line/drug combinations have dif
ferent subsets of molecular profiling data.

The pipeline is divided into three sections: preprocessing, 
training, and validation, where the goal is to predict the drug 
response target. We embed these steps in a hyperparameter 
optimization workflow, searching for more optimal design 
characteristics of the omic processing modules rather than 
choosing arbitrary hyperparameters (Fig. 2). We use area 
above the dose response curve (AAC) as the prediction target 
because it has been shown to improve the predictive accuracy 
of tested models (Sharifi-Noghabi et al. 2021), by capturing 
more information from the experiment than the more com
monly used score, the IC50, which is the half-maximal inhibi
tory concentration. IC50 has not been experimentally 
observed for many cell line and drug combinations within the 
tested dose range in drug response datasets. Furthermore, 
IC50 fails to differentiate two drugs with the same half- 
maximal inhibitory concentration but where one drug has a 
higher inhibitory power at a higher or lower dose (Jang et al. 
2014). During preprocessing, data in each cross-validation 
training and validation split is standardized based only on the 
training split’s mean and standard deviation. Because of the 
data skewness problem, most available data are heavily 
skewed toward ineffective drugs with low AACs, and a mi
nority have higher AACs. To mitigate this problem, we apply 
Label Distribution Smoothing (LDS) (Yang et al. 2021) an al
gorithm that biases the selection of samples in the training set 
towards those that are less frequently seen by assigning a 
weight inversely proportional to the frequency of the drug 
response target to each sample in the training set, forcing 
the model to learn across the entire range of values 
(Supplementary Fig. S1).

In the training step, we train separate autoencoders to com
press their respective molecular profiling inputs into space- 
efficient latent representations that capture the essential 
features needed to reconstruct the original data. In parallel, 
we apply a drug processing module to create a latent repre
sentation of each drug’s properties. In previous approaches, 
drug molecules were represented as Extended-Connectivity 
Fingerprints (Rogers and Hahn 2010) (ECFP), which are 
heavily engineered and precomputed features. This has the 
unwanted side effect of reducing the model’s ability for task- 
specific learning. To improve the representation and extrac
tion of information from drug data in the context of DRP, we 
used a graph neural network (GNN) known as the 
AttentiveFP (Xiong et al. 2020) model. GNNs are a variant 
of neural network architectures that are well suited to model 
structured data such as networks and molecules. The 
AttentiveFP GNN models the physiochemical properties of 
molecules, which is an advantage over the traditionally used 
molecular fingerprints such as ECFP. Furthermore, the 
AttentiveFP model has learnable parameters that allow for 
context-specific learning. In contrast, molecular fingerprints 
do not allow for learning from physiochemical properties but 
rather describe the structural properties of the molecules they 
encode. Note that we use the published AttentiveFP model as 
is and have not tuned its hyperparameters to optimize it to 
the DRP task.
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Figure 1. Exploratory data analysis of DepMap, CTRPv2, and GDSC2 datasets. (a) UpSet plot depicting the overlapping cell lines by data type from 
DepMap, CTRPv2, and GDSC2 datasets. Overlaps are ordered by the size of the intersections among sets. The top intersection of cell lines with gene 
expression, copy number variation, and mutational data with 342 cell lines does not overlap with dose–response data from the CTRPv2 or GDSC2 
datasets. Number of cell lines in each dataset, from the top: RPPA (n¼ 898), Metabolomics (n¼927), Histone Modification (n¼896), microRNA 
Expression (n¼ 954), Protein Quantification (n¼ 378), Gene Expression (n¼1378), Copy Number (n¼ 1742), Mutational (n¼ 1731), GDSC2 (n¼ 806),  
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The latent representations of the cell line’s molecular 
profile must then be combined with each drug’s latent rep
resentation. Low-rank multimodal fusion (Liu et al. 2018) 
(LMF) is a technique for combining multiple modalities in a 
neural network such that the latent representations of dif
ferent features are forced to “interact” with each other. 
LMF has shown higher performance than other fusion 
methods, such as (weighted) summation and simple concat
enation. It is especially important for modeling biology 
since it is known that various biomolecules in the cell inter
act with each other and thus must also be allowed to inter
act when modeling biology in silico. We use LMF as the 
fusion method, and the output from this fusion is then 
passed to another final module, which predicts the AAC. 

We use the Root Mean Squared Error (RMSE) loss for 
model training.

3 Results
To assess the model’s performance, we applied multiple 5- 
fold cross-validation schemes. In each scheme, data were split 
in a manner to prevent the reappearance of specific samples 
from the training set in the validation set. The four splitting 
strategies were: (i) Split by Cell Line, (ii) Split by Drug 
Scaffold, (iii) Split by Both Cell Line and Drug Scaffold (si
multaneous), and (iv) Split by Cancer Type. Each of the four 
splitting strategies was done in a way that ensures that the 
members of a splitting criterion (e.g. cell lines) are not shared 

Figure 1. Continued 
CTRPv2 (n¼844). (b) Distribution of areas above the dose–response curve (AACs) from three drug response datasets. Higher AACs indicated a stronger 
response. In CTRPv2, AAC has a mean of 0.145 and a median of 0.091 (vertical dashed lines). As shown, most cell line–drug combinations in all three 
dose–response datasets have an AAC closer to zero. The higher ranges of AACs above 0.5 are less well represented. (CTRPv2: n¼310 792, GDSC1: 
n¼ 244 247, GDSC2: n¼ 115 732).

AAC AAC

Figure 2. Hyperparameter optimization and training scheme for omic modules of multi-modal DRP models. We first run 40 hyperparameter search trials 
for each omic-specific autoencoder, using the aggregated cross-validation losses as a measure of optimality. After identifying an optimal hyperparameter 
configuration for each autoencoder, we then train each one on all available omics data. Then, we use the encoder submodel and connect it with the DRP 
submodel, and run 40 trials for hyperparameter search, in this case only searching for hyperparameters for the DRP submodel, but also for each cross- 
validation splitting scheme. Finally, we train and validate the model using different splitting schemes. Optimal hyperparameters are available on the 
GitHub repository.
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among the training and validation sets. Each splitting strategy 
results in a separately trained model that is then evaluated in
dependently. To avoid leakage between drugs with similar 
structures, we also split on the drug scaffold, which is the 
backbone of a drug molecule, crucial in determining a mole
cule’s biological activity. This is more stringent than splitting 
on the drug name. The validation samples from each of the 5- 
folds were then combined to report a final total validation 
performance.

Due to data sparsity, autoencoder sub-models using differ
ent molecular profiling data types each received different 
amounts of input data. To ensure fair comparisons, we create 
a restricted dataset that only contains data from cell lines 
with all eight molecular data profiles, i.e. the subset of com
plete samples. This subsetting reduced the initial dataset of 
35 cancer types across 1776 cell lines to 24 cancer types 
across 331 cell lines (Supplementary Fig. S2). This resulted in 
125 526 data points, 40.4% of the original dataset of 
310 792 data points.

Since drug response data is heavily skewed towards nonres
ponsiveness, reporting a single performance score across the 
entire AAC range (e.g. root-mean-squared error or RMSE) is 
misleading. We used the trailing moving average of the mean 
absolute error (MAE) of 500 samples along the entire AAC 
range to report and compare model predictive accuracy. This 
assessment was absent from previous studies. In addition, we 
use RMSE for the performance measurement of a group of 
samples. Note that the RMSE of a single prediction is equiva
lent to its MAE and that lower scores are better for both 
MAE and RMSE.

3.1 Bimodal model performance
We first evaluated the model performance when the drug 
structure and a single molecular profiling type (e.g. RNA ex
pression) were provided. We refer to these as “bimodal mod
els.” Most published methods in DRP use IC50 as the 
prediction target (Baptista et al. 2021), which prevents direct 
comparison of their results to those obtained with MMDRP. 
As the modification of previously published deep learning 
methods in DRP to use AAC instead of IC50 is nontrivial, we 
used a simple yet effective linear algorithm, the elastic net reg
ularized linear regression algorithm, as our comparison con
trol. We then compared the performance of elastic net 
against two implementations of MMDRP: (i) a baseline 
multi-modal neural network that does not employ the LDS, 
LMF, and GNN techniques described above referred to as 
MMDRP-base; and (ii) a neural network using all three tech
niques, hereby referred to as the MMDRP-refined model. 
The changes in performance for each method are reported in 
the Supplementary Materials. Figure 3a compares the predic
tive performance of the baseline elastic net model, the base
line bimodal model, and the MMDRP-refined bimodal 
model. The MMDRP-refined bimodal models consistently 
outperform the baseline bimodal models in both targeted and 
untargeted drugs across the entire AAC range. The “split by 
drug scaffold” splitting method has lower losses than other 
splitting strategies (Fig. 3b). Interestingly, the bimodal model 
with protein quantification data (PROT) performs signifi
cantly better in the “split by drug scaffold” scheme.

All models are generally better at predicting cell-line/drug 
combinations with lower AACs than higher AACs, a trend 
which remained consistent across the different models and 

splitting methods. We expect this because of the strong skew 
towards low AAC values across the training data.

Another observation is that samples treated with targeted 
drug therapies (defined in Supplementary Table S1) are 
harder to predict across the entire AAC range. Targeted 
drugs, on average, have higher AACs in the CTRPv2 dataset 
(Supplementary Fig. S3). Furthermore, only 31 of the 481 
drugs in the CTRPv2 dataset are untargeted, and such imbal
ance can affect the predictive performance of the models.

Unexpectedly, the models’ drug response predictions based 
on cell line mutational data alone had the poorest perfor
mance of all the molecular data types. This was particularly 
evident in the bimodal model. Furthermore, there was less 
consensus on the predictions among the models in samples 
with higher AACs than those in the lower AAC range 
(Supplementary Fig. S4). This shows that models trained with 
different molecular data types may be more suitable for par
ticular cell line and drug combinations than others. The best 
models based on total RMSE losses by omic type, splitting 
method, and drug type are reported in Table 1. No single 
model consistently outperforms others in all scenarios.

3.2 Multi-modal model performance
To assess the benefits of combining different molecular pro
filing data types for drug response prediction, we began by 
creating the trimodal case (drug structure plus two types of 
molecular profiles), resulting in 28 profile combinations for 
baseline and MMDRP-refined model configurations. As in 
the bimodal case, the trimodal MMDRP-refined models con
sistently outperform the baseline models in targeted and 
untargeted samples (Supplementary Fig. S5). More impor
tantly, MMDRP-refined trimodal models consistently outper
form bimodal models across all data types (Fig. 4). In 
addition, among the different splitting schemes, splitting by 
cancer type often has the highest losses in this subset, mean
ing that the generalization to novel cancer types is the most 
challenging task among the four splitting methods 
(Supplementary Fig. S6).

Comparisons between MMDRP-refined quadmodal mod
els to their trimodal and bimodal counterparts in the split by 
cell line scheme reveal that the trimodal models consistently 
outperform the three quadmodal models (Supplementary Fig. 
S7). Within the current configurations tested, trimodal mod
els often outperform higher order combinations. To assess 
the relevance of profiling data types for each drug-cell line 
combination, we measured the frequency of profiling data 
types used by models that predict AAC most accurately for 
each data point (Supplementary Fig. S8).

Note that the frequencies of the best model for each data 
point do not always correspond with the model that has the 
lowest total RMSE loss.

In summary, these results have shown that the combination 
of multiple complementary profiling data types can improve 
drug response predictions, whereas the combination of non
complementary data types can hurt predictive performance. 
Furthermore, improving data processing and learning by 
employing techniques such as the LDS, LMF, and GNN can 
dramatically improve learning from the incomplete and 
skewed drug response data, which can then improve the qual
ity of the predictions in more clinically relevant cell line/drug 
combinations with higher AACs, as well as tar
geted therapies.
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3.3 Predicting activities of drugs with 
repurposing potential
Not infrequently, a drug that has previously been brought to 
market for the treatment of one disease is found to have util
ity in the treatment of a different disease. To measure 

MMDRP’s ability to identify drugs with repurposing poten
tial, we focused on FDA-approved drugs within the CTRPv2 
dataset. First, we found the subset of drugs that have higher 
true AACs in cancer types other than those for which they 
were approved. Then, we asked whether each model, having 

Figure 3. Predictive performance of bimodal models. (a) Comparison of the elastic net, baseline bimodal, and MMDRP-refined bimodal models. (MUT: 
Single Nucleotide Variation, CNV: Copy Number Variation, EXP: Gene Expression, PROT: MS-based Quantitative Proteomics, MIRNA: miRNA expression, 
METAB: metabolite abundance, HIST: Histone H3 modification, RPPA: Reverse-Phase Protein Array-based protein quantification) The use of all three 
methods (LDS, LMF, GNN) results in better performances, especially in the higher AAC ranges and in targeted drugs. Targeted drugs are harder to 
predict than untargeted drugs, especially at higher AACs. The model trained on gene expression data performs the best for samples with targeted drugs, 
followed by the models trained on RPPA, protein quantification, and metabolomics data. However, the model trained on RPPA data performs the best for 
untargeted drugs following the model trained on gene expression data. The mutational model has the lowest performance in both targeted and 
untargeted drugs. (b) Comparison of MMDRP-refined bimodal model performance across three splitting methods (lower MAEs are better).
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seen that cell line for the first time, could predict this higher 
AAC. Supplementary Table S4 is a table of 76 potentially 
repurposable drug-cell line combinations that (i) had an AAC 
at least 0.2 higher in a noncognate cell line as compared to all 
the cell lines derived from the tumor type for which the drug 
is typically prescribed, and (ii) a bimodal MMDRP-refined 
model accurately (MAE � 0.2) predicted this higher AAC, 
having seen the cell line for the first time (for the complete 
list, please refer to the GitHub repository). Interestingly, out 
of the 76 potentially repurposable drugs-cell line combina
tions, 48 of them were predicted with a model that did not 
use gene expression data. Here, we will focus on a typical ex
ample of a potentially repurposable drug.

Ibrutinib is a tyrosine kinase inhibitor, originally designed to 
target Bruton’s tyrosine kinase (BTK). It is FDA-approved for 
Chronic Lymphocytic Leukemia (CLL) and a few subtypes of 
lymphoma. In the CTRPv2 dataset, ibrutinib’s highest AAC in 
tested leukemia cell lines is 0.496. Interestingly, there are five 
breast cancer cell lines with similar or higher empiric AACs in 
CTRPv2. Trimodal MMDRP-refined models trained on data 
split by cell lines accurately predicted the sensitivity of all five 
cell lines to ibrutinib (Table 2). Additional validation of these 
predictions comes from recent research which confirms both 
the empiric and predictive results that ibrutinib treatment can 
inhibit breast cancer progression and metastasis in in vivo 
mouse models (Varikuti et al. 2020).

Although MMDRP has good predictive power, its poten
tial utility as a diagnostic test in its current format is low due 
to the multiple molecular assays that would need to be per
formed on patient tissues or derived cell lines. Therefore, we 
assessed the model’s ability to identify the most informative 
features driving a prediction for biological interpretation and 
biomarker discovery. The Integrated Gradients method helps 
identify features that are most salient for a model’s predic
tions. It works by integrating the gradients of the model’s 
output with respect to the input along a straight path from a 

baseline input (usually all zeros) to the actual input. This 
gives a detailed decomposition of how much each feature 
contributes to the prediction; these contributions are referred 
to as attributions. For biomarker selection, we focused on 
attributions for omic features (e.g. CNV/gene expression fea
tures). Since the attributions are unique to each input sample, 
we focused on samples with higher AAC (more efficacious 
drugs). Although we focused on omic features, we can also 
make attributions to drug features.

We used the Integrated Gradients method to interpret 
the CNV þ EXP MMDRP-refined model for Ibrutinibþ
EFM192A. This model predicts an AAC of 0.51 for Ibrutinib 
in the EFM192A cell line, close to the empiric AAC of 0.658. 
Nine of the ten features attributed with the highest influence 
on the model were all from gene expression data. 
Surprisingly, although Ibrutinib targets BTK, the model did 
not consider the expression of this gene important and gave 
low attribution scores in both gene expression and CNV 
data. BTK’s gene expression is in the 46th percentile com
pared to all cell lines and the 48th percentile in breast cancer 
cell lines, while its copy number is in the 93rd percentile com
pared to all cell lines and the 81st percentile in breast cancer 
cell lines (Fig. 5a). In contrast, of the nine genes selected by 
the algorithm, DERL1, and FAM91A1’s expression levels are 
in the 99th percentile in the EFM192A cell line compared to 
other breast cancer cell lines and display correlation with 
breast cancers’ response to ibrutinib, including EFM192A 
(Fig. 5b). Recent studies have identified Derlin-1 (the protein 
product of DERL1) as a growth promoter in breast cancer, 
and patients with a high expression of Derlin-1 were found to 
have a significantly lower prognosis than patients with a low 
expression of Derlin-1 (Liu et al. 2020, Zeng et al. 2020). 
FAM91A1 was recently identified as a candidate target gene 
for breast cancer risk signal (Beesley et al. 2020). In addition, 
interpreting the model’s GNN drug module using the same 
Integrated Gradients method reveals that the model correctly 

Table 1. Best multimodal models and their RMSE losses by omic type, splitting method, and drug type in the AAC � 0.7 range.a

Omic type (s) Split by both cell line  
and drug scaffold

Split by cell line Split by drug scaffold

Targeted  
drug

Untargeted  
drug

Targeted  
drug

Untargeted  
drug

Targeted  
drug

Untargeted  
drug

CNV þ EXP þMETAB MMDRP-refined 
0.312 

MMDRP-refined 
0.189 

MMDRP-refined 
0.257 

MMDRP-refined 
0.159 

Baseline 
0.559 

Baseline 
0.235 

CNV þ EXP þ PROT MMDRP-refined 
0.395 

MMDRP-refined 
0.215 

MMDRP-refined 
0.36 

MMDRP-refined 
0.222 

Baseline 
0.578 

Baseline 
0.268 

CNV þ EXP þ PROT þ
METAB

MMDRP-refined 
0.45 

MMDRP-refined 
0.197 

MMDRP-refined 
0.364 

MMDRP-refined 
0.174 

MMDRP-refined 
0.528 

Baseline 
0.233 

CNV þ EXP þ PROT þ
MIRNA þMETAB þ
HIST þ RPPA

MMDRP-refined 
0.403 

MMDRP-refined 
0.215 

MMDRP-refined 
0.388 

MMDRP-refined 
0.224 

MMDRP-refined 
0.556 

Baseline 
0.233 

EXP þ RPPA þHIST þ
PROT

MMDRP-refined 
0.4 

MMDRP-refined 
0.218 

MMDRP-refined 
0.358 

MMDRP-refined 
0.223 

Baseline 
0.594 

Baseline 
0.245 

EXP þ RPPA þ PROT MMDRP-refined 
0.588 

MMDRP-refined 
0.197 

MMDRP-refined 
0.468 

MMDRP-refined 
0.174 

Baseline 
0.559 

Baseline 
0.264 

MIRNA þMETAB þ
HIST þ RPPA

MMDRP-refined 
0.471 

MMDRP-refined 
0.196 

MMDRP-refined 
0.41 

MMDRP-refined 
0.173 

Baseline 
0.546 

Baseline 
0.228 

MUT þ CNV þ EXP þ
PROT

MMDRP-refined 
0.341 

MMDRP-refined 
0.208 

MMDRP-refined 
0.38 

MMDRP-refined 
0.232 

Baseline 
0.587 

Baseline 
0.319 

MUT þ CNV þ EXP þ
PROT þMIRNA þ
METAB þHIST þ RPPA

Baseline 
0.516 

Baseline 
0.389 

Baseline 
0.635 

Baseline 
0.352 

Baseline 
0.578 

Baseline 
0.288 

a Bolded values correspond to the lowest RMSE for that column (lower RMSEs are better).
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focuses on ibrutinib’s acryloyl group when predicting its ef
fectiveness on the EFM192A cell line (Fig. 6). Together, these 
results suggest that the algorithm is capturing biologically 
and chemically relevant response features.

4 Discussion
Here, we describe MMDRP, a multi-modal drug response 
prediction model that uses multiple varieties of cell line mo
lecular profiling data and a graph-based representation of 

drugs to predict the activities of drugs in cancer cell lines. As 
measured by MAE and RMSE on drug/cell line combinations 
that present in the training set, MMDRP is markedly more 
accurate than a baseline predictive model constructed using 
the elastic net framework. A direct comparison with other 
deep learning-based predictive models was not possible, as 
they are trained to predict IC50 rather than MAE. Our experi
ments have rigorously evaluated the applicability of multiple 
‘omic data types, both singly and in combination, for drug re
sponse prediction for the first time.

Table 2. Ibrutinib in breast cancer cell lines and top models’ predictions (split by cell line).

Cell line Lineage subtype Data type(s) True AAC Prediction MAE loss

EFM192A Breast 
Adenocarcinoma

METABþRPPA 0.658 0.595 0.063
AU565 EXPþMIRNA 0.623 0.588 0.035
SKBR3 Breast Carcinoma CNVþEXP 0.603 0.586 0.017
ZR7530 Breast 

Ductal Carcinoma
HISTþRPPA 0.585 0.585 0.000

HCC1419 MUTþRPPA 0.511 0.502 0.008

Figure 4. Trimodal versus Bimodal model performances across the AAC range. In all cases, the model that uses a combination of the two omic data 
types from the row and columns performs better than the model that uses an omic data type individually (lower MAEs are better).
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We readily acknowledge the limitation of cell line studies 
to predict the efficacy of a drug in human patients. Indeed, 
the same caveats apply to other pre-clinical models, such as 
organoids and mouse models. Many drugs that seemed 
promising at the pre-clinical phase fail during clinical 
trials. However, it is important to remember that a drug 
cannot advance to a clinical trial unless it has shown 
promise in pre-clinical studies, and pre-clinical models 

represent a bottleneck in the drug discovery pipeline. If we 
can accurately predict which drugs are most likely to be 
effective in pre-clinical models, then we can reduce this bot
tleneck by increasing the pre-clinical pass rate. Hence, drug 
response prediction algorithms are useful for drug discovery 
even if they do not directly advance the precision oncology 
goal of predicting the response of individual patients 
to therapy.
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Figure 5. Cell Line Response to Ibrutinib. (a) Empiric response to Ibrutinib in cell lines from CTRPv2. (Left Panel) Relationship between BTK gene 
expression level (y-axis) and drug response AAC (x-axis). (Right Panel) Relationship between BTK gene copy number (y-axis) and drug response AAC (x- 
axis). The highly sensitive breast cancer cell line EFM192A is highlighted. (b) DERL1 and FAM91A1 relationship with drug response in ibrutinib-prescribed 
cancer cell lines. Among all breast cancer, leukemia, and lymphoma cell lines, DERL1 and FAM91A1’s expressions show higher correlation with AAC in 
ibrutinib-prescribed cancer cell lines than other cell lines (Adjusted R-squared 0.3505 and 0.1336, respectively).
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Our work has identified several issues in the datasets avail
able to DRP researchers. One problem is the difficulty in 
making useful predictions from clinically relevant cell line 
and drug pairs that are underrepresented in the training set. 
This is particularly acute for molecularly targeted drugs, 
which tend to have fewer drug/cell line pairs in drug response 
screening datasets than their older cytotoxic counterparts. 
Results have indicated it is still possible to improve predictive 
performance using existing cell line data for DRP through 
better modeling approaches. The use of label distribution 
smoothing (LDS), low-rank multimodal fusion (LMF), and a 
graph neural network (GNN) for drug representation signifi
cantly improved the performance across the AAC range. 
Lastly, interpreting performant models allows for biomarker 
discovery and drug repurposing.

It has been common for previous DRP approaches to solely 
use gene expression data. This work has shown that other 
cell line profiling data types are not only useful for making 
drug response predictions but also for identifying drugs with 
repurposing potential and the discovery of novel biomarkers. 
Furthermore, combining two or more profiling data types sig
nificantly improved performance over individual use of data 
types, especially when the LMF fusion method was used. 
Based on results from the trimodal models, CNV and gene 
expression data seem to capture cell line biological knowl
edge better and allow the model to generalize better to novel 
cell lines, whereas protein quantification data (PROT & 
RPPA) better capture cell line and drug interactions such that 
the model can generalize better to novel small molecules, es
pecially targeted therapeutics. Mutation data was generally 
ignored by the best-performing classifiers, perhaps due to its 
representation as binary data.

Unexpectedly, higher-order combinations of molecular pro
filing data types had poorer performance than the trimodal 
models. It is unclear whether the added information provided 
redundant information or, alternatively, whether the model 
could not incorporate the new knowledge to make accurate 
predictions. This depends on the different cancer-related path
ways that are dysregulated in different cancers, which may be 
better reflected in a specific group of macromolecules than 
others. We previously noted that the frequencies of the best 
model for each data point do not correspond with the model 
with the lowest total RMSE loss. For example, although the 
model that uses protein quantification data has the lowest total 
RMSE in the “split by drug scaffold,” a larger proportion of 
data points are predicted more accurately by models that use 
gene expression data. Since no single model has the best 

predictive performance on all samples simultaneously, we rec
ommend predicting the AAC of a new sample using all 
reported models and only consider further laboratory assess
ment if at least a few models predict an AAC in the useful 
range. Fortunately, performing predictions using neural net
work models is much faster than training them.

The four cross-validation schemes we used in this project 
gauge the models’ performance in typical industrial and clini
cal settings. For example, the objective may be to repurpose 
an approved drug for novel cancer types or subtypes where 
the evaluation by splitting by cancer type or cell line would 
be more appropriate. In contrast, when designing a novel 
drug, splitting by drug scaffold would be appropriate. As dis
cussed before, most previous work in DRP has failed to assess 
generalization performance to novel cell lines, drugs, and 
cancer types. As molecular testing technologies advance, the 
difference among patients with cancer of the same body sites 
becomes clearer. Therefore, generalization to novel cell lines 
from familiar cancer types is perhaps the most relevant task 
to precision medicine. However, results also show that gener
alization to novel drug scaffolds and targeted drugs is also 
difficult. The latter results are in contrast with previous work 
published by Jang et al. (2014), where it was concluded that 
models with pathway-targeted compounds are most likely to 
yield the most accurate predictors compared with those 
trained on broadly cytotoxic compounds. Therefore, future 
efforts in DRP depend on the expansion of current pharma
cogenomic datasets such that they would encompass more 
cell lines and drug classes. Model-level engineering such as 
the incorporation of drug targets, protein structures, and 
pathway information can also help to enhance existing data.

In addition to cell lines, drugs, and cancer types, model 
generalization across the entire AAC, especially at higher 
AACs, is also vital. We are more interested in effective drugs 
than ineffective ones, although accurate prediction of the lat
ter also has clinical utility. This task is hampered by the lack 
of sufficient data in higher AAC ranges and will require 
expanding existing drug sensitivity datasets.

Recent work on deep learning model interpretation allows 
us to understand the basis for neural network predictions. In 
this report, we applied the Integrated Gradients method to 
dissect model predictions for potentially repurposable tar
geted drugs and identified a series of predictive biomarkers 
that seem to be biologically relevant. In addition to the ibruti
nib and BTK examples we report here, we have assembled a 
list of 76 predictions of effective cell line/drug combinations 
that can be used for drug repurposing and/or biomarker iden
tification (Supplementary Table S4). In addition, complex 
modeling enables the discovery of composite biomarkers 
composed of the nonlinear combination of multiple measure
ments (Califf 2018). Integrated Gradients assigns attributions 
to every single feature, and secondary analyses are required 
to understand the group membership of these features and 
their interactions in order to identify composite biomarkers.

MMDRP addresses some of the previous shortcomings of 
DRP, but certain challenges remain. Among several improve
ments that can be made to the algorithm, one would be to en
hance the GNN by converting it to a graph-based 
autoencoder that could be pre-trained with the millions of 
available 2D compound structures currently available. In ad
dition, different MMDRP models had the best predictive per
formance on different subsets of the data, and it is not clear 
which model’s predictions are the best for making drug 

Figure 6. GNN’s attributions on Ibrutinib used on the EFM192A1 cell line. 
The densely highlighted regions correspond to higher attributions, 
whereas lighter colors correspond with lower attributions. The carbon in 
the circled acryloyl functional group densely highlighted regions forms a 
covalent bond with the C481 residue on the BTK protein. The model 
correctly identifies this functional group as important. For better 
visualization, refer to the PDB entry 5P9J. The same functional group may 
bind to similar active sites in other cancer-related kinases.
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response predictions on a new cell line or drug. To avoid test
ing multiple models, one approach would be creating a model 
that uses all the molecular data types while automatically 
subsetting input features and model parameters most relevant 
to its predictions based on the context of the given cell line 
and drug combination. Recent work such as the Mixture-of- 
Experts (Shazeer et al. 2017) (MoE) or attention mechanisms 
that allow neural networks to ignore inputs contextually 
(Vaswani et al. 2017) can be used for this task. Furthermore, 
biomarker discovery from multimodal omic data can pave 
the way for multimodal, complex composite biomarkers with 
more predictive power than simple biomarkers. Although 
this work did not specifically assess multi-modal biomarkers, 
it serves as a necessary first step toward this new class of bio
markers. We believe these three improvements to the model 
will have the most immediate benefit both for increasing its 
predictive performance and its clinical utility.

Aside from algorithmic challenges, DRP data can also be 
improved in different ways. Cancer cell lines are not geneti
cally stable and display clonal variation (Ben-David et al. 
2018). Single-cell profiling methods can improve pharmaco
genomic screens by allowing us to associate drug sensitivities 
with each distinct subclone. It has already been shown that 
considering clonal heterogeneity can allow for a more accu
rate prognosis and drug sensitivity prediction (Benard et al. 
2021). In addition, we can identify minimal residual disease 
(MRD) cells that are not inhibited by the given drug to focus 
on drug development for those cells (Wu et al. 2020). This 
data can also be used to retroactively assign cell type propor
tions to cell line profiling data, allowing us to add another 
layer of information for DRP. Single-cell profiling can, there
fore, enhance DRP efforts to improve the discovery of per
sonalized therapies.

In summary, drug response prediction is a clinically rele
vant problem that can be solved with current and emerging 
advancements in biological and computer sciences. The meth
ods we have developed in this work have addressed some of 
the challenges and have allowed the identification of future 
work required to bring DRP closer to clinical use.
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