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ABSTRACT

Background

Several factors, including environmental and climatic factors, influence the transmission of
vector-borne diseases. Nevertheless, the identification and relative importance of climatic
factors for vector-borne diseases remain controversial. Dengue is the world’s most important
viral vector-borne disease, and the controversy about climatic effects also applies in this case.
Here we address the role of climate variability in shaping the interannual pattern of dengue
epidemics.

Methods and Findings

We have analysed monthly data for Thailand from 1983 to 1997 using wavelet approaches
that can describe nonstationary phenomena and that also allow the quantification of
nonstationary associations between time series. We report a strong association between
monthly dengue incidence in Thailand and the dynamics of El Nifio for the 2-3-y periodic
mode. This association is nonstationary, seen only from 1986 to 1992, and appears to have a
major influence on the synchrony of dengue epidemics in Thailand.

Conclusion

The underlying mechanism for the synchronisation of dengue epidemics may resemble that
of a pacemaker, in which intrinsic disease dynamics interact with climate variations driven by El
Nifo to propagate travelling waves of infection. When association with El Nifio is strong in the
2-3-y periodic mode, one observes high synchrony of dengue epidemics over Thailand. When
this association is absent, the seasonal dynamics become dominant and the synchrony initiated
in Bangkok collapses.
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Introduction

Dengue is a peri-urban disease in the tropics and
subtropics, transmitted principally by a single species of
mosquito, Aedes aegypti. It has been estimated that 50 to 100
million people each year suffer from dengue and that two-
fifths of the human population are at risk. The geographic
distributions of dengue and of the potentially fatal form,
dengue haemorrhagic fever (DHF), have expanded dramati-
cally in recent decades [1]. The re-emergence of dengue has
been connected to societal changes such as population
growth, urbanisation, and international travel as well as
environmental changes [2,3,4,5,6].

The relationship between climate, human behaviour, and
infectious disease is complex, making it difficult to disen-
tangle the different causal mechanisms [3,4,5,6,7,8,9]. It is well
established that climate is an important determinant of
vector-borne disease epidemics [3,4,5,6,7]. Climate directly
influences the biology of the vectors and thereby their
abundance and their distribution. Significant correlations
have been reported between annual dengue incidence and
estimates of Aedes aegypti populations at a national scale, using
climate-based models [10]. Meteorological conditions can also
directly or indirectly affect pathogen biology and epidemio-
logical factors. Nevertheless, there is relatively sparse evi-
dence of these climatic influences at interannual scales [7].
There is, however, evidence of a relationship between the
timing of dengue epidemics and El Nifio in the Pacific Islands
[11,12] and in some other countries [13].

It is clear that several factors can influence the dynamics of
vector-borne diseases, including environmental and climate
factors, host-pathogen interactions, and population immu-
nological factors [14]. It has been suggested that the effects of
climate are unlikely to contribute to the timing of dengue
epidemics in Thailand [14]. Using monthly data for Thailand
from 1983 to 1997, Cummings et al. [15] identified travelling
waves of dengue, initiated in the capital city, Bangkok, but did
not investigate the potential influence of climate.

Dengue incidence data show complex nonlinear dynamics,
with strong seasonality, multiyear oscillations, and non-
stationarity (changes in dominant periodic components over
time). These features of the data mean that conventional
statistical methods may be inadequate. Using wavelet analysis,
we provide here evidence for a nonstationary association
between El Nifio and the dynamics of dengue in Thailand.
Moreover, we emphasise that this nonstationary association
has some important implications for the characteristics of the
synchronous dynamics of dengue epidemics in Thailand.

We analysed monthly data of DHF in the 72 provinces of
Thailand from 1983 to 1997 [15] in relation to climate
variables. Fourier analysis has traditionally been used to
analyse the relationships between oscillating time series, but
this method is not always appropriate when dealing with
complex environmental time series. In particular, this
approach can neither take into account the often observed
changes in the periodic behaviour of such series, nor quantify
the potential association between such series [16,17,18,19,20].
In contrast to Fourier analysis, wavelet analysis has been
devised to analyse signals with changing spectra and allows
the estimation of the spectral characteristics of a time series
as a function of time. Wavelet analysis of a time series
provides information on the evolution of the periodic
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components over time [16,17] and allows the quantification
of nonstationary association between two time series [18]. To
analyse our datasets we computed the following: (i) wavelet
decomposition and wavelet power spectra, which determine
the significant oscillating modes; (ii) wavelet coherence
patterns, which describe local associations in both time and
frequency domains; (iii) phase angles, which indicate the sign
of the association, either in phase or out of phase [21]; and (iv)
the evolution of the periodic components of each series in
the most significant mode of oscillation. We have analysed the
time series from the 72 provinces individually, but we show
here only results for Bangkok versus the rest of Thailand
combined. Similar results are observed with the time series
from individual provinces (not shown).

Methods

The Data

The numbers of DHF cases used in this study are the
monthly reports of DHF in 72 provinces of Thailand (see
http:/lwww jhsph.edu/cir/dengue.html or [15]). We analysed
two incidence time series from this dataset: the incidence in
Bangkok, the capital city, and the averaged incidence for the
rest of Thailand. The climatic data are climatic indexes that
describe El Nino oscillations: the Nino 3 index and the
Southern Oscillation Index (http://www.cgd.ucar.edulcas/
catalog/climind). We have also quantified the association with
rainfall and temperature for the corresponding time periods
and geographic areas [22]. For the wavelet analyses, the
incidence time series were square root transformed and all
the series were normalised before comparison.

The Wavelet Approach

Among the various approaches developed to study nonsta-
tionary data, wavelet analysis is probably the most efficient. In
particular, this method gives us the possibility of investigating
and quantifying the temporal evolution of time series with
different rhythmic components (see [19] and [20] in a
populational context). Wavelets constitute a family of
functions derived from a single function, the “mother
wavelet”, Y, (¢), that can be expressed as the function of
two parameters, one for the time position 1, and the other for
the scale of the wavelets a, related to the frequency. More
explicitly, wavelets are defined as

el = 2= (25, 1)

In analysis of “natural signals”, the so-called Morlet wavelet
is often applied [16,17]. The Morlet wavelet is defined as

U(t) = n V4 exp(—i2mfy t) exp <%) (2)

The wavelet transform of a time series x(f) with respect to a
chosen mother wavelet is performed as follows:

©
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where the asterisk denotes the complex conjugate form.
The wavelet coefficient W,(a, T) represents the contribution of
the scale a to the signal when time is at different position 7.
Computation of the wavelet transform is done along the
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signal x(¢) simply by increasing the parameter T over a range
of scales a until all coherent structures within the signal can
be identified.

With the wavelet approach, we can estimate the repartition
of variance between scale ¢ and different time location 1. This
is known as the wavelet power spectrum: S,(f, ) = |W,(f, 7).
An important point is that the wavelet scale a is inversely
proportional to the central frequency of the wavelet, f,. In
fact f~ lla when f; = 2n for the Morlet wavelet. Then scale a
can be replaced by the frequency f or the period p; this thus
greatly simplifies interpretation of the wavelet analyses. Using
the inverse wavelet transform, the original signal can be
recovered by integrating the wavelet transform over all scales
and locations. This integration can be done over a given
periodic band, p; to po. This allows us to filter the raw signal
to obtain its oscillating components in the chosen periodic
range.

To quantify statistical relationships between two time
series, wavelet coherence can be computed [18]:

| < Wy(f,1)>]
RxQ‘(f?T) = 2 2
| < WL(f, D)= < Wy (f, 1)>]

(4)

where the angle brackets around terms indicate smoothing
in both time and frequency, W,(f, 1) is the wavelet transform
of series x(t), W,(f, 1) is the wavelet transform of series y(t), and
Wiy(f, 1) = Wa(f, 1) Wy (f, 1) is the cross-wavelet transform.
The wavelet coherence provides local information about
where two nonstationary signals, x(f) and y(t), are linearly
correlated at a particular frequency (or period). R,,(f, 1) is
equal to one when there is a perfect linear relationship at a
particular time and frequency between the two signals.

In complement to wavelet analysis, we can use phase
analysis to characterise the association between signals [21].
The phase difference provides information on the sign of the
relationship (i.e., in phase or out of phase). As the Morlet
wavelet is a complex wavelet, we can write W,(f, T) in terms of
its modulus, |W,(f, T)|, and phase,

_ S, 1)
& (f, ) = tan ROVL(f,7))”

Similarly with the cross-wavelet transform W, ,(f, 1) one can
compute the phase difference:

()

L S(Way(f,1)
buolf:7) = ton”! P ©)

and also the instantaneous time lag AT(t) between the time
series x(¢) and y(t). This time lag is computed as

AT(x) = 74’2;&5) )

with F(1) the instantaneous frequency defined in a given
frequency (or periodic) band:

fo
/ SIWe (/s Dldf
F(r) =4 (8)

/f Wiy, )ldf

We performed all analyses using original algorithms
developed in Matlab (version 6.5, The MathWorks, Natick,
Massachusetts, United States). These original algorithms
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incorporate both cross analyses and adapted statistical
procedures (B. Cazelles, M. Chavez, D. Berteaux, F. Ménard,
J. O. Vik, et al., unpublished data).

Results

The oscillations of the dengue incidence time series are
dominated by the annual mode of oscillation, and the El Nifio
is dominated by the 4-6-y components. Nevertheless, these
time series have a statistically significant common mode of
oscillation around a period of 2-3 y (see Figure S1). Different
temporal associations between dengue and El Nifo are seen
in Bangkok and in the rest of Thailand (Figure 1; see also
Figure S2). In each case, the wavelet analysis shows a main
region of high and significant coherence for the 2-3-y
periodic mode, between 1986-1992 (Figure 1B and 1C). In
Bangkok, increases in dengue incidence precede changes in
El Nino by several months, while for the rest of Thailand
average monthly dengue incidence is perfectly in phase with
El Nino (Figure 1D).

The delay between dengue incidence in Bangkok and in the
rest of Thailand led us to analyse the synchrony in these data
using a wavelet approach (Figure 2). This analysis shows three
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Figure 1. Association between Dengue in Bangkok and in the Rest of
Thailand with El Nifio Based on Wavelet Analysis

(A) Bangkok dengue incidence (blue line), Thailand dengue incidence
(red line), and Nino 3 index (black dashed line). The incidence series
are square root transformed, and all series are normalised.

(B) Wavelet coherence between dengue in Bangkok and Nino 3,
computed using the Morlet wavelet function. The colours code for
power values from dark blue for low coherence to dark red for high
coherence. The nested white dashed lines show the o = 5% and o =
10% significance levels computed based on 1,000 bootstrapped series.
The cone of influence indicates the region not influenced by edge
effects.

(C) Wavelet coherence between dengue incidence in the rest of
Thailand and Nino 3. Colours as in (B).

(D) Phases of time series (colours as in [A]) computed in the 2-3-y
periodic band.

DOTI: 10.1371/journal.pmed.0020106.g001
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Figure 2. Synchronisation between Dengue Incidence in Bangkok and in
the Rest of Thailand

The incidence series are square root transformed, and all series are
normalised.

(A) Wavelet coherence computed based on the Morlet wavelet
function between dengue incidence in Bangkok and in the rest of
Thailand; colours as in Figure 1B. The white dashed lines show the o
= b% significance level computed based on 1,000 bootstrapped
series.

(B) Oscillating components computed with the wavelet transform in
the 2-3-y period band (colours as in Figure 1A).

(C) Oscillating components computed with the wavelet transform in
the 0.8-1.2-y period band (colours as in Figure 1A).

In (B) and (C) the black line shows the time evolution of the
instantaneous time delay in months (AT) between the oscillating
components of the two incidence time series.

DOI: 10.1371/journal.pmed.0020106.g002

main regions of high and significant coherence (Figure 2A).
The first one is for the 2-3-y periodic band for the time
period 1985-1991, the second is for the 1-y bands for 1983-
1984 and for 1992-1996, and the last is for the 5-y band after
1988. This last region must be interpreted cautiously because
of the short length of the time series. We also analysed the
phases (not shown here) and evolution of periodic compo-
nents in the 2-3-y and the 1-y bands for dengue in Bangkok
and in the rest of Thailand (Figure 2B and 2C). The two
incidence series are phase locked with a mean delay of 3 mo
in the 2-3-y band, but only within the period of high
coherence with El Nifio oscillations: 1984-1992. During this
time period, the major part of the variance of the dengue
time series is for this 2-3-y oscillating mode (see Figure S1).
For 1983-1985 and 1991-1997, dengue incidence in Bangkok
follows the incidence in the remainder of Thailand with an
average delay of 1 mo (Figure 2C). In these years, as the 2-3-y
mode is not dominant (see Figure S1), phase locking is seen
only in the 1-y (seasonal) band.

This analysis confirms that there is synchrony between
DHF incidence in Bangkok and the remainder of Thailand in
the 2-3-y periodic band, as recently reported [15]. However,
the present findings show that this synchrony is transient and
appears to be influenced by El Nifo.

In an effort to further understand this relationship, we
analysed spatially averaged estimates of rainfall and temper-
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Figure 3. Association between Precipitation and Dengue Incidence

For precipitation, gridded data [22] spatially averaged over rectan-
gular areas representing Bangkok and the rest of Thailand using the
IRI climate data library (http:/fingrid.ldgo.columbia.edu/SOURCES/
.UEA/.CRU/.New/.CRUO5/.monthly/) are used. The incidence series are
square root transformed, and all series are normalised. The left part
of the figure concerns Bangkok and the right part the rest of
Thailand. On phase graphs, colours are as in Figure 1, and the dotted
lines are for the phase difference between the considered series.

(A) and (D) Wavelet coherence (see Figure 1B).

(B) and (E) Phase evolutions of the considered series computed with
the wavelet transform in the 0.8-1.2-y period band.

(C) and (F) Phase evolutions computed in the 2-3-y period band.
DOL: 10.1371/journal.pmed.0020106.g003

ature by month for Bangkok and for the rest of Thailand. We
first focused on the link between El Nifio and local climatic
variables and found significant coherences in the 2-3-y
periodic band only around the time period 1985-1992 in
Bangkok, whereas this link is more constant throughout the
study period for the remainder of Thailand (see also Figure
S3). There is a highly significant coherence between the yearly
components of DHF and rainfall (Figure 3A-3D). For this
seasonal mode, DHF incidence and rainfall are phase locked
in most of the country (Figure 3E). However, in Bangkok, the
seasonal pattern of DHF incidence usually follows the
seasonal peak of rainfall after a short lag time (Figure 3B).
In Bangkok, in the time period 1986-1991, this association is
replaced by a strong coherence in the 2-3-y band (Figure 3A).
This coherence is also present for the rest of Thailand (Figure
3D), and for this mode, during the period of strong
coherence, the dynamics are out of phase (Figure 3C-3F). A
similar but weaker pattern of associations was observed for
temperature (see also Figure S4).

Discussion

These results provide several pieces of evidence for a
complex, nonstationary relationship between El Nino, cli-
matic variables, and DHF incidence. We have demonstrated a
significant association between El Nifo, climate variables, and
DHF incidence for Bangkok and for the rest of Thailand. Our
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findings suggest that relationships between DHF and climate
have a major influence on the previously reported synchrony
of DHF epidemics [15].

In Bangkok, the association between DHF and climate
occurs in two mutually exclusive modes, a yearly mode and a
2-3-y mode. The observed association between DHF and ElI
Nifo in the 2-3-y periodic mode coincides with the
occurrence of high synchrony of DHF throughout Thailand
initiated in the capital city, Bangkok. If the association in the
yearly periodic mode becomes dominant, the synchrony of
DHF dynamics initiated in Bangkok collapses and both the
dynamics and the synchrony are dominated by the seasonal
components (see Figure 2). In the rest of Thailand, the 2-3-y
mode is never completely dominant and the seasonal mode
persists throughout the dataset.

The complexity of the link between dengue dynamics and
climate is emphasised by the positive correlations in the
seasonal mode and negative correlations in the 2-3-y periodic
mode. The results are consistent with the observation that, in
most countries, dengue is most prevalent in the wet season,
yet on an interannual scale, dengue epidemics have also been
associated with drought [13]. In countries with high rainfall,
drought can cause normally fast-flowing rivers to recede into
a series of stagnant pools, ideal for mosquito breeding. On
the other hand, in the Pacific Islands, dengue epidemics tend
to occur during La Nifa events, which are associated with
conditions warmer and wetter than normal in most islands
[11]. Dengue and climate might be driven by temperature,
rather than rainfall.

Dengue in Bangkok seems to precede the oscillations of the
Nino 3 index. This may reflect the timing of relationships
between El Nifo and climate. Another potential explanation
could be a nonlinear or a threshold effect between large-scale
phenomena and local dengue dynamics, as previously
suggested for cholera [23]. The oscillations of the epidemics
would be produced by local climatic phenomena generated
before the maxima of the large-scale phenomena.

Alternatively, dengue epidemics might start in a nearby
country where the effect of El Nifio is more pronounced.
Movement of infected vectors or travellers between countries
could lead to propagation of the disease in synchrony with El
Nino [12].

Whether the underlying climatic influence is local or
regional, our findings suggest a biologically plausible mech-
anism for the recently reported synchronous dynamics of
DHF in Thailand in the years 1985-1991. We hypothesise that
under certain conditions, interannual variation in local or
regional climate linked to El Niflo may act as a pacemaker,
modulating both the temporal dynamics and the spatial
synchrony of DHF in a travelling wave.

These findings do not exclude an important role for other
factors, such as intrinsic disease dynamics, in explaining
patterns of dengue incidence in Thailand [24]. A previous
study reported no apparent relationship between dengue and
interannual climate in Bangkok between 1966 and 1998 [14].
However, in this work the authors [14] used spectral density
analysis, which is not sensitive to nonstationary effects.
Conventional statistical methods may fail to reveal a strong
relationship between climate and a health outcome when
discontinuous associations are present. The association
between dengue and climate reported here is strong but
transient. Nonstationarity can make it difficult to demon-
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strate even strong climate-health relationships. This has been
reported by Rodo et al. [23] in the case of cholera epidemics.
They have shown that the association between El Nifio and
cholera prevalence in Bangladesh is strong but transient. In
the earlier part of the century, periodic components of
cholera and El Nino were not associated, whereas late in the
century (1980-2001) the relationship between these compo-
nents was strong.

There is considerable interest in the role played by climate
variability as a factor driving diseases [2,3,4,5,6,7,23,24,25].
Wavelet analyses can reveal transient population synchrony
as well as long-term climate-health relationships. Future
studies should use this approach to examine relationships
between climate and dengue fever on regional and global
scales, and attempt to identify the geographical location of
the hypothesised pacemaker.

Supporting Information

Figure S1. Wavelet Transform of the Dengue Incidence and Nino 3
Time Series

The incidence series are square root transformed, and all series are
normalised. The dashed lines, white or black, show the oo = 5%
significant levels computed based on 1,000 bootstrapped series. On
the scalograms in (A), (C), and (E), the cone of influence, which
indicates the region not influenced by edge effects, is also shown.
(A) Wavelet power spectrum (S,(f, 7)) of dengue incidence in Bangkok.
The colours code for power values from dark blue for low values to
dark red for high values.

(B) The average wavelet spectrum of the time series.

(C and D) As in (A and B) but for the time series of dengue incidence
in the rest of Thailand.

(E and F) As in (A and B) but for the time series of the Nino 3 index.

Found at DOI: 10.1371/journal.pmed.0020106.sg001 (358 KB EPS).

Figure S2. Association between Dengue in Bangkok and in the Rest of
Thailand with El Nifilo Based on Wavelet Analysis of the Southern
Oscillation Index

Found at DOI: 10.1371/journal.pmed.0020106.sg002 (72 KB EPS).

Figure S3.Associations between Climate and El Nino

For El Nifo, the Nino 3 index is employed, and for climatic variables,
gridded data [22] spatially averaged over rectangular areas represent-
ing Bangkok and the rest of Thailand using the IRI climate data
library (http:/lingrid.ldgo.columbia.edu/SOURCES/.UEA/.CRU/.New/
.CRUO5/. monthly/) are used. The left part of the figure concerns
Bangkok and the right part the rest of Thailand. The seasonal
components of the time series have been removed by filtering with a
low-pass filter and a cutoff at 15 mo, and all series are normalised. (A-
D) are related to rainfall and (E-H) to temperature.

(A), (C), (E), and (G) Wavelet coherence (see Figure 1.).

(B), (D), (F), and (H) Phase evolutions of the considered series
computed with the wavelet transform in the 2-3-y period band. On
phase graphs, colours are as in Figure 1, and the dotted lines are for
the phase difference between the considered series.

Found at DOI: 10.1371/journal.pmed.0020106.sg003 (499 KB EPS).

Figure S4. Association between Temperature and Dengue Incidence

For temperature, gridded data [22] spatially averaged over rectan-
gular areas representing Bangkok and the rest of Thailand using the
IRI climate data library (http:/ingrid.ldgo.columbia.edu/SOURCES/
.UEA/.CRU/.New/.CRUO5/.monthly/) are used. The incidence series are
square root transformed, and all series are normalised. The left part
of the figure concerns Bangkok and the right part the rest of
Thailand. On phase graphs, colours are as in Figure 1, and the dotted
lines are for the phase difference between the considered series.

(A) and (D) Wavelet coherence (see Figure 1B).

(B) and (E) Phase evolutions of the considered series computed with
the wavelet transform in the 0.8-1.2-y period band.
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(C) and (F) Phase evolutions computed in the 2-3-y period band.
Found at DOI: 10.1371/journal.pmed.0020106.sg004 (270 KB EPS).
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Patient Summary

Background Many things interact to determine when epidemics of
disease occur. Some of these factors are due to the disease-causing
agent itself or what carries it; other factors include climate, both local
and over a larger region. Dengue fever, caused by a virus and
transmitted by a mosquito, has a very complex pattern of epidemics.

What Did the Researchers Do? They examined the pattern of dengue
outbreaks, specifically the most serious form of dengue, dengue
hemorrhagic fever, in the 72 provinces of Thailand between 1983 and
1997 and also looked at climate patterns, especially those caused by El
Nifo.

They found that though El Nifo was associated with some specific
disease outbreaks between 1986 and 1992, it was not associated with all
of them, and for the remaining outbreaks other, more local factors were
likely to be more important.

What Do These Findings Mean? They provide more information about
how dengue epidemics start and spread. They may be useful for those
who plan public health measures in affected countries.

Where Can | Get More Information? The United States Centers for
Disease Control and Prevention has a Web page on dengue: http://
www.cdc.gov/ncidod/dvbid/dengue/

The World Health Organization also provides information: http://
www.who.int/mediacentre/factsheets/fs117/en/

MedlinePlus has a Web page aimed specifically at patients with dengue:
http://www.nIm.nih.gov/medlineplus/ency/article/001374.htm
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