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Abstract

Recessive diseases arise when both copies of a gene are impacted by a damaging genetic 

variant. When a patient carries two potentially causal variants in a gene, accurate diagnosis 

requires determining that these variants occur on different copies of the chromosome (i.e., are in 

trans) rather than on the same copy (i.e., in cis). However, current approaches for determining 

phase, beyond parental testing, are limited in clinical settings. Here, we developed a strategy 

for inferring phase for rare variant pairs within genes, leveraging genotypes observed in the 

Genome Aggregation Database (gnomAD v2, n=125,748 exomes). Our approach estimates phase 

with 96% accuracy, both in trio data and in patients with Mendelian conditions and presumed 

causal compound heterozygous variants. We provide a public resource of phasing estimates for 

coding variants and counts per gene of rare variants in trans that can aid interpretation of rare 

co-occurring variants in the context of recessive disease.

Determination of phase has important implications in clinical genetics in the diagnosis of 

recessive diseases that result from disruption of both copies of a gene, either by homozygous 

variants or compound heterozygous variants. Compound heterozygous variants present a 

challenge because two variants observed within a gene can occur in trans or in cis, and 

only the former results in compound heterozygosity. Currently, phasing in clinical settings is 

performed using parental data, which is expensive and not always available. Thus, there is 

an important need for other approaches to determine phase of variants accurately, easily, and 

cheaply.

There are several approaches for directly inferring phase for variant pairs observed in 

an individual. Phase may be determined directly using data from sequencing reads. 

However, for typical short-read sequencing technologies, read-based phasing methods are 

generally only possible for variants in close proximity to each other1, although sophisticated 

algorithms can phase some variant pairs at slightly longer distances2–4. Long-read 

sequencing technologies that would allow for direct phasing are more expensive and have 

not yet been widely applied in clinical settings5,6, while laboratory-based molecular methods 

for determining phase of variant pairs are low-throughput and technically challenging7. 

Phase can be determined based on transmission of variants from parents to offspring, but 

this approach increases cost and parental DNA is often not feasible to obtain or available. 

Thus, these direct phasing approaches all present critical limitations for determining phase 

of variant pairs within an individual in a clinical setting.
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In contrast, indirect approaches for phasing rely on statistical methods applied to population 

data by identifying shared haplotypes among individuals in a population8–11. However, 

these methods (reviewed in Tewhey et al.12 and Browning and Browning13) require large 

numbers of reference samples (typically n >105 individuals), are computationally intensive, 

and perform less well for rare variants. Furthermore, these approaches cannot be readily 

applied to exome sequencing data, which does not provide enough density of surrounding 

variants. Despite these limitations, these population-based approaches are attractive because 

they do not require sequencing of additional family members or application of expensive 

sequencing approaches.

We sought to address existing challenges of phasing in clinical settings, particularly for 

rare variants observed in exome sequencing data. We leverage the Genome Aggregation 

Database (gnomAD), which performed aggregation and joint genotyping of exome 

sequencing data from 125,748 individuals14. We use these haplotype patterns to generate 

a resource for phasing rare coding variants observed in an individual and identify factors 

that influence the accuracy of our approach. Additionally, to provide a contextualization of 

the background rate when observing biallelic rare variants in individuals with rare diseases, 

we provide statistics for how often variant pairs are observed in trans within gnomAD, 

stratified by allele frequency (AF) and mutational consequence. Finally, we disseminate 

these resources in a user-friendly fashion via the gnomAD browser for community use.

Results

Inference of phase in gnomAD

We sought to address the challenges of phasing variants observed in individuals in clinical 

settings by applying the principle that haplotypes are usually shared across individuals in a 

population (Fig. 1a). If two variants are in trans in many individuals in a population, then 

they are likely to be trans in any given individual’s genome and vice versa. The presence of 

a variant pair in trans in the population also indicates that the variant combination may be 

tolerated in trans. We reasoned that by generating phasing estimates from a large reference 

population, we could infer the phase of variants observed in an individual.

To predict phase, we need to first estimate the haplotype frequencies in the population for 

a given pair of variants. To estimate haplotype frequencies, we used exome sequencing 

samples from gnomAD v2, a large sequencing aggregation database with 125,748 samples 

after rigorous quality control (Methods)14. There are several key advantages of using 

gnomAD as a reference dataset for calculating haplotype frequencies. First, samples in 

gnomAD undergo uniform processing and variant-calling, mitigating the impact of technical 

artifacts. Second, gnomAD provides sufficient sample size to estimate haplotype frequencies 

below 1×10−5. Lastly, gnomAD offers significant diversity, allowing results of our study to 

be applied beyond samples with European ancestry.

We focus on pairs of rare exonic variants occurring in the same gene, which are of the 

greatest interest in the context of Mendelian conditions. We required both variants to have a 

global minor AF in gnomAD exomes <5% and to be coding, flanking intronic (from position 

−1 to −3 in acceptor sites, and +1 to +8 in donor sites) or in the 5’/3’ UTRs. Across 19,877 
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genes, there were 5,320,037,963 unique variant pairs. 11,786,014 variant pairs are carried by 

the same individual at least once in gnomAD of which 105,322 are both singleton variants 

and observed in the same individual, where we are unable to make a phase prediction. We 

performed estimates based on all exome sequencing samples in gnomAD v2, as well as 

separate estimates within each genetic ancestry group (African/African American [AFR]: 

n=8128; Admixed American [AMR]: 17296; Ashkenazi Jewish [ASJ]: 5040; East Asian 

[EAS]: 9179; Finnish [FIN]: 10824; non-Finnish European [NFE]: 56885; Other: 3070; 

South Asian [SAS]: 15308).

For each pair of variants, we first generated pairwise genotype counts in gnomAD, with 

nine possible pairwise genotypes for each pair of variants (Fig. 1a). We then applied the 

Expectation-Maximization (EM) algorithm to each pair of variants to generate haplotype 

frequency estimates based on the observed pairwise genotype counts15. For a given pair of 

variants observed in an individual, the probability of two variants being in trans (Ptrans) is 

the probability of inheriting each of the haplotypes that contain only one of the two variant 

alleles.

Validation of phasing estimates using trio data

To measure the accuracy of our approach, we analyzed variants in a set of 4,992 trios that 

underwent exome sequencing and joint processing with gnomAD. In this trio structure, 

we could use parental transmission as a gold standard for phase and could compare with 

phase as predicted using the EM algorithm in gnomAD samples. We first estimated the 

genetic ancestry of each individual in the trios by projecting on the principal components 

of ancestry in the gnomAD v2 samples (Supplementary Fig. 1). Of the 4,992 children from 

the trios, 4,775 were assigned to one of seven genetic ancestry groups (AFR: 73; AMR: 

358; ASJ: 62; EAS: 1252; FIN: 149; NFE: 2815; SAS: 46). We removed any samples in our 

trio dataset that did not fall into one of the seven aforementioned genetic ancestry groups. 

We used our approach leveraging gnomAD data to estimate phase for every pair of rare 

(global AF < 5% and population AF < 5%) coding and flanking intronic/UTR variants 

within genes observed in either of the parents in the trios. Across the 4,775 trio samples, 

we identified 339,857 unique variant pairs and 1,115,347 total variant pairs (mean 241.7 

variant pairs per trio sample) (Supplementary Fig. 2a). On average, each trio sample had 

64.4 variant pairs where both variants were missense, inframe insertions/deletions (indels), 

or predicted loss-of-function (pLoF), and 0.35 pLoF/pLoF variant pairs (Supplementary Fig. 

2b–c). Nearly all of the variants identified in the trios were single nucleotide variants, with 

only 2.7% being short indels (functional consequences depicted in Supplementary Fig. 3a).

The majority (91.1%) of unique variant pairs in the trio samples were observed in gnomAD 

at least once and thus amenable to our phasing approach (Fig. 1d). By contrast, only 2.1% 

of variant pairs in these samples were within 10 bp of each other, the range in which 

we previously found read-back phasing of the physical read data to be most effective1 

(Supplementary Fig. 3b). 8.2% of variant pairs were within 150 bp, the typical length of 

an Illumina exome sequencing read. Thus, our approach has a much higher ability to phase 

variants than physical read-back phasing data.
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For each variant pair, we calculated the probability of being in trans (Ptrans) based on the 

haplotype frequencies estimated using the EM algorithm applied to gnomAD as described 

above. We found a bimodal distribution of Ptrans scores: the majority of probabilities were 

either very high (> 0.99; suggesting a high likelihood of being in trans), or they were 

very low (< 0.01; suggesting a high likelihood of being in cis) (Fig. 1b, Supplementary 

Fig. 4a–g). Using trio phasing-by-transmission as a gold standard, we generated receiver-

operator curves for distinguishing whether a variant pair is likely in trans and found high 

sensitivity and specificity (area under curve [AUC] ranging from 0.892 to 0.997 across the 

component genetic ancestry groups) (Supplementary Fig. 5a) and high precision and recall 

(Supplementary Fig. 5b).

We next defined Ptrans thresholds for classifying variant pairs as being in cis versus trans (see 

Methods). To set these thresholds, we binned variant pairs observed in the trio data based 

on their Ptrans scores calculated from gnomAD samples from the same genetic ancestry group. 

We used only variants on odd chromosomes (i.e., chromosomes 1, 3, 5, etc) to determine 

Ptrans thresholds. For each Ptrans bin, we calculated the proportion of trio variant pairs that were 

in cis or trans based on phasing-by-transmission. The Ptrans threshold for variant pairs in trans 

was defined as the minimum Ptrans such that ≥90% of variant pairs in that bin were in trans 

based on trio phasing-by-transmission, with a similar approach used for the threshold for 

variants in cis. This resulted in Ptrans values of ≤ 0.02 and ≥ 0.55 as the threshold for variants 

in cis and trans, respectively (Fig. 1c).

We assessed how well our Ptrans thresholds performed by measuring phasing accuracy using 

the phasing estimates generated by the EM algorithm applied to gnomAD against trio 

phasing-by-transmission. For measuring accuracy, we used only variant pairs observed on 

even chromosomes (i.e., chromosomes 2, 4, 6, etc). Of the 91.1% unique variant pairs that 

were amenable to phasing using the EM algorithm in gnomAD, only a minority (8.9%) of 

unique variant pairs had an intermediate Ptrans score (i.e., 0.02 < Ptrans < 0.55) and therefore an 

indeterminate phase (Fig. 1d). We calculated accuracy as the percentage of phaseable variant 

pairs (i.e., both variants present in gnomAD and Ptrans score ≤ 0.02 or ≥ 0.55) that were 

correctly phased. Based on these Ptrans thresholds, the overall phasing accuracy was 95.8%. 

The accuracy for unique variant pairs that are in cis based on trio data was 91.7%, and the 

accuracy for variant pairs in trans was 99.7%. Further exploration of the limitations of this 

approach, including how sample size impacts the number of variant pairs that can be phased, 

are detailed in the Supplementary Note and Supplementary Figure 6.

We calculated the overall percentage of variants correctly phased in a given individual (i.e., 

variants are counted more than once if seen multiple times in the trio data). 96.9% variant 

pairs per individual had both variants present in gnomAD and therefore were amenable 

to phasing, and 92.3% of variant pairs observed in a given individual were correctly 

phased using our approach. For rarer variant pairs (AF < 0.1%), 80.1% of variant pairs 

per individual were correctly phased. Together, these results suggest that our approach can 

generate highly accurate phasing estimates.
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Accuracy of phasing across allele frequencies

Since rare variants are most likely to be of interest in clinical genetics, we assessed the 

accuracy of phasing at different AF bins. We found high accuracy (i.e., proportion correct 

classifications) ranging from 0.779 to 0.988 across pairs of AF bins (Fig. 2). Accuracy 

remained high across allele frequencies for variant pairs in trans. For variant pairs in cis 
based on trio phasing data, accuracy was high when both variants in the pair were more 

common (AF ≥ 0.001). However, accuracy was much lower for rare variants in cis (AF < 

1×10−4), particularly when one variant in the pair is rare and the other is more common 

(Fig. 2c). Variant pairs where both variants are singletons (i.e., observed once in gnomAD) 

were phased fairly accurately for variants in trans based on the trio phasing data (accuracy of 

0.993). Given the lack of information, we do not report the phasing estimates for singleton/

singleton variant pairs in cis (see Supplementary Note).

Accuracy of phasing across genetic ancestry groups

In the above analyses, we used Ptrans estimates calculated from samples in gnomAD 

with the same genetic ancestry group (“population”) in which the variant pair was 

seen in the trio data. We next asked if using all samples in gnomAD to calculate Ptrans

(“cosmopolitan”) would improve accuracy given larger sample sizes from which to calculate 

Ptrans (Supplementary Fig. 7), with the caveat that using the full set of gnomAD samples 

would result in some genetic ancestry mismatching. We found that accuracy was generally 

similar when using population-specific ancestry estimates as compared to cosmopolitan 

estimates (Fig. 3a–b). However, for AFR and EAS, accuracy was slightly lower when 

using cosmopolitan estimates as compared to population-specific estimates specifically for 

variants in trans in these populations. For example, the phasing accuracy for variants in trans 
in the AFR ancestry group was 0.995 when using AFR-specific Ptrans estimates, but dropped 

to 0.952 when using cosmopolitan Ptrans estimates. These results suggest that cosmopolitan 

estimates allow a greater proportion of variants to be phased with generally similar accuracy 

as population-specific estimates, though we do identify certain scenarios where more caution 

is required.

Effect of distance and mutation rate on phasing accuracy

Recombination events, which disrupt the haplotype configuration of variant pairs, should 

influence phasing accuracy. To explore the impact of recombination, we plotted the accuracy 

of our phasing estimates as a function of physical distance between variant pairs. For variant 

pairs in trans, phasing accuracy was maintained across physical distances. However, for 

variant pairs in cis, accuracy rapidly decreased with longer physical distances (Fig. 4a). 

Since physical distance is only a proxy for recombination frequency, we also performed 

this analysis using interpolated genetic distances (Fig. 4b). We found again that variants 

in trans had preserved phasing accuracy across genetic distances, while variants in cis had 

phasing estimates that decreased substantially with genetic distance, particularly at distances 

greater than 0.1 centiMorgan. We also tested the effect of recombination using a set of 

multinucleotide variants, which are variant pairs in cis and very close in physical distance 

(see Supplementary Note).
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Recurrent germline mutations can also result in inaccurate phasing. Rates of recurrent 

mutations are dependent on mutation type (e.g., transition versus transversion) and 

epigenetic marks (particularly CpG methylation), among other factors16–20. Notably, 

transitions have higher mutation rates than transversions18,21 and CpG transitions have the 

highest mutation rates, which increase with higher levels of methylation at the CpG14. To 

better understand the impact of mutation rates on phasing accuracy, we classified each single 

nucleotide variant in the trio data as a transversion, non-CpG transition, or CpG transition, 

with further subclassifications of these as having low, medium, or high DNA methylation 

as before14. We then calculated phasing accuracy as a function of combinations of mutation 

types using the trio data. We found similar accuracy for transversions and transitions (~0.97) 

(Supplementary Fig. 8a). However, mutation rates had a strong impact on accuracy for 

variant pairs in cis but not those in trans (Supplementary Fig. 8b–c). For variant pairs in cis, 
the phasing accuracies were lower at medium and high methylation CpG sites (0.82–0.89) 

than they were for low methylation sites (0.96). These results are consistent with recurrent 

mutations contributing to inaccurate phasing estimates, particularly for variant pairs in cis.

Accuracy in a cohort of patients with Mendelian disorders

To demonstrate our approach in a clinically relevant scenario, we turned to a set of 627 

patients from the Broad Institute Center for Mendelian Genetics (CMG)22. All patients had a 

confident or strong candidate genetic diagnosis of a Mendelian condition based on carrying 

two rare variants in a recessive disease gene consistent with the patient’s phenotype. For 

293 of the 627 patients, both variants were present in gnomAD and thus amenable to 

phasing (Supplementary Table 1). For these 293 variant pairs, we used population-specific 

Ptrans estimates when available (n=215), and cosmopolitan Ptrans estimates for the remaining 

78 variant pairs. Our phasing approach predicted 281 (95.9%) variant pairs to be in trans, 

seven variant pairs (2.4%) to be in cis, and five (1.7%) as indeterminate (0.02 < Ptrans < 0.55
or singleton/singleton variant in the same individual). Had only cosmopolitan Ptrans estimates 

been used, one of the 281 in trans predictions would have been predicted in cis and one 

indeterminate. Of the seven variant pairs predicted to be in cis, six were from patients 

with proband-only sequencing. For these patients, the responsible clinician was contacted to 

ensure phenotype overlap with the disease gene and to pursue parental Sanger sequencing 

for confirmatory phasing by transmission or long read sequencing, where possible. The 

remaining variant pair predicted to be in cis originated from a patient with parental data 

confirming trans phase and thus our inferred phase to be incorrect (Supplementary Table 1). 

Overall, the results suggest that our phasing approach is highly accurate in clinical scenarios 

in patients with suspected Mendelian conditions and can be applied to a large fraction 

(~50% in our cohort) of candidate diagnoses.

Bi-allelic predicted damaging variants

We tabulated for each gene the number of individuals in gnomAD who carry two rare 

heterozygous variants, stratified by the predicted phase using Ptrans cutoffs (i.e., in trans, 

unphased [intermediate Ptrans], and in cis), AF, and the predicted functional consequence 

of the least damaging variant in the pair. For comparison, we tabulated individuals with 

homozygous variants in the same manner. We classified predicted functional consequences 
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as pLoF, missense with deleteriousness scored by REVEL23 in line with recent ClinGen 

recommendations24, or synonymous.

Overall, the number of individuals with rare, compound heterozygous (in trans), predicted 

damaging variants was low (median 0 individuals per gene with compound heterozygous 

loss-of-function variants at ≤ 1% AF, range 0–9) and only occurred in a small number of 

genes (Fig. 5 and Supplementary Fig. 9). 28 genes carried compound heterozygous pLoF 

variants (in 56 individuals) and an additional four genes carried compound heterozygous 

variants with at least a strong REVEL missense predicted consequence (in six individuals) 

at ≤ 1% AF cutoff. The vast majority of these genes have not, to date, been associated with 

disease (Fig. 5b). Manual curation of the pLoF variants resulted in seven high confidence 

“human knock-out” genes (ARHGEF37, CCDC66, FAM81B, FYB2, GNLY, RBKS, and 

SDSL). These genes are not associated with Mendelian disease nor are they known to be 

essential (see Methods). In the remaining 21 of the 28 genes with compound heterozygous 

pLoF variants, true loss-of-function was found to be uncertain or unlikely following manual 

curation, due, for example, to the variant falling in the last exon of the gene, in a weakly 

conserved exon, or in a minority of isoforms (Supplementary Table 2).

Generation of public resource

To make our resource widely usable to clinicians and researchers, we have calculated 

and released pairwise genotype counts and phasing estimates for each pair of rare coding 

variants occurring in the same gene for gnomAD. We have included all variant pairs within 

a gene where both variants have global minor AF in gnomAD exomes < 5%, and are either 

coding, flanking intronic (from position −1 to −3 in acceptor sites, and +1 to +8 in donor 

sites) or in the 5’/3’ UTRs. We have integrated these data into the gnomAD browser so 

that users can easily look up a pair of variants to obtain the genotype counts, haplotype 

frequency estimates, Ptrans estimates, and likely co-occurrence pattern (Extended Data Fig. 

1a). These results are shown for each individual genetic ancestry group and across all 

genetic ancestries in gnomAD v2. In addition, the data are available as a downloadable table 

for all variant pairs that were seen in at least one individual.

Furthermore, we have incorporated counts tables detailing the number of individuals 

carrying two rare variants stratified by AF, and functional consequence. The first table 

counts individuals carrying two rare heterozygous variants by predicted phase (in trans, 

unphased, and in cis) and the second table counts individuals carrying homozygous variants 

(Extended Data Fig. 1b). We envision that these data will aid the medical genetics 

community in interpreting the clinical significance of co-occurring variants in the context of 

recessive conditions. The data for all genes are also available as a downloadable table within 

gnomAD v2.

Discussion

In this work, we leveraged a large exome sequencing cohort to estimate haplotype 

frequencies for pairs of rare variants within genes and show that these haplotype frequency 

estimates can be utilized to predict phase of pairs of variants. We achieve high accuracy 

across a range of allele frequencies and across genetic ancestries and demonstrate that our 
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approach is able to distinguish variants that are likely compound heterozygous in a clinical 

setting. We freely disseminate our results in an easy-to-use browser for the community.

Our work focuses on the challenging, yet common, scenario of determining phase for rare 

variants identified in exome sequencing of rare disease patients. While this scenario is 

common in medical genetics, other phasing approaches such as phasing-by-transmission 

or population-based phasing are challenging to apply. Our approach of using estimated 

haplotype frequencies from gnomAD to predict phase of variant pairs was generally 

accurate across a range of AFs (even for singleton variants) and across genetic ancestries. 

Most notably, 96.9% of rare (AF < 5%) variant pairs in a given individual had both 

variants present in gnomAD and therefore were amenable to phasing using our approach, 

which is much higher than the proportion amenable to phasing using physical read 

data. Overall, 92.3% of variant pairs observed per individual were correctly phased 

using our approach. We did find that our approach was less accurate for rare variant 

pairs in cis (see Supplementary Note). We also found that using “cosmopolitan” phasing 

estimates that leverage more samples in gnomAD generally had similar accuracy to using 

population-specific estimates, except for individuals of EAS and AFR genetic ancestry (see 

Supplementary Note). Thus, our approach can be applied to nearly all rare variant pairs and 

can generate accurate phasing estimates for variants of medical importance in rare recessive 

genetic diseases.

We utilized the EM algorithm to phase pairs of variants instead of more sophisticated 

population-based phasing approaches for several reasons8–11. First, exome and targeted gene 

panel sequencing data are sparse, precluding the use of common non-coding variants as 

a “scaffold” for population-based phasing approaches. Recent work performed population-

based phasing of rare variants from exome sequencing data by combining exome data with 

SNP genotyping arrays11,25. However, SNP genotyping data are not usually generated in 

conjunction with a clinical sequencing test and were not readily available for much of 

gnomAD. Second, rare variants, which are of the greatest interest in Mendelian diseases, 

are challenging to phase using population-based approaches given the small numbers of 

shared haplotypes from which to derive phasing estimates in the population. Recent methods 

have shown accurate phasing of rare variants using genome sequencing data10,11,26, but rely 

on a large genome reference panel. As the numbers of whole genome sequencing samples 

increases in future releases of gnomAD, this may represent a tractable and more accurate 

approach for phasing of rare variants. Exome sequencing and targeted gene sequencing 

remain commonly used in clinical settings, and thus we anticipate that our approach and the 

resources we have generated will remain useful. Third, we found that application of the EM 

algorithm to pairs of variants was more intuitive to illustrate how phasing estimates were 

derived from genotype data, allowing users to more easily assess the reliability of phasing 

estimates. Together, the EM algorithm provided us with the unique ability to phase pairs of 

rare variants in exome data in an intuitive fashion.

We found that there are only a small number of “human knock-out” genes affected by 

predicted compound heterozygous (in trans) loss-of-function variants, and that this number 

is substantially lower than is observed for homozygous loss-of-function variants. These 

compound heterozygous “human knock-out” events occurred in genes that are not known 

Guo et al. Page 9

Nat Genet. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to be essential, an expected finding given that gnomAD is largely depleted of individuals 

with severe and early-onset conditions. When analyzing the 23,672 individuals that carry 

two rare (AF ≤ 1%) pLoF variants, we predict that in 20,421 (86%) of those individuals the 

variant pair is in cis and only ~0.2% confidently predicted to be in trans. This observation 

emphasizes that when a pair of rare pLoF variants is observed in the same gene in an 

individual from a general population sample, it is vastly more likely that these variants are 

carried on the same haplotype than that the individual is a genuine “knock-out” due to 

compound heterozygosity. We note, however, that our ability to identify rare variant pairs in 

trans in gnomAD v2 individuals is limited by the fact the same dataset was used for training 

(see Supplementary Note). We have released counts of co-occurring variant pairs within 

genes as observed in gnomAD, which will aid with interpretation of the clinical significance 

of co-occurring variant pairs.

There are several other important limitations to our work. First, to limit computational 

burden, we only report phasing estimates for rare coding and flanking intronic/UTR variant 

pairs within genes. These are the variant pairs of most interest to the medical genetics 

community, though we acknowledge that phase of deeper intronic variation will become 

important as more genome sequencing is performed. Second, future studies would benefit 

from even larger sample sizes, especially for genetic ancestry groups not well represented in 

our present study. Finally, we have only tested our phasing accuracy in a clinical setting in 

a retrospective manner and future prospective studies will be needed to confirm the clinical 

utility of our approach.

Methods

Ethical compliance and informed consent statement

Our collaborators obtained informed consent for all participants in the Broad Institute Center 

for Mendelian Genetics (CMG), and individual-level data, including genomics and clinical 

data, were de-identified and coded prior to our analyses in this work. We have complied with 

all relevant ethical regulations. The Broad Institute of MIT and Harvard, and Mass General 

Brigham IRB approved this work

gnomAD characteristics and data processing

In this work, we used exome sequencing data from the gnomAD v2.1 dataset (n = 

125,748 individuals, GRCh37). These data were uniformly processed, underwent joint 

variant calling, and rigorous quality control, as described in Karczewski et al.14. Briefly, 

we aggregated ~200k exome and ~20k genome sequencing samples, primarily from case-

control studies of common adult-onset conditions, and applied a BWA-Picard-GATK 

pipeline27. Using Hail (https://github.com/hail-is/hail), we then removed samples that (1) 

failed population- and platform-specific quality control, (2) had second-degree or closer 

relations in the dataset, (3) did not have appropriate consent for release, and (4) had known 

severe, early-onset conditions. For variant quality control, we trained a random forest on 

site-level and genotype-level metrics (e.g., the quality by depth, QD), and demonstrated that 

it achieved both high precision and recall for both common and rare variants.
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We subsetted the final cleaned gnomAD dataset for variants with global AF in gnomAD 

exomes < 5% that were either coding, flanking intronic (from position −1 to −3 in acceptor 

sites, and +1 to +8 in donor sites) or in the 5’/3’ UTRs. In total, this encompasses 

5,320,037,963 unique variant pairs across 19,877 genes when removing singleton/singleton 

variant pairs observed in the same individual. We specifically extracted 20,921,100 pairs of 

variants, most of which were observed at least once in the same individual to create a more 

manageable downloadable file.

We performed analysis in this manuscript using Hail version 0.2.10528, and analysis code is 

available at https://github.com/broadinstitute/gnomad_chets.

Haplotype estimates

Consider two variants, A and B. A and B represent the major alleles, and a and b represent 

the respective minor alleles. There are thus 9 pairwise genotypes for A and B: AABB, 

AaBB, aaBB, AABb, AaBb, aaBb, AAbb, Aabb, and aabb. Of these pairwise genotypes, 

only the phase for the double heterozygote (AaBb) is unknown. From these 9 possible 

genotypes, there are four possible haplotype configurations: AB, Ab, aB, and ab.

For each pair of variants, we applied the expectation-maximization (EM) algorithm15 to 

estimate haplotype frequencies from genotype counts. We set the initial conditions of the 

EM algorithm by partitioning the doubly heterozygous (AaBb) genotype counts equally 

between the AB|ab and Ab|aB haplotype configurations. We ran the EM algorithm until 

convergence or until the absolute value of the difference between consecutive maximum 

likelihood function values was less than 1×10−7. We calculated haplotype frequencies 

based on genotypes present within the same genetic ancestry group (“population-specific”) 

or using all samples from gnomAD (“cosmopolitan”). We performed these analyses of 

haplotype frequency estimates using Hail.

We then calculate Ptrans as the likelihood that any given pair of doubly heterozygous variants 

(AaBb) in a patient is compound heterozygous (Ab|aB). Ptrans can be calculated simply from 

the haplotype frequency estimates (AB, Ab, aB, and ab):

Ptrans = Ab × aB / AB × ab + Ab × aB

Thus, Ptrans simply represents the probability that the patient is compound heterozygous by 

inheriting both the Ab and aB haplotypes.

Determination of Ptrans cutoffs

To determine Ptrans cutoffs for classifying variants as occurring in cis or trans, we binned 

variant pairs on odd chromosomes (chromosome 1, 3, 5, etc) in Ptrans increments of 0.01. For 

each bin, we calculated the proportion of variant pairs in that bin that are in trans based on 

phasing by trio data. We determined the Ptrans threshold for variants in trans as the minimum 

Ptrans such that 90% of variants in the bin are in trans based on trio data. We determined the 

Ptrans threshold for variants in cis as the maximum Ptrans such that 90% of variants in the bin are 

in cis based on trio data. For these calculations, we used only variants where both variants 
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had a population AF ≥ 1×10−4. We used trio samples across all genetic ancestry groups and 

population-specific Ptrans values for determination of the Ptrans cutoffs.

Trio validation data

For validation of our phasing approach, we utilized 4,992 parent-child trios that were jointly 

processed and variant-called with gnomAD. Having access to parental genotypes allows 

us to perform phase-by-transmission and accurately determine whether two co-occurring 

variants in the same gene are in cis or in trans.

First, we estimated genetic ancestry of each individual in the trios by using ancestry 

inference estimates from the full gnomAD dataset, as previously described14. Briefly, we 

selected bi-allelic variants that passed all hard filters, had allele frequencies in a joint exome 

and genome callset > 0.001, and high joint call rates (> 0.99). The variants were then 

LD-pruned (r2 = 0.1) and used in a principal component analysis (PCA). We previously 

used samples with known genetic ancestry to train a random forest on the first 20 principal 

components (PCs) and assigned samples to a genetic ancestry group based on having a 

random forest probability > 0.9. For the trios in this cohort, we projected their PCs for 

genetic ancestry onto the same gnomAD v2 samples to infer the genetic ancestry used here 

(Supplementary Fig. 1). Of these 4,922 trios, 4,775 of the children from the trios were 

assigned to one of the seven genetic ancestry groups in this study based on PCA and were 

used in this study.

We then phased the trio data using the Hail phase_by_transmission (https://hail.is/docs/0.2/

experimental/index.html#hail.experimental.phase_by_transmission) function, which uses 

Mendelian transmission of alleles to infer haplotypes in trios for all sites that are not 

heterozygous in all members of the trio. Assigning haplotypes in trios based on parental 

genotype has traditionally been the gold standard, has switch error rates below 0.1%, and 

importantly errors aren’t dependent on the allele frequency of the variants phased29. To 

maximize our confidence in the genotypes and phasing, we filtered genotypes to include 

only those with genotype quality (GQ) > 20, depth > 10 and allele balance > 0.2 for 

heterozygous genotypes prior to phasing. Sex chromosomes were excluded. In total, there 

were 339,857 unique variant pairs and 1,115,347 total variant pairs.

We compared trio phasing-by-transmission with phasing using our approach on even 

chromosomes (e.g., chromosomes 2, 4, 6, etc). 3,836 of the 4,775 trio samples were in the 

full release of gnomAD and were removed from gnomAD for trio validation. This resulted 

in a set of 121,912 gnomAD samples from which we derived haplotype estimates. We then 

performed phasing using the EM algorithm and calculated Ptrans as above.

Based on the Ptrans estimates, we classified trio variant pairs into 1) unable to phase using our 

approach (either variant not seen in gnomAD, or singleton/singleton variant pairs observed 

in the same individual in gnomAD), 2) indeterminate phase (those with intermediate 

0.02 < Ptrans < 0.55), 3) incorrectly phased, or 4) correctly phased. We calculated accuracy 

as the number of variant pairs correctly phased divided by the number of pairs correctly and 

incorrectly phased.
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CpG analysis

We divided single nucleotide variants seen in the trio data into transitions and transversions. 

Transitions were further subdivided into those that are CpG mutations (5’-CpG-3’ mutating 

to 5’-TpG-3’) and those that are not. For each CpG transition, we calculated the mean 

DNA methylation values across 37 tissues in the Roadmap Epigenomics Project30 and then 

stratified CpG transitions into 3 levels: low (missing or < 0.2), medium (0.2–0.6), and high 

(> 0.6) methylation, as detailed in Karczewski et al14. We calculated phasing accuracy 

as the number of variant pairs correctly phased divided by the number of pairs correctly 

and incorrectly phased. We calculated phasing accuracy for all pairwise combinations of 

transversions, non-CpG transitions, low methylation CpG transitions, medium methylation 

CpG transitions, and high methylation CpG transitions. We included all single nucleotide 

variants in the analysis and utilized population-specific EM estimates.

Calculating accuracy as a function of genetic distance

To estimate the genetic distance between pairs of genetic variants, we interpolated genetic 

distances between variant pairs using a genetic map from HapMap231 (https://github.com/

joepickrell/1000-genomes-genetic-maps). We utilized a HapMap2 genetic map representing 

average over recombination rates in the CEU, YRI, and ASN populations. We then 

ran interpolate_maps.py (downloaded from https://github.com/joepickrell/1000-genomes-

genetic-maps/blob/master/scripts/interpolate_maps.py) for all variant pairs in the phasing 

trio data. We used population-specific Ptrans estimates and calculated phasing accuracy as 

the number of variant pairs correctly phased divided by the number of pairs correctly and 

incorrectly phased.

MNV analysis

We obtained multi-nucleotide variant pairs for which read-back phasing had previously been 

calculated1. We included all multi-nucleotide variant pairs where each constituent variant 

was analyzed in our study. We utilized cosmopolitan Ptrans estimates and calculated phasing 

accuracy as the number of variant pairs correctly phased divided by the number of pairs 

correctly and incorrectly phased.

Rare disease patient analysis

We selected 627 patients from the Broad Institute Center for Mendelian Genetics (CMG)22 

with a confident or strong candidate genetic diagnosis of a Mendelian condition. Each 

patient carried two presumed bi-allelic variants in an autosomal recessive disease gene 

consistent with the patient’s phenotype. For 293 of the patients, both variants were present 

in gnomAD and thus were amenable to our phasing approach. For 168 of the 293 patients, 

trio-sequencing (i.e., sequencing of the proband and the two unaffected biological parents) 

had been performed. For these 168 individuals with parental DNA sequencing, we were able 

to confirm phasing of the two variants via phase-by-transmission.

Determining counts of individuals with two rare, damaging variants

We annotated variants by the worst consequence on the canonical transcript by the 

Ensembl Variant Effect Predictor (VEP)32. We applied LOFTEE14 to annotate LoF 
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variants and counted only high confidence LoF variants as “pLoF”. We used REVEL23 

in line with recent ClinGen recommendations24: we counted REVEL scores ≥ 0.932 as 

“strong_revel_missense”, ≥ 0.773 as “moderate_to_strong_revel_missense”, and ≥ 0.644 as 

“weak_to_strong_revel_missense”.

We predicted phase (cis or trans) based on the Ptrans thresholds for all variant pairs. All 

singleton/singleton variant pairs (AC = 1) and variant pairs with an indeterminate Ptrans values 

(0.02 < Ptrans < 0.55) were annotated as unphased.

We selected five AF thresholds for analysis and filtered variant pairs based on the highest 

global AF and, where available, the “popmax” AF of each variant in gnomAD (i.e., the 

highest AF information for the non-bottlenecked population [AFR, AMR, EAS, NFE, 

SAS]): 0.5%, 1%, 1.5%, 2%, and 5%. We also filtered out all variant pairs containing a 

variant with an AF > 5% in a bottlenecked population.

We performed gene-wise calculations of the number of individuals carrying a variant pair 

(irrespective of phase) and the number predicted to be in trans, unphased (indeterminate), 

and the number predicted to be in cis. We performed gene-wise calculations separately by 

AF threshold and functional consequences (26 consequence groups). If individuals carried 

multiple variant pairs in the same gene with different phase predictions, we counted the 

individual in only one phase group, prioritizing in trans over unphased and unphased over in 

cis. These gene-wise counts are displayed in the “Variant Co-occurrence” gnomAD browser 

feature. For individuals carrying multiple variant pairs in the same gene with different 

phase predictions, we also performed separate calculations allowing these individuals to be 

counted in multiple phase groups (data available to download).

Essential gene lists

We queried the following essential gene lists for the presence of the true “human knock-out” 

genes identified in this study:

• 2,454 genes essential in mice from Georgi et al. 201333

• 553 pan-cancer core fitness genes from Behan et al., 201934

• 360 core essential genes from genomic perturbation screens from Hart et al. 

201435

• 684 genes essential in culture by CRISPR screening from Hart et al. 201736

• 1,075 genes annotated by the ADaM analysis of a large collection of gene 

dependency profiles (CRISPR-Cas9 screens) across human cancer cell lines from 

Vinceti et al. 202137
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Extended Data

Extended Data Fig. 1: Publicly available browser for sharing phasing data.
a, Sample gnomAD browser output for two variants (GRCh37 1–55505647-G-T and 1–

55523855-G-A) in the gene PCSK9. On the top, a table subdivided by genetic ancestry 

group displays how many individuals in gnomAD v2 from that genetic ancestry are 

consistent with the two variants occurring on different haplotypes (trans), and how many 

individuals are consistent with their occurring on the same haplotype (cis). Below that, there 

is a 3×3 table that contains the 9 possible combinations of genotypes for the two variants of 
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interest. The number of individuals in gnomAD v2 that fall in each of these combinations 

are shown and are colored by whether they are consistent with variants falling on different 

haplotypes (red) or the same haplotype (blue), or whether they are indeterminate (purple). 

The estimated haplotype counts for the four possible haplotypes for the two variants as 

calculated by the EM algorithm is displayed on the bottom right. The probability of being in 

trans for this particular pair of variants is >99%. b, Variant co-occurrence tables on the gene 

landing page. For each gene (GBA1 shown), the top table lists the number of individuals 

carrying pairs of rare heterozygous variants by inferred phase, allele frequency (AF), and 

predicted functional consequence. The number of individuals with homozygous variants 

are tabulated in the same manner and presented as a comparison below. AF thresholds 

of ≤ 5%, ≤ 1%, and ≤ 0.5% are displayed across six predicted functional consequences 

(combinations of pLoF, various evidence strengths of predicted pathogenicity for missense 

variants, and synonymous variants). Both variants in the variant pair must be annotated with 

a consequence at least as severe as the consequence listed (that is, pLoF + strong missense 

also includes pLoF + pLoF).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability

The gnomAD v2 dataset can be accessed at https://gnomad.broadinstitute.org. We made use 

of prior quality control processing of these and related data. In addition, we downloaded 

HapMap2 genetic maps from https://github.com/joepickrell/1000-genomes-genetic-maps.

We provide both web-based look up tools and downloads for the data generated here. 

A look-up tool to find the likely co-occurrence pattern between two rare (global allele 

frequency in gnomAD exomes < 5%) coding, flanking intronic (from position −1 to −3 

in acceptor sites, and +1 to +8 in donor sites) or 5’/3’ UTR variants can be found at:https://

gnomad.broadinstitute.org/variant-cooccurrence

Additionally, we display the per-gene counts tables that detail the number of individuals 

with two rare variants, stratified by AF and functional consequence, on each gene’s main 

page. One table details counts of individuals with two heterozygous variants and includes 

predicted phase, while the second details individuals with homozygous variants. Both can be 

found by clicking on the “Variant Co-occurrence” tab on each gene’s main page.

All variant co-occurrence tables can be downloaded from:https://gnomad.broadinstitute.org/

downloads#v2-variant-cooccurrence
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Fig. 1: Overview of phasing approach using Expectation-Maximization method in gnomAD.
a, Schematic of phasing approach. b, Histogram of Ptrans scores for variant pairs in cis (top, 

blue) and in trans (bottom, red). c, Proportion of variant pairs in each Ptrans bin that are in 

trans. Each point represents variant pairs with Ptrans bin size of 0.01. Blue dashed line at 

10% indicates the Ptrans threshold at which ≥ 90% of variant pairs in bin are on the same 

haplotype (Ptrans ≤ 0.02). Red dashed line at 90% indicates the Ptrans threshold at which ≥ 90% 

of variant pairs in bin are on opposite haplotypes (Ptrans ≥ 0.55). Calculations are performed 

using variant pairs with population AF ≥ 1×10−4. d, Performance of Ptrans for distinguishing 

variant pairs in cis and trans. Accuracy is calculated as the proportion of variant pairs 

correctly phased (green bars) divided by the proportion of variant pairs phased using Ptrans

(orange plus green bars). b-d, Ptrans scores are population-specific.
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Fig. 2: Phasing accuracy as a function of variant allele frequency (AF).
Phasing accuracy at different AF bins for all variant pairs (a), variant pairs in trans (b), and 

variant pairs in cis (c). Shading of squares and numbers in each square represent the phasing 

accuracy. Y-axis labels refer to the more frequent variant in each variant pair and X-axis 

labels refer to the rarer variant in each variant pair. Accuracy is the proportion of correct 

classifications (i.e., correct classifications / all classifications) and is calculated for all unique 

variant pairs seen in the trio data across all genetic ancestry groups using population-specific 

Ptrans calculations.
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Fig. 3: Phasing accuracy using population-specific versus cosmopolitan Ptrans estimates.

Population-specific Ptrans estimates are shown in light blue and cosmopolitan Ptrans estimates 

are shown in medium blue. Accuracies are shown separately for variants in trans (a, left) and 

variants in cis (b, right).
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Fig. 4: Phasing accuracy as a function of distance between variant pairs.
a, Phasing accuracy (y-axis) as a function of physical distance (in base pairs on log10 

scale) between variants (x-axis). Blue represents variants on the same haplotype (in cis), and 

red represents variants on opposite haplotypes (in trans). b, Same as a, except the x-axis 

shows genetic distance (in centiMorgans). Accuracies for a and b are calculated based on 

unique variant pairs observed across all genetic ancestry groups using population-specific 

Ptrans estimates.
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Fig. 5: Counts of genes with variants in trans in gnomAD.
a, Proportion of genes with one or more individuals in gnomAD carrying predicted 

compound heterozygous (in trans) variants or a homozygous variant at ≤ 1% and ≤ 5% 

AF stratified by predicted functional consequence. b, Number of genes with ≥ 1 individual 

in gnomAD carrying compound heterozygous (in trans) or homozygous predicted damaging 

variants at ≤ 1% AF, stratified by predicted functional consequence and Mendelian disease-

association in the Online Mendelian Inheritance in Man database. In total, 28 genes 

(25 non-disease, 2 autosomal dominant, and 1 autosomal recessive) carried predicted 

compound heterozygous loss-of-function variants at ≤ 1% AF, only seven of which were 

high confidence “human knock-out” events following manual curation. For predicted 

compound heterozygous variants, both variants in the variant pair must be annotated with a 

consequence at least as severe as the consequence listed (i.e., a compound heterozygous 

loss-of-function variant would be counted under the pLoF category but also included 

with a less deleterious variant under the other categories). All homozygous pLoF variants 

previously underwent manual curation as part of Karczewski et al14.
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