
Transforming neonatal care with artificial intelligence: 
challenges, ethical consideration, and opportunities

Brynne A. Sullivan1, Kristyn Beam2, Zachary A. Vesoulis3, Khyzer B. Aziz4, Ameena N. 
Husain5, Lindsey A. Knake6, Alvaro G. Moreira7, Thomas A. Hooven8, Elliott M. Weiss9,10, 
Nicholas R. Carr5, George T. El-Ferzli11, Ravi M. Patel12, Kelsey A. Simek5, Antonio J. 
Hernandez7, James S. Barry13, Ryan M. McAdams14

1Division of Neonatology, Department of Pediatrics, University of Virginia School of Medicine, 
Charlottesville, VA, USA.

2Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.

3Division of Newborn Medicine, Department of Pediatrics, Washington University in St. Louis, St. 
Louis, MO, USA.

4Division of Neonatology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 
USA.

5Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt 
Lake City, UT, USA.

6Division of Neonatology, Department of Pediatrics, University of Iowa, Iowa City, IA, USA.

7Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center at 
San Antonio, San Antonio, TX, USA.

8Division of Newborn Medicine, Department of Pediatrics, University of Pittsburgh School of 
Medicine, Pittsburgh, PA, USA.

9Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.

10Treuman Katz Center for Pediatric Bioethics and Palliative Care, Seattle Children’s Research 
Institute, Seattle, WA, USA.

11Division of Neonatology, Department of Pediatrics, Ohio State University, Nationwide Children’s 
Hospital, Columbus, OH, USA.

12Division of Neonatology, Department of Pediatrics, Emory University School of Medicine and 
Children’s Healthcare of Atlanta, Atlanta, GA, USA.

Reprints and permission information is available at http://www.nature.com/reprints

Correspondence and requests for materials should be addressed to Ryan M. McAdams. mcadams@pediatrics.wisc.edu.
AUTHOR CONTRIBUTIONS
RMM contributed to the conception and design. All authors contributed to the first draft. RMM, KB, ZAV, and BAS revised the article. 
ANH and KBA created the Figures. All authors contributed a final revision of the article, including providing intellectual content. All 
authors read and approved the final manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

HHS Public Access
Author manuscript
J Perinatol. Author manuscript; available in PMC 2024 July 01.

Published in final edited form as:
J Perinatol. 2024 January ; 44(1): 1–11. doi:10.1038/s41372-023-01848-5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints


13Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, 
Aurora, CO, USA.

14Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 
Madison, WI, USA.

Abstract

Artificial intelligence (AI) offers tremendous potential to transform neonatology through improved 

diagnostics, personalized treatments, and earlier prevention of complications. However, there are 

many challenges to address before AI is ready for clinical practice. This review defines key AI 

concepts and discusses ethical considerations and implicit biases associated with AI. Next we 

will review literature examples of AI already being explored in neonatology research and we 

will suggest future potentials for AI work. Examples discussed in this article include predicting 

outcomes such as sepsis, optimizing oxygen therapy, and image analysis to detect brain injury 

and retinopathy of prematurity. Realizing AI’s potential necessitates collaboration between diverse 

stakeholders across the entire process of incorporating AI tools in the NICU to address testability, 

usability, bias, and transparency. With multi-center and multi-disciplinary collaboration, AI holds 

tremendous potential to transform the future of neonatology.

INTRODUCTION

Artificial intelligence (AI) is permeating society and will transform healthcare. As 

neonatologists, we must understand AI concepts to integrate these tools safely and 

effectively. We provide an overview of AI for neonatology and neonatal intensive care unit 

(NICU) care and thoughts about the future. First, we define critical concepts like machine 

learning (ML) and deep learning. We then discuss challenges and ethical considerations 

around developing and implementing AI in the NICU. Next, we review how AI may 

improve diagnosis, treatment, and prediction of outcomes in neonatology. Finally, we 

explore future directions for integrating AI into clinical care.

DEFINITION OF AI, MACHINE LEARNING, AND DEEP LEARNING

AI encompasses a multitude of computer algorithms that can augment human abilities in 

problem-solving, classification, and prediction. While the term “AI” has gained popularity, 

the roots of AI trace back to the 1950s when engineers created intelligent machines to assist 

human tasks. Although not commonly referred to as AI, many clinicians routinely use such 

technology daily in the form of automated ECG interpretations.

ML, a subdomain of AI, utilizes algorithms that iteratively learn from patterns in large 

datasets, creating predictive models ranging from simple logistic regression to complex 

neural networks [1, 2]. The appeal of ML lies in its ability to uncover associations through 

guided (i.e., supervised ML) or unguided (i.e., unsupervised ML) discovery, potentially 

revealing important and new insights that are elusive to clinicians. Supervised learning 

involves teaching a computer pattern using labeled data, like showing a child pictures with 

names, while unsupervised learning allows the AI to find patterns without specific guidance, 

much like a child exploring and grouping toys on their own.
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Deep learning, a subdomain of ML, uses artificial neural networks with several layers 

(“deep” structures) for more complex pattern recognition. These neural networks can be 

conceptualized as mimicking the structure and function of the human brain—where neurons 

are interconnected—to process and analyze complex data patterns and make decisions 

without explicit programming.

We will focus on specific considerations for developing, generating, and implementing AI 

models in neonatology. While many of the concepts and challenges discussed in this review 

and summarized in the figures apply to traditional statistical methods and epidemiological 

approaches, we concentrate on how they apply to the growing computational power of 

novel AI methods applied to large datasets. We will also discuss precautions, ethical 

considerations, and practical aspects of deploying these models in clinical care.

OVERVIEW OF AI IN NEONATOLOGY

Although healthcare is generally slow to embrace technology, AI serves as an exception, 

showing marked advancements particularly in adult medicine, which outpaces the rapid 

growth in pediatrics and neonatology [3-5]. As of 2021, there were approximately 3000 

publications about ML or AI in adult literature, compared to a mere 200 articles in neonatal 

literature, a noteworthy discrepancy considering the wealth of clinical data generated during 

a NICU hospitalization [4]. Nevertheless, neonatology represented the top specialty in a 

recent systematic review of pediatric ML models, accounting for 24% (n = 87) of the 363 

articles reviewed, followed by psychiatry at 20% (n = 73) and neurology at 11% (n = 39) [3]. 

Despite the increasing academic interest, implementation of AI in clinical settings remains 

limited.

Neonatology is uniquely positioned to generate impactful AI research due to the 

availability of complex, rich, and significant data volume generated over prolonged inpatient 

hospitalizations. There are opportunities to use existing stored and real-time data in applying 

AI algorithms to improve neonatal outcomes. For example, preterm birth is the leading 

cause of neonatal death in high-resource communities and its cause is multifactorial 

and variable. Neonatal–perinatal research has harnessed large, population-based datasets 

to predict preterm birth, which has begun to uncover patterns that identify targets for 

intervention [6-10]. However, using large electronic health record (EHR) data or insurance 

claims databases to train these models may include inherently biased data that generates 

predictions that are useless to clinicians or may have embedded implicit biases. Figure 

1 summarizes the many challenges in the quality of data used for AI applications in 

neonatology. While data quality challenges any analysis, we hypothesize that such issues 

have a greater impact on analyses using AI methodology.

APPLICATIONS OF AI IN NEONATOLOGY

Researchers have applied AI methods to many conditions or aspects of neonatology worthy 

of prediction. Here, we review prediction models applied to various outcomes of interest 

in neonatology with a focus on those translated to clinical care. Table 1 lists neonatal 

conditions that may potentially be addressed using AI technology.
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Sepsis

Diagnosing sepsis in premature infants is particularly challenging because its subtle and 

delayed manifestation can resemble those of immature organ systems [11]. Neonatal sepsis 

gradually becomes apparent as inflammation and organ dysfunction progress. Advanced 

analytics and predictive models can detect data patterns that alert the neonatal medical 

team of a subacute, potentially catastrophic illness. Given non-specific symptoms like apnea 

and respiratory distress and the infrequent occurrence of neonatal sepsis, clinicians face 

a dilemma: balancing early detection against the risk of over-treatment. Therefore, the 

urgency of designing sepsis alert systems is paramount, minimizing false alarms while 

empowering healthcare providers to interpret AI model outputs in the broader clinical 

context. This approach could guide decisions about antibiotic initiation and therapy duration, 

particularly among very low birthweight (VLBW) infants, where timely diagnosis and 

treatment significantly improve outcomes.

Progress has been made in predictive monitoring for late-onset sepsis (LOS) with heart rate 

characteristics (HRC) monitoring. Heart rate characteristics monitoring for LOS in VLBW 

infants is one of very few prediction models tested in a large, multicenter randomized 

clinical trial (RCT) [12]. The results of this RCT showed that display of the sepsis risk score, 

called the HRC index or HeRO score, reduced NICU mortality by 20% and death within 30 

days of sepsis by 40% [12, 13]. While models that provide early warning of increased risk 

are invaluable tools, they should complement, rather than supplant, clinical judgment.

Methods to predict neonatal sepsis have included various approaches such as logistic 

regression, random forest, XGBoost, and neural networks, which span from basic statistics 

to more complex AI methods [14-16]. An early-onset sepsis calculator employs Bayesian 

statistics to adjust predicted probabilities based on clinical assessments. This prediction tool 

has been widely adopted due to its effectiveness in reducing antibiotic exposure [17-19]. 

Despite the varying results and adoption of early- and late-onset sepsis models, they provide 

promising foundations for refining the prediction and early detection of neonatal sepsis.

Necrotizing enterocolitis

Necrotizing enterocolitis (NEC) is another potentially devastating complication of 

prematurity, affecting 2–7% of preterm infants born at <32 weeks’ gestation [20]. The onset 

of NEC often exhibits non-specific clinical signs such as emesis, abdominal distention, and 

increased apnea with bradycardia and desaturation, resulting in a low positive predictive 

value for NEC.

The Bell’s staging criteria outline that a definitive diagnosis of NEC may be contingent on 

radiographic findings of pneumatosis, portal venous gas, or pneumoperitoneum, or surgical 

exploration revealing necrotic bowel [21, 22]. However, many clinically diagnosed NEC 

cases do not exhibit these classical radiologic features [23], and the radiographic diagnosis 

of NEC suffers from high rates of false positivity. Therefore, developing AI to identify 

patterns in clinical data, physiology, and imaging is a promising alternative strategy for NEC 

diagnosis.
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Recent studies have aimed to leverage various data sources and ML methods to enhance the 

current diagnostic strategy. Examples of ML methods applied to demographic and clinical 

data include two recent studies using prediction models to distinguish NEC with perforation 

from spontaneous intestinal perforation, which have different underlying pathophysiology 

but can present with similar clinical features [24, 25]. However, models using EHR data may 

be limited by including diagnostic criteria as input features.

Similar to sepsis risk prediction, studies incorporating physiologic data into ML models 

identify reduced heart rate variability [26, 27] and abnormal heart rate characteristics [28] 

as important predictors of imminent NEC diagnosis. Groups using -omics data in NEC ML 

prediction models have tested diverse modeling methods and novel biomarker predictors, 

including models using stool microbiota data [29], targeted stool sphingolipid metabolomics 

[30], and urinary biomarkers [31]. While many of these models demonstrate promising 

performance in retrospective cohorts, none have been implemented or tested prospectively.

Despite promising results of diverse AI methods providing more precise and timely NEC 

diagnoses than traditional methods, several concerns remain. Issues include inaccurate 

training dataset labels, heterogeneous clinical phenotypes in early-stage NEC, and 

impractical accessibility of necessary model inputs, such as stool samples and ‘omics 

data. These issues have led to questions about the broad applicability of NEC prediction 

tools without external or prospective validation. These challenges must be addressed to 

successfully integrate these diagnostic technologies into neonatology practice.

Bronchopulmonary dysplasia

Although neonatal care has advanced, allowing the smallest and most premature infants 

to survive, the rate of bronchopulmonary dysplasia (BPD) remains high, indicating that 

these advancements might be a contributing factor to its persistence [32]. Despite decades 

of research in the field, early BPD prediction and risk-based treatment strategies remain 

a challenge [33, 34]. The promise of AI and ML for BPD lies in the potential to predict 

long-term disease burden, guide treatment strategies, and discover novel risk factors [35].

Researchers have made significant strides in developing prediction tools for BPD using 

clinical data, physiologic data, imaging, and genomic biomarkers [36-42]. Both traditional 

statistical methods and AI and ML models have been employed to predict BPD, its 

severity, and potential outcomes. An early example of a BPD prediction model used logistic 

regression and multicenter data from the Neonatal Research Network [37]. This model was 

made available using an online calculator, allowing for widespread use in clinical practice. 

In a more recent example, perinatal variables, data on early-life respiratory support, and 

AI and ML methods were used to predict BPD-free survival with strong performance in a 

retrospective cohort [39]. This model was also made available online, which will allow for 

ongoing evaluation. We highlight these examples as tools available for evaluation and use 

at the bedside, where risk stratification could aid in decisions about treatment. These tools 

could enable targeted interventions for at-risk infants to improve respiratory outcomes.

Using genomic markers could provide an alternative strategy for precision targeting of BPD 

phenotypes [40]. Studies have combined AI and ML methods with targeted transcriptomics 
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[40] and exome sequencing [38] with high BPD prediction accuracy. Moreira, et al. 

combined ML with gene expression data to better understand mechanisms underpinning 

BPD and risk-stratify patients for developing BPD. Gene-centric ML models improved BPD 

prediction in the first postnatal week compared to a fixed clinical model using gestational 

age and birth weight [42]. Genomic and other ‘omics models for BPD prediction hold great 

promise but their inputs remains impractical for use in clinical care. Still, such prediction 

models add to what is known on signatures and phenotypes of BPD that will fuel future 

research and treatment developments.

Retinopathy of prematurity

Retinopathy of prematurity (ROP), a potentially sight-threatening disorder, affects premature 

infants. Employing AI for the swift and accurate diagnosis of ROP could facilitate timely 

interventions and prevent persistent visual impairments. Conventionally, ROP diagnosis is 

conducted through manual examinations by expert ophthalmologists, a process that is labor-

intensive, subjective, and susceptible to observer variability. In contrast, AI-based strategies 

have focused on perinatal and NICU data for early risk prediction and retinal image analysis 

for improving ROP screening efficiency and consistency.

Regarding the prediction of ROP, gestational age and birthweight are so profoundly linked 

to severe ROP that they offer little scope for improvement with additional physiologic data 

[43, 44]. Oxygenation measures, despite their association with ROP pathophysiology, do not 

contribute substantial predictive information for predicting severe ROP [45-47]. Postnatal 

weight gain data add to demographics in ROP prediction models [48] due to the role of 

insulin-like growth factor 1 in retinal vascular development. Several models incorporating 

postnatal growth data have been developed in large, multinational cohorts with adequate 

sensitivity and specificity for use as an adjunct to screening. However, weight gain due to 

pathologic conditions such as sepsis, hydrocephalus, or patent ductus arteriosus cause such 

models to fall short at an individual level.

AI analysis of retinal images, facilitated by the advent of retinal cameras, offers a method 

to improve ROP evaluation’s efficiency and inter-rater reliability [49, 50]. This approach has 

broadened the diagnostic potential beyond ROP, revealing connections with other systemic 

diseases like hypertension, renal failure, sleep apnea, and diabetes in adults [51]. Therefore, 

neonatal and infant retinal image analysis could be a diagnostic tool for disorders where 

vasculogenesis and angiogenesis may be compromised.

Brain injury

Brain injury is a frequent and serious complication of prematurity, including hypoxic-

ischemic encephalopathy (HIE) and preterm brain injury, such as intraventricular 

hemorrhage (IVH), white matter injury, and cerebellar hemorrhage. While neuroimaging, 

including cranial ultrasound (CUS) and brain MRI, has been the primary tool for prognosis, 

AI and ML innovations have attempted to augment standard imaging and functional brain 

assessment.

Neuroimaging interpretation is challenged by subjectivity, resulting in a lack of inter-

rater reliability. Consequently, the AAP Choosing Wisely campaign advised against the 
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routine use of term-equivalent MRIs due to their low positive predictive value [52]. This 

recommendation has led to a risk-stratified imaging approach, where only infants with 

abnormal CUS or significant NICU complications undergo MRI [53]. While standardized 

MRI scoring systems have been developed for preterm and term HIE infants [54-57], their 

application is labor-intensive and necessitates a reader trained in the system. As a result, 

subjective interpretation of neonatal MRI remains the clinical standard.

Towards improving imaging interpretation, researchers have developed AI-based analytic 

pipelines to perform automated brain segmentation and volume measurements. These 

methods use image analysis to replace painstaking manual segmentation to label regional 

boundaries with minimal human intervention, facilitating research to uncover associations 

between regional brain volumes and neurologic outcomes [58-60]. Studies that utilize ML 

to identify features associated with long-term neurodevelopmental outcomes are underway 

[61], signifying a promising direction for ML in neonatal brain injury research.

Recent advancements for brain injury also include AI-enabled seizure detection algorithms 

designed specifically for neonates [62, 63]. Mathieson et al., described one of the earliest 

neonatal AI seizure detection algorithms, based on a support vector machine model [62]. 

This strategy was able to recognize neonatal seizure with 75% accuracy, far exceeding 

clinical detection of seizures, while still short of trained neurologists. A subsequent iteration 

of the model by the same research group utilized a real-time display of seizure probability 

based on an AI-algorithm (called Algorithm for Neonatal Seizure Recognition or ANSer) 

compared to no algorithm display. The algorithm group had a greater percentage of correctly 

identified seizures (66 vs 45%) and provided a highly accessible alert to bedside providers 

without requiring specific expertise in reading the EEG. Other ML models predict seizures 

associated with HIE using the combination of EEG and clinical data [64-68]. Automated 

algorithms such as these could be valuable in the care of infants with HIE in hospitals 

without a pediatric neurology specialist, but are not yet widely used or available in the 

clinical setting. Potential benefits include earlier seizure treatment, reduced seizure burden, 

and improved long-term outcomes [69, 70]. See Table 1 for additional opportunities to apply 

AI and ML technology to neonatal neurocritical care.

Optimization of oxygen therapy

Oxygen therapy, a necessity in managing lung disease in preterm infants, has transformed 

neonatology and substantially reduced mortality. However, oxygen misuse has been linked 

to ROP and blindness due to excessive oxygen saturation [71]. Current evidence, including 

large clinical trials and meta-analyses, supports maintaining pulse oximetry (SpO2) goal 

oxygen saturations of 91–95% to minimize the risk of mortality and NEC, although this 

higher target (compared to 85–89%) may increase the risk of ROP and BPD [72]. However, 

this generalized approach doesn’t consider individual risk differences and inaccuracies in 

pulse oximeter readings, particularly among Black neonatal and pediatric populations [73, 

74].

In the NICU, oxygen therapy is commonly adjusted by manually modifying the fraction of 

inspired oxygen (FiO2), which can be inconsistent, tedious, and triggers an excess of alarms. 

Automated oxygen titration systems based on proportional-integral-derivative algorithms 
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have been developed and implemented in many European NICUs. Still, their adoption has 

been limited due to their inability to handle the non-linearity and individual variability of 

oxygen response. This includes inconsistent changes in SpO2 with equal changes in FiO2 

[75-77].

ML can navigate this non-linear SpO2/FiO2 relationship and quickly adapt to individual 

differences. In a recent review, four different ML strategies (decision tree, nearest neighbor, 

Bayes, and support vector machine) were evaluated to improve detection of true hypoxemia 

on pulse oximetry, achieving a remarkable specificity of more than 99% across all 4 models, 

and the greatest sensitivity of 87% in the decision tree model [78]. This marks a significant 

step towards reducing false alarms and system lability using only a software overlay on 

top of existing hardware, an economical and practical strategy. Optimal ML-based oxygen 

titration models could allow accurate, individualized, and efficient neonatal oxygen therapy, 

but widespread clinical implementation remains elusive.

CHALLENGES IN AND SOLUTIONS TO IMPLEMENTING AI IN 

NEONATOLOGY

Data quality and availability

The high volume of data generated by NICU patients makes neonatology a logical 

field to apply AI technologies. However, the utility and accuracy of these technologies 

fundamentally rely on the data quality used for model development [79]. NICU data have 

diverse sources and complex structures that pose specific challenges for AI applications. 

Hurdles in each stage of data processing are highlighted in Fig. 1, including the lack 

of data standardization across centers and the prevalence of missing data. Addressing 

data quality issues is essential for ensuring AI model reliability and sharing data to 

facilitate the utilization of large, multicenter, representative datasets needed for high-quality 

AI development. An interdisciplinary approach can be instrumental in overcoming these 

challenges. Involving clinicians early in development enriches the process with medical 

expertise. Even those not trained in advanced data analytics can provide valuable insights 

into data provenance, quality, and context. A collaborative, multidisciplinary approach can 

help create more robust, reliable AI models that effectively transform NICU care.

More investment is needed in creating and curating datasets, and historical data should not 

be considered the default ground truth. Therefore, datasets may need expiration dates if not 

updated. We also need to create registries for AI tools whereby tools designed in different 

institutions using different populations could be captured as metadata and used to help 

determine when the underlying algorithms may be suitable for a particular patient. To build 

such a registry, technology and policies should be developed to enable it to be used as a part 

of an ecosystem [80].

Transparency and interpretability

The current state of transparency and interpretability in neonatal AI is unsatisfactory [81, 

82]. Best practices, standards, guidelines, and tools are needed to improve the current 

state of transparency and interpretability in neonatal AI [83-85]. In practice, AI and ML 
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models often require healthcare providers to reconcile precise quantitative results with 

limited knowledge of how it arrived at the prediction. This “black box” issue of transparency 

makes many in healthcare uncomfortable with predictive models. Despite the remarkable 

ability of these models to sift through vast datasets, identify patterns, and make decisions, 

understanding the computation behind these machine-learned decisions remains complex, 

especially when predictions do not align with human logic. At present, there is a lack of 

consensus on how to critically appraise the development and performance of AI healthcare 

models and tools [86, 87].

Explainability in AI refers to the degree to which a human can understand the decision-

making process of a model. In many instances, there is a desire that decisions made 

by AI systems need to be explained and justified, especially when those decisions may 

indicate treatment plans with significant risk have significant impacts [82]. Furthermore, 

without fully explainable models, providers may not be able to choose the correct 

intervention (e.g., model predicts sepsis but not antibiotic choice). Methods such as feature 

importance (e.g., Shapley Additive explanations) are useful for large predictive models, and 

saliency maps are valuable tools in image recognition. However, despite their utility, these 

techniques present challenges, which include substantial computational costs and potential 

for misinterpretations, particularly in the context of image analysis [83].

Responsible deployment of AI-based clinical decision support is a shared task; providers 

must gain a working knowledge of the complexities of AI, how models and features are 

selected, and the potential limitations of these predictive models [84, 85, 88] and developers 

must continue to push boundaries to generate new healthcare-specific technical advances to 

demystify AI’s decision-making processes without compromising its efficacy.

Beyond the initial inception of an AI model, it is equally essential to conduct thorough 

inspections or audits of performance to ensure trust in using AI throughout its entire 

lifecycle, as populations, treatments, and disease incidence evolves over years. This process 

can be achieved by establishing a team of experts from various fields who work with key 

stakeholders to define the boundaries and context for the assessment [89].

Additionally, experimental evaluation of AI-models should be considered using RCTs, 

which not only consider the performance of the model (e.g., area under the receiver 

operating characteristic (AUROC)) but also the impact such a model may have on clinical 

practice and outcomes. For example, a model may have a high AUROC in predicting sepsis, 

but when testing empirically may not improve sepsis-related outcomes such as mortality. 

Despite many published sepsis prediction models, the HeRO trial is the only RCT performed 

to evaluate a sepsis risk model in the clinical setting [12]. While the RCT remains the gold 

standard for testing the impact of a novel technology or device, the number of infants needed 

to show clinically significant impact from a prediction tool, in many cases, is not ethically or 

financially feasible.

It is also essential to ensure that multidisciplinary teams who evaluate the application are 

selected to represent all stakeholders, including patients, legal perspectives, and scientific 

and technological expertise. Gathering consensus among domain experts is critical, and 
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clear communication and documentation of any disagreements or tradeoffs are necessary for 

transparency and clarity for future users.

Ethical considerations and minimizing bias

Figure 2 summarizes considerations for ensuring ethical AI/ML in neonatology. Bias, equity, 

and fairness are essential considerations in AI development. Systematic gaps in healthcare 

can result from device or test performance discrepancies, unequal access to resources, and 

both implicit and explicit racism [74, 90-92]. Racial and ethnic disparities in neonatal 

outcomes, especially mortality, remain despite narrowing gaps [93, 94]. Such biases become 

integrated into the clinical data used for AI and ML models, potentially compromising data 

availability, quality, and accuracy. ML algorithms can unintentionally propagate these biases, 

posing concerns for privacy and safety. Developers must be aware of and mitigate these 

biases when using clinical data to train AI and ML algorithms.

To address this, researchers are exploring less biased data sources, like multi-omics 

and physiologic data [15, 95-100]. Assessing a model’s performance end-to-end, from 

development to clinical deployment, can also be beneficial. To address bias and fairness 

during development, we can increase the model’s capacity, include data from a minority 

group of patients, or adjust resource allocation.

Testability, usability, and safety of AI technology are important considerations for ethical AI 

in neonatology (Fig. 2). Additionally, we must avoid creating a generation of physicians 

with automation bias [101]. An over-reliance on automated systems, or “automation 

complacency,” can lead to diminished awareness of potential errors, reduced vigilance, 

and an oversight of ethical considerations. Striking a balance between human judgment 

and automated decision-making is crucial. This involves regular evaluation of AI systems, 

continuous education of algorithms and those using the algorithms, and a comprehensive 

understanding of the model’s limitations. Responsibility for these tasks typically falls on AI 

developers, data scientists, biostatisticians, and engineers but should be broadened to include 

those in the healthcare field.

Creating health equity requires deliberate effort, particularly when addressing the impact 

of structural and historical bias. The process involves the entire pipeline lifecycle, from 

data collection to deployment of results, and requires careful consideration of models and 

methods [89, 102]. Measuring the downstream impact of AI predictions and implementing 

policies that promote equitable outcomes are key aspects of this effort [103]. Ethical 

considerations should be integrated into the primary design process rather than being 

an afterthought [62-64]. Data governance is essential to detect and address systemic, 

computational, and human biases [65-67].

As AI systems continue to advance, the involvement of neonatologists, hospital leadership, 

and medical ethicists is vital to bridge the gap between technological complexities and 

user understanding. Efforts must be made to integrate clinical teams with data scientists, 

fostering communication, understanding, and partnerships that align with a shared vision to 

best benefit infants and their families.
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Trust is paramount for successful AI implementation and requires input from clinical 

users, data scientist, and patients early in development. Transparency in model development 

should include data definitions, inclusion and exclusion decisions, and cultural and patient 

preferences. Making implicit decisions explicit is essential, and stakeholders, including 

patients, should be engaged in the co-design process from the beginning. For example, social 

scientists trained in the social determinants of health can provide a critical perspective [68, 

69, 104].

Table 2 demonstrates principles for ethically developing and implementing AI in the NICU. 

AI’s potential in healthcare is intrinsically linked to ongoing efforts by global and federal 

regulators. As AI continues to reshape patient care, these bodies must define healthcare 

teams’ responsibilities, ensuring AI’s ethical and efficient integration in neonatology.

Regulatory aspects of AI

Regulatory bodies such as the US Food and Drug Administration (FDA) and the European 

Union’s AI Act have established initial frameworks for addressing aspects of medical AI 

applications, such as lifecycle regulation, algorithmic bias, and user transparency [105, 106]. 

However, AI’s dynamic and multifaceted nature in medicine has stimulated ongoing debates 

regarding its regulation, specifically whether AI should be regulated as a device or a system 

to support patient care. The FDA’s Artificial Intelligence and Machine Learning Software as 

a Medical Device Action Plan [107] outlines government involvement to ensure the accuracy 

and reliability of AI tools. With its rapid expansion and potential, the global digital health 

market requires careful navigation, underpinned by strong ethical guidelines adopted by 

regulatory bodies to protect stakeholders.

Future directions and opportunities

Rapid advancements in technology, data storage, and connectivity present opportunities to 

incorporate AI tools to create ‘smart’ NICUs. Table 3 summarizes emerging and existing 

opportunities for AI applications in neonatology. While we reviewed many promising AI 

and ML models, few AI tools have been approved and implemented for use in the NICU. 

As of Fall 2023, the FDA had approved around 692 AI-enabled devices or “software as a 

medical device,” primarily in radiology, with a mere eight receiving reimbursement codes 

from the Centers for Medicare and Medicaid Services. No such codes exist for neonatal or 

pediatric care, which highlights a major financial barrier to adoption.

In our group opinion, the future of AI research in neonatology lies in multicenter 

collaboration, data sharing, transparency, and ethical consideration toward developing 

methods and systems that result in rigorously tested AI tools. A shift in focus from model 

development to technology implementation will require multi-disciplinary input for clinical 

integration, regulatory aspects, and ongoing evaluation. Even with successful development, 

testing, and implementation of accurate, unbiased models, the future of AI-driven NICU 

care is uncertain. To give an example, the HRC index was developed to predict imminent 

late-onset sepsis risk in very low birth weight infants. The model was externally validated, 

tested in a 9-NICU randomized controlled trial, shown to improve mortality, commercialized 

as the HeRO system, and FDA 501k cleared for implementation. Despite this success, 
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most NICUs have not implemented the HeRO system and those with the technology likely 

experience variable user engagement. For AI technology to impact patient outcomes in the 

future, we have considerable work to do in all stages of development, but a major roadblock 

could be getting clinicians to embrace its potential.

To leverage the power of AI to enhance the quality and precision of clinical care for 

neonates, we founded a group NeoMIND-AI (Neonatal Machine learning, INnovations, 

Development, and Artificial Intelligence). Our goal is to create a future where neonatal care 

is more personalized, efficient, and effective, and where every child has the best possible 

start in life (https://neomindai.com).

CONCLUSION

AI holds tremendous potential to transform neonatology through enhanced diagnostics, 

individualized treatments, and proactive prevention of complications. However, ethical 

challenges and biases must be addressed diligently before fully integrating these emerging 

technologies into clinical practice. By upholding principles of transparency, accountability, 

and human-centered values, and overcoming barriers to implementation and adoption, we 

can harness AI to create a brighter future for neonatal medicine.
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Fig. 1. Overview and neonatology specific examples of a systematic data quality framework.
This flowchart depicts the key phases in an end-to-end data quality process. It begins 

with initial data acquisition in the Data Collection phase from sources such as electronic 

medical records, medical devices, research databases, and literature reviews. The next Data 

Processing stage involves activities such as data inspection, anomaly detection, cleaning, 

transformation, and integration to curate the dataset. The processed quality data is then 

stored and managed in the Data Storage phase. Subsequently in the Data Analysis phase, 

statistical analyses and visualizations are performed to derive insights and identify data 

quality issues to refine the overall collection and processing. Effective data governance and 

metadata management are critical throughout each phase to ensure accuracy, transparency, 

and reproducibility. The systematic workflow promotes high quality data essential for 

robust analytics and decision making in healthcare applications. We hypothesize that the 

importance of addressing these data quality challenges is amplified when using ML methods 
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over traditional statistical methods, but this hypothesis has not been tested. Thus, we 

highlight these challenges in the context of ML for neonatal care, however, most can be 

applied to any analysis in any population.
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Fig. 2. Stages of the AI/ML development lifecycle in neonatology, highlighting important ethical 
considerations.
The development of AI/ML models in healthcare follows a cyclical workflow that includes 

design, implementation, testing, deployment, monitoring, and retraining. Oversight by 

diverse stakeholders, nationally and locally, is critical for governance. This includes 

continuous risk reviews, monitoring adherence to principles, eliciting input through advisory 

boards, and enabling external auditing and clinician feedback. At each stage, unique ethical 

challenges arise that must be proactively addressed. In the design phase, considerations 

such as testability, usability, safety, bias, fairness, transparency, and interpretability should 

be prioritized from the start. Representative and unbiased data collection is crucial during 

implementation, along with privacy and security protections. Throughout testing, model 

performance and safety should be rigorously evaluated across diverse groups. Monitoring 

performance post-deployment enables continuous improvement through retraining. Overall, 

ethics should not be an afterthought but instead integrated into every step. The figure 

emphasizes that thoughtful design and testing parameters, mitigating bias and lack of 

equity, and ensuring comprehensibility for clinicians can promote better, more ethical AI 

in neonatology. However, this requires extensive collaboration between computer scientists, 

clinicians, and ethics experts across the entire development lifecycle.
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