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Abstract

The adverse effects of climate change on human health are unfolding in real time. Environmental 

fragmentation is amplifying spillover of viruses from wildlife to humans. Increasing temperatures 

are expanding mosquito and tick habitats, introducing vector-borne viruses into immunologically 

susceptible populations. More frequent flooding is spreading water-borne viral pathogens, while 

prolonged droughts reduce regional capacity to prevent and respond to disease outbreaks with 

adequate water, sanitation, and hygiene resources. Worsening air quality and altered transmission 

seasons due to an increasingly volatile climate may exacerbate the impacts of respiratory viruses. 

Furthermore, both extreme weather events and long-term climate variation are causing the 

destruction of health systems and large-scale migrations, reshaping health care delivery in the 

face of an evolving global burden of viral disease. Because of their immunological immaturity, 

differences in physiology (e.g., size), dependence on caregivers, and behavioral traits, children are 

particularly vulnerable to climate change. This investigation into the unique pediatric viral threats 
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posed by an increasingly inhospitable world elucidates potential avenues of targeted programming 

and uncovers future research questions to effect equitable, actionable change.

INTRODUCTION

Climate change—A primer

Climate change refers to the effects of accumulated greenhouse gases (GHGs) in the 

atmosphere on long-term weather patterns. GHG emissions from anthropogenic fossil fuel 

consumption over the past 150 years have elevated Earth’s mean surface temperature by 1.1 

°C in this timespan1—a rate of warming unprecedented in the last 50 million years (Fig. 1).2 

Higher mean global temperatures lead to drought, heat waves, and wildfires in dry regions 

of the world while driving extreme precipitation and flooding in wetter regions. Warming 

ocean temperatures and melting polar ice caps fuel more severe storms and compromise the 

habitability of island states such as Tuvalu and Kiribati.3

Climate change is also a key driver of resource scarcity, environmental degradation, 

precarious migration, violent conflict, and disease. Nearly 60% of all known infectious 

diseases have been aggravated thus far by climate change.3,4 Here, we specifically explore 

the impacts of climate change on viral diseases in children, building on a body of literature 

that explores climate change effects on a range of pathogenic diseases, including malaria 

and bacterial infections.5,6 Through a virus-specific lens, we examine the intersections of 

viral transmission with unequal socio-economic conditions, secondary effects of climate 

change on healthcare access, and the proliferation of non-viral comorbidities. Climate 

change may see viruses ranging from dengue fever to Hepatitis A, typically restricted to 

low and middle-income countries (LMICs), occur more frequently in Europe and North 

America, posing novel pathogenic threats. However, the heaviest burden of viral disease will 

disproportionately affect LMICs, who have contributed negligibly to GHG emissions, and 

have the fewest resources for climate change adaptation.7,8 The general scientific consensus 

is that warming temperatures, changes in humidity and precipitation patterns, and more 

frequent extreme weather events are altering the burden, spread, and severity of myriad viral 

diseases.

Children and climate change

Nearly 90% of the disease burden of climate change will be felt by children <5 years 

of age.9 Children are disproportionately vulnerable to infection, morbidity, and mortality 

from viral diseases because of their unique physiological, metabolic, and immunological 

immaturities, as well as their size and behavior.10,11 Globally, the leading causes of death 

in children remain largely due to infections: pneumonia, diarrhea, malaria, and pre-term 

birth complications, often precipitated by viral maternal infections (see Appendix 1 for an 

illustrative list of clinical syndromes discussed within the paper).12

Narrower airways mean that irritation caused by air pollutants may result in more significant 

airway obstruction in children than in adults, increasing their vulnerability to infections.13,14 

The disease experience of acute respiratory infections is more severe in children, as their 

underdeveloped accessory respiratory muscles struggle to clear phlegm.15,16 Children’s 
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increased diarrheal mortality risk is also driven by their physiological and metabolic 

vulnerabilities.17 Children have increased water losses due to faster respiratory rates and 

higher metabolic rates and may not be able to rehydrate because they cannot verbally 

communicate their need to do so.18-20 A less developed thermoregulatory system and a 

greater body surface area-to-mass ratio engender higher vulnerability to heat extremes in 

children.21-23

Critical gaps in children’s underdeveloped immune systems make the early years of life 

particularly dangerous. Mothers confer maternal antibodies to fetuses transplacentally, 

wherein fetuses benefit from maternal immunization and previous exposure to disease. 

However, vulnerabilities remain for novel diseases that mothers experience over the course 

of pregnancy, as early IgM antibodies will not cross the placenta.24-26 Breastmilk provides 

another route for young infants to receive maternal antibodies and protect against viral 

disease.27,28 Nevertheless, infants enter a critical vulnerability period as maternal antibodies 

from birth and breastfeeding wane, and they lack the adaptive immunity to respond to 

environmental pathogens.29-31 Though vaccination can bolster these immunological gaps, 

some vaccines are reserved for older children who can mount an appropriate immune 

response.32-34 Therefore, infants and young children constitute an immunologically naïve 

population to infectious diseases against which adults have acquired immunity.

Children’s behavior often puts them in closer contact with environmental risks. School-aged 

children spend much of their daily lives in congregate classroom settings, increasing their 

mean contact rate for respiratory illnesses in poorly ventilated indoor spaces.35 Per unit of 

body weight, they consume more drinking water, eat more food, and ingest more soil than 

adults, all of which are potential water-borne and soil-borne transmission.36 Young children, 

owing to crawling habits and their size, are physically closer to the ground, making them 

especially prone to zoonotic exposures as well as tick bites.37

Children are a heterogenous class, and the impact of viral infections may be vary at different 

ages. For example, mortality rates of H5N1 differ widely by age group: from 1997-2010, 

case fatality rate (CFR) was 80% for adolescents between 12–17 years old, compared 

with 27% in children under 5.38 Climate-related exposure risk similarly fluctuates by age: 

children under 1 are most affected by heat waves due to their metabolic immaturity and 

reliance on caregivers, but children aged 5-14 spend more time outside and are therefore 

exposed to excess heat and disease vectors.37

As climate change increases food insecurity worldwide, children will bear the largest 

brunt of morbidity and mortality.39 Undernutrition has contributed to 45% of all deaths 

in children under 5.40 Acute malnutrition, which affected 45.4 million children in 2020, 

can lead to dramatic reversals in children’s health over a short period of time, while 

chronic malnutrition, which impacted an additional 149.2 million children in 2020, is 

associated with poor mental and physical development.41-43 Undernutrition leads to reduced 

caloric input and loss of critical micronutrients, weakening children’s immune systems and 

thereby increasing infection severity and duration.44-46 Concurrently, infections contribute to 

worsened malnutrition outcomes, as illnesses like recurrent diarrhea disrupt the absorptive 

capacity of the gastrointestinal tract and require high caloric intake for adequate immune 
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response.47,48 Maternal undernutrition, low birth weight, and suboptimal breastfeeding are 

all risk factors for developing childhood malnutrition.40 This negative causal loop will only 

accelerate as child food insecurity and pediatric illness incidence increase as a result of 

climate change.

The vast majority of children and adolescents live in LMICs, where they make up almost 

50% of the populations, meaning that the effects of an increasing pediatric viral burden will 

be felt most acutely in countries with significant resource constraints.49 Thus, mitigation 

and adaptation strategies designed to reduce viral transmission must employ an equitable 

framework, ensuring that solutions are effective in a myriad of socio-political contexts.

VIRAL DISEASE THREATS

Zoonotic (non-arbovirus) diseases

As climate variation causes systemic shifts in animal habitats, wildlife will come into 

increasing contact with human populations, introducing more potential for zoonotic disease 

spillover (i.e., animal pathogens which make the evolutionary leap to human hosts). 

Environmental fragmentation will provoke an estimated 15,000 or more novel viral sharing 

events by 2070, many of which will involve human hosts in tropical hotspots with high 

population density.50 Of similar concern, novel cross-species transmission from animal 

to animal can lead to the unanticipated selection of different genetic mutations that can 

increase the transmissibility and pathogenicity of certain viruses, as has been hypothesized 

in interactions between wild migratory birds and domestic fowl that increase the pandemic 

potential of H5N1.51-54

Bats are expected to drive the majority of novel zoonotic spillover into human populations 

due to the phylogenic relatedness of human and bat viruses.55 Fruit bats, the apparent animal 

reservoir of Ebola virus disease (EVD), are anticipated to expand beyond their current range, 

as warming temperatures create suitable conditions in new countries in West and Central 

Africa, leading to a 1.63-fold higher epidemic likelihood over the next 50 years.56-59 As 

a likely zoonotic reservoir of several coronavirus (CoV) outbreaks in human populations, 

including Middle East respiratory syndrome (MERS)60,61 and SARS-CoV-1,62 bats will 

continue to play a large role in future zoonotic outbreaks of CoV as climate change-

affected migratory patterns promote genetic mixing between bat populations.63,64 These 

epidemiological changes complicate the landscape of our current preventative measures, 

as unexpected phylogenic and host shifts introduce new channels of infection into human 

populations.50,65

Extreme weather events will drive animals into closer proximity with human populations, 

increasing interactions and potential spillover events. Climate-driven food shortages cause 

fruit bats to feed more often in domestic horse paddocks and swine farms, in which 

horses and pigs become mediating hosts that facilitate spillover into humans, as is the 

case for increasing Hendra virus spillover events in Australia66-68 and outbreaks of Nipah 

virus in Malaysia.69 Excess rainfall and subsequent crop damage can push rodents into 

human habitations for shelter and food, causing outbreaks of rodent-borne diseases such as 
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hantavirus cardiopulmonary syndrome in the Southwestern US70,71 and Lassa fever in West 

Africa.72,73

Due to the high lethality and virulence of certain avian flu strains, their endemic presence 

in Asia, their increasingly large host reservoir, the climate-driven changes in host migration 

patterns, and the significant rate of viral mutation, highly pathogenic avian influenza (HPAI) 

is one of the world’s greatest pandemic threats.74-77 Inadequate identification of emerging 

pandemic threats can be particularly hazardous when early treatment initiation increases 

child survival, as is the case of H5N1 avian influenza being commonly mistaken for seasonal 

flu in children, causing increased fatality rates for each day of delayed treatment.38,78

Driven in part by climate-induced contraction of natural resources, the proliferation of 

high-density, large-scale livestock operations can intensify the speed and spread of infections 

among animal hosts, while also increasing the rate of genetic mutation.79-82 There have 

been numerous examples of livestock as intermediary or amplifying reservoirs for viral 

pathogens, from pig farms driving the 1998-1999 Malaysian Nipah virus outbreak83 to 

the emergence of avian influenza H5N1 and H7N9 in China as a result of the rapidly 

intensifying poultry sector.84 A One Health approach is needed to address increasing food 

insecurity while safely managing agricultural systems to reduce zoonotic spread.85

Time spent playing outdoors puts children at a high risk of interacting with wildlife and 

domestic livestock, as seen in select Nipah outbreaks and the majority of rabies cases, and in 

the increased potential for future avian flu spillover.51,86-88 Ultimately, children’s behavior, 

immunological immaturity, and unique physiology put them at greater risk for morbidity 

and mortality in an increasingly dangerous, climate-mediated future of expanded zoonotic 

transmission.

Vector-borne diseases

Much research on climate impacts on global infectious disease is centered on vector-

borne diseases, i.e. pathologies transmitted between animals via blood-feeding arthropods. 

Because arthropods are dependent on ambient temperature to maintain homeostasis, the 

general scientific consensus is that most disease vectors will do better in a warmer world, by 

becoming more abundant and expanding their range (Fig. 2).89-93 Ticks and mosquitos, the 

primary vectors of arthropod-borne viruses (arboviruses), are inhabiting higher latitudes and 

altitudes, which could expose previously unaffected populations to tick and mosquito-borne 

diseases.2,94-99 Warmer temperatures tend to accelerate viral replication rates and enhance 

vector competence, leading to further viral spread.89,100-102 Therefore, almost all vector-

borne viral diseases will see a larger portion of the globe become suitable for transmission in 

upcoming decades.3

Dengue

Caused by the dengue virus (DENV), dengue is the most common arbovirus, with 400 

million cases and 40,000 deaths reported each year.93,103 Though most children infected 

with dengue will be asymptomatic or minimally symptomatic, children are more likely than 

adults to face severe and long-lasting symptoms and die of the virus.104-106 The primary 

vector of dengue transmission, the Aedes aegypti mosquito, prefers tropical and subtropical 

Chitre et al. Page 5

Pediatr Res. Author manuscript; available in PMC 2024 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



urban environments, where breeding habitats and blood meals are abundant.91,107,108 

Over the past half-century, DENV has drastically expanded its range, likely due to 

globalization, widespread urbanization, and insufficient vector control.107 In the wake of 

extreme precipitation and flooding in Pakistan in June 2022, pools of stagnant water 

and limited potable water created abundant breeding sites and feeding opportunities 

for mosquitos, driving surges in malaria and dengue.109,110 Catastrophic flooding also 

causes widespread malnutrition, outbreaks of gastrointestinal disease, and impediments to 

accessing medical care, which compromise children’s ability to withstand dengue.110,111 

Dengue incidence is skyrocketing in endemic areas such as India112,113 and Southeast 

Asia;114-119 and is projected to reach new regions such as northern China,120,121 south-

central Africa,91,99,122,123 mountainous regions in south Asia,121 the Americas,104,124 and 

the Mediterranean and Adriatic coasts of Europe.121,125,126

Chikungunya

Like dengue, chikungunya (CHIKV) is transmitted by Aedes-species mosquitos, which have 

proliferated globally in recent decades.124,127,128 In Brazil, a CHIKV variant has been the 

principal driver of over three million chikungunya cases since the introduction of the virus in 

2013.129,130 In March 2023, neighboring Paraguay experienced an outbreak of over 13,000 

chikungunya cases in which over 400 people, mainly children, were hospitalized.124 Climate 

change is expected to push chikungunya to higher latitudes in the Americas.99,128 In the 

Eastern Hemisphere, chikungunya epidemic potential is predicted to increase in southern 

and south-central Africa122,131 and continental Europe.2,126,128,132,133 Due to globalization 

and climate change, chikungunya’s rapid worldwide spread over the course of two decades 

is increasingly likely to repeat itself with presently under-explored arboviruses, which have 

not yet crossed paths with widely distributed mosquito species. If a novel arbovirus is picked 

up by a ubiquitous mosquito it could quickly become endemic across continents.

Zika

Zika virus (ZIKV) is a flavivirus transmitted by Aedes-species mosquitos that can 

cause severe neurological birth defects via transplacental infection.134 While most people 

infected with ZIKV will experience little to no symptoms, the virus can compromise the 

placental lining in pregnant individuals, subsequently crossing the placenta and damaging 

fetal brain tissue.135,136 Particularly during the first and second trimesters of pregnancy, 

maternal infection can lead to a 5–13% risk of the fetus developing severe brain damage, 

namely microcephaly.137-140 Brain damage due to ZIKV infection, labeled Congenital Zika 

Syndrome (CZS), is difficult to detect prenatally, and 10% of infants born with CZS will 

die within the first few months of life.141 Longer warm seasons in tropical and subtropical 

areas could create ideal conditions for ZIKV spread,136,142,143 and temperate regions may 

also become susceptible to seasonal epidemics when summer temperatures reach the 30°C 

range.144 Up to 1.3 billion additional people may be exposed to Zika by 2050 under 

circumstances of unmitigated global warming.145

Other mosquito-borne viruses

West Nile Virus (WNV) is the most widely distributed known arbovirus in the 

world, transmitted primarily by Culex-species mosquitos. Historically, major WNV 
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outbreaks have been preceded by heat waves, which will become more frequent in 

upcoming decades.109,146,147 Planetary warming is driving WNV endemization across 

much of Europe, western Asia, Australia, and North America.2,89,95,101,126,148 Substantive 

epidemiological evidence exists to support the predicted expansion of Rift Valley Fever 

Virus (RFVF) to higher altitudes in East-Central Africa94,106,122 and Ross River Virus 

(RRV) and Barmah Forest Virus (BFV) in Australia.149-153 In Latin America, Oropouche 

(OROV) and Mayaro virus (MAYV) harbor epidemic potential as disease vectors expand 

their range to encompass immunologically naïve human populations, in which children 

occupy a particularly vulnerable niche.154-157 A climate-mediated increase in emerging 

infectious febrile viruses, like Mayaro virus, may lead to increased antibiotic treatments 

for novel viruses with low access to diagnostic facilities.158-160 Antimicrobial resistance is 

a growing concern of global pediatric health;losing therapeutic options to resistance could 

bring us back to a pre-antibiotic era when simple infections had fatal consequences.161

Tick-borne viruses

Climate change has affected the distribution and behavior of ticks, as well as the viral 

diseases they carry, through multiple pathways.162-164 In central and eastern Europe, the 

Ixodes ricinus tick, which carries the tick-borne encephalitis virus (TBEV) has been 

inhabiting higher altitudes in mountainous regions,97,165,166 and becoming more plentiful 

in the areas they currently inhabit.94,167,168 In conjunction with the expansion of I. ricinus 
due to climate change, the risk of TBEV is increasing as well.162,167,169-171 This is 

partially behavioral: ticks spend more time questing—that is, primed to latch onto a host—

when temperatures are warmer.169,170,172 Incidence of Crimean Congo Hemorrhagic Fever 

(CCHF), transmitted by Hyalomma-species ticks, is also associated with temperature, and 

is predicted to become more prevalent as global mean temperatures increase.163,172-179 

Warmer weather will most likely push humans, particularly children, outdoors more often, 

increasing their contact with questing ticks in grassy settings.

Vertical Transmission

Preterm birth is the leading cause of neonatal morbidity and mortality, responsible for 

approximately 900,000 neonatal deaths in 2019, the highest proportion of which were found 

in LMICs.12 Increasingly inhospitable climate conditions will affect mothers and neonates 

alike, as extreme maternal heat exposure has been positively correlated with pre-term birth, 

low birth weight, and risk of stillbirth.180 In resource-constrained settings, premature birth 

is often a death sentence for neonates within the first month of life.181 Preterm birth has a 

number of other causes, but maternal infection during the course of pregnancy often plays 

a significant role.25,182,183 Maternal influenza and SARS-CoV2 infections, as well as viral 

hemorrhagic fevers like Lassa, Ebola, Marburg, and Rift Valley fever virus have particularly 

deleterious effects on premature birth rates and neonatal mortality.184-187 As these diseases 

often lead to the death of the mother, there is serious concern for neonatal survival given the 

loss of primary caregiver.188

Of similar concern are the congenital abnormalities that result from vertical transmission 

through the placental barrier, causing chronic health issues in neonates that last a 

lifetime, often leading to an early death. Zika, chikungunya, and dengue fever have all 
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been associated with developmental abnormalities and congenital defects, like the much 

publicized microencephaly in children born to mothers infected with Zika.134,189-191 Viral 

in-utero infections, including cytomegalovirus, HIV, herpes simplex virus, are also common 

causes of neonatal morbidity, mortality, and congenital abnormalities, most significantly 

affecting neonates in LMICs.192,193 As climate change increases the spread of viral vector-

borne threats and shifts the seasonality of such respiratory diseases as influenza, preventative 

measures like vaccination for pregnant women will have positive downstream effects on 

pediatric health.194,195

Water-borne and fecal-oral diseases

Climate change is expected to increase overall precipitation across much of the globe, but 

also augment the likelihood and severity of drought in dry regions such as the American 

Southwest, Sahel, Eastern Horn of Africa, and much of Australia.196 The 2022 IPCC 

report demonstrates high confidence that warming temperatures and heavy precipitation are 

associated with increased incidence of water-borne diseases. Extreme rainfall can lead to 

flooding, which can introduce pathogens into the drinking water supply.197-199 Drought 

also heightens the risk of water-borne disease, forcing people to turn to alternate unsafe 

water sources for hydration, share limited existing water resources, which can concentrate 

pathogens, and compromise hygiene and sanitation practices.199,200

There is significant overlap between water-borne and fecal-oral diseases, which are 

transmitted when fecal material passes into the mouth. Water is the principal medium 

for ingestion of fecal matter: nearly 25% of the global population is consuming fecally-

contaminated water, and this figure is expected to rise as climate disasters continue.201 

Diarrheal diseases, the second-leading cause of death in children under five years of age, are 

primarily caused by viruses spread via water-borne and fecal-oral routes.2,197,198,202-205 

Associations between temperature and/or rainfall and all-cause diarrhea have been 

extensively documented across the globe.199,206-209 Many diarrhea-causing viruses are 

nameless and do not cause major epidemics, but their cumulative impact on children cannot 

be understated. Increasingly, scientists are identifying and researching these emerging 

pathological agents, which tend to fall into the rotavirus, adenovirus, astrovirus, and 

norovirus families.201,210-215 For example, Sapovirus—a norovirus-adjacent genus in the 

calicivirus family—is recently being recognized as a leading cause of diarrheal disease, 

accounting for up to 17% of diarrheal episodes worldwide.214

Poliomyelitis

Spread through food-borne, waterborne, and fecal-oral routes, poliomyelitis (polio) 

predominantly affects children under five years of age;one out of every 200 infections 

can lead to irreversible paralysis, which can beget respiratory failure and death.216 Though 

preventable through vaccination, polio has experienced a resurgence in recent years, and as 

the WHO notes, “as long as a single child remains infected, children in all countries are at 

risk of contracting polio.”217 Worryingly, droughts are known to stymie polio vaccination 

campaigns.218 Though the effects of climate change on polio transmission dynamics are not 

fully understood, polio is considered a climate-vulnerable disease.219
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Hand-foot-and-mouth

Hand-foot-and-mouth disease (HFMD) is a fecal-oral and contact viral illness that 

predominantly affects children under five years of age, who are also at highest risk of 

developing severe symptoms including meningitis, encephalitis, respiratory failure, and 

cardiac failure.220 There is robust scientific data supporting the role of climate change, 

namely warming temperatures and higher relative humidity, in driving the rise in HMFD 

cases across Pacific Asia, where the virus has become a pressing public health threat.221-229 

The relationship between HMFD infections and temperature are often non-linear, with one 

to two temperature peaks for optimal transmission, as children spend more time outside in 

warm weather, yet retreat inside during extreme heat.220,222,223,227 Additionally, enterovirus 

survival and infectiousness is enhanced in warmer weather as well as humid conditions, 

because enteroviruses can attach to airborne water droplets, which subsequently stick to 

frequently-touched surfaces including children’s toys.220,224,226 Climate change, then, is 

expected to make more months out of the year conducive to HMFD transmission.220

Respiratory diseases

Climate change has a complex influence on the transmission of viral respiratory diseases. 

The distribution of acute respiratory infections (ARIs) varies by region, but ARIs continue 

to be one of the most significant causes of hospitalization and mortality among children 

globally.230-234 As the global distribution of ARIs is affected by climate change in the 

coming years, respiratory illness hospitalizations and related mortality will continue to be a 

pressing pediatric concern worldwide.235-239

Humidity and temperature have a significant but inconsistent effect on the regional incidence 

of viral respiratory infections, as each virus has a different “u-shape” curve of ideal 

transmission conditions, affected to varying degrees by a constellation of environmental 

and host factors.240-251 For example, while warmer winters are associated with fewer 

infections of influenza A and B, they have been shown to precipitate severe annual influenza 

seasons with earlier onset in the following year, as there is a larger immunologically 

susceptible population to attack.252 Conversely, warmer winters shorten the RSV season, 

creating a protective effect for an immunologically naïve child population.237,253 More 

climate prediction complexity is introduced on a particle level, where higher temperature 

and humidity are associated with a shorter virus half-life.254,255 Hotter temperatures and 

frequent storms could drive people indoors, creating optimal environments for increased 

circulation of respiratory pathogens in enclosed spaces for more days out of the year.256-259 

In settings of water scarcity, hygiene and sanitation may be curtailed, enhancing the spread 

of viral pathogens through droplets.260,261

Ambient air pollution, a result of fossil fuel combustion through wildfires and human 

activity, is expected to increase over the coming years.262,263 Increases in air pollution 

have been directly linked to increased hospitalization rates of ARIs in children, such as 

pneumonia.264-268 Increased time spent indoors, caused by excess heat or precipitation, 

exposes children to household air pollution from the combustion of solid fuels for cooking 

and heating indoors.269-271 Large-scale global and local reductions of fossil fuel emissions 

are necessary to mitigate these primary and secondary threats to pediatric respiratory health.
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SECONDARY CLIMATE-MEDIATED THREATS TO PEDIATRIC BURDEN OF 

VIRAL DISEASE

Climate-induced migration

Natural disasters, desertification, and rising sea levels are making large swaths of the world 

uninhabitable, prompting migration that will fundamentally alter the distribution of people 

across continents.8,272-274 In 2020, close to 10 million children were displaced in the 

aftermath of weather-related shocks.275 Displacement has myriad impacts on viral disease.

The most common viruses in displaced persons camps are diarrheal diseases and respiratory 

infections, which significantly impact children’s health.276-279 Crowded living conditions 

are conducive for the rapid outbreak of respiratory illness, such as measles, varicella, 

influenza, and other acute respiratory infections, and viruses spread through skin-to-skin 

contact, such as molluscum and human papillomaviruses.280-283 Isolated outbreaks of 

poliovirus have been reported in refugee camps, likely due to displacement-related gaps 

in routine immunization activities and inadequate water, sanitation, and hygiene (WASH) 

infrastructure.284,285 Other water-borne pathogens, such as Hepatitis A and E, can spread 

quickly in resettlement camps with over-crowding and poor sanitation, especially those 

built in areas vulnerable to persistent flooding during rainy seasons.286-288 Poorly planned 

waste management systems increase the amount of refuse, such as water bottles, old tires, 

and cans, near human dwellings, which creates more breeding grounds for mosquitos and 

attracts rodents, leading to outbreaks of dengue, West Nile virus, and Lassa fever.289-291

As families migrate, it is exceedingly difficult to maintain routine immunization schedules 

for their children.292,293 Migration and infectious disease transmission work bidirectionally, 

wherein migrants are exposed to new pathogens in host communities to which they have 

no acquired immunity, and diseases also travel with migratory populations, introducing 

new pathogens into an immunologically naïve host country.294,295 Chikungunya was likely 

introduced into Singapore, a population with no natural immunity prior to 2008, as migrant 

workers moved from the Indian subcontinent in search of work, yet due to their poor living 

conditions and barriers to healthcare access, migrants themselves were most affected by 

the local outbreak clusters.279,296 As migrant populations resettle in new regions, they may 

transport livestock with them, potentially introducing zoonotic hosts and associated vectors 

into novel geographic niches, as was the case of increased prevalence of tick-borne CCHF 

from infected livestock following the relocation of Afghan refugees to Pakistan.297 Climate 

change will continue to provoke complex migratory patterns due to natural disasters, long-

term environmental shifts, and lost livelihoods, and the interchange of viral pathogens into 

new susceptible populations will proliferate.298,299 Migrant-sensitive health systems in host 

countries are critical to address these vulnerabilities.300,301

Compromised health systems and barriers to treatment

Extreme weather events are becoming more frequent due to climate change: many of 

the strongest storms in recorded history have occurred in the past few years. Tropical 

cyclone Freddy broke global and regional records across Madagascar, Mozambique, and 

Malawi.302 The subsequent mudslides and flooding destroyed over 300 health facilities 
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and disconnected numerous villages from health services, like life-saving antiretroviral 

treatments.303-305 Severe weather can also compromise electrification, patient records, and 

vaccine supplies, all of which exacerbate the burden of viral disease.306

While patients face physical barriers to treatment and health centers suffer destruction of 

medical supplies and infrastructure, storms are likely to result in injuries that make access 

to care all the more urgent and necessary.307 This worsens resource constraints and makes 

it more challenging for individuals with viral illnesses to receive appropriate diagnoses 

and treatment. In these situations, children are most vulnerable, particularly when their 

viral illnesses require advanced care: due to the specialized nature of the equipment and 

personnel required, pediatric emergency and intensive care units are even more susceptible 

to devastating supply shortages.308

CONCLUSION

In a warming world, the mounting threat of viral disease—which must be situated within 

a broader context of food insecurity, displacement, conflict, and other impacts of climate 

change—requires sweeping interventions. It mandates that health professionals extend 

their commitment to human health into the sociopolitical realm, becoming advocates 

for drastic cutbacks in global GHG emissions. Without these cutbacks, models forecast 

increases in average global temperatures by 2–5 °C (with localized extremes), which would 

prove devastating for much of the world’s population, particularly for children.4 Health 

professionals are on the front lines of this developing crisis;they must recruit their evidence-

based understandings of the impacts of climate change on human health to highlight the 

necessity of political action.307

Finally, to protect the well-being of children worldwide, the vast majority of whom reside 

in LMICs, health professionals must grapple with the dynamics that impoverish these 

countries in the first place. These are the very dynamics that engineer the disproportionate 

vulnerability of LMICs to climate change, putting billions of children at risk of viral disease, 

among a host of other pathologies. For example, high-interest loans disbursed by global 

financial institutions to LMICs trap these countries in vicious cycles of debt, whereas 

unconditional economic support to the Global South would allow for the development of 

climate-resilient infrastructure, robust universal health care, vaccination campaigns, and 

research to combat infectious pathologies. By pursuing equitable solutions to systemic 

racism, legacies of colonialism, predatory neo-colonial extraction, and widespread human 

rights failings, the world can better mitigate the looming health threats posed by climate 

change.309
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IMPACT:

• A review of the effects of climate change on viral threats to pediatric health, 

including zoonotic, vector-borne, water-borne, and respiratory viruses, as well 

as distal threats related to climate-induced migration and health systems.

• A unique focus on viruses offers a more in-depth look at the effect of climate 

change on vector competence, viral particle survival, co-morbidities, and host 

behavior.

• An examination of children as a particularly vulnerable population provokes 

programming tailored to their unique set of vulnerabilities and encourages 

reflection on equitable climate adaptation frameworks.
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Fig. 1. Projected Emissions and Global Temperatures.
The extent of planetary warming under drastic and minimal carbon emission reduction 

scenarios. Source: Katharine Hayhoe, 2017.4
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Fig. 2. Projected Range of Aedes species Mosquitos.
Projected expansion of range of Ae. aegypti and Ae. albopictus under drastic and minimal 

carbon emission reduction scenarios. Source: Ryan, S.J. et al. 2019.310
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