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Summary

Dense local, recurrent connections are a major feature of cortical circuits, yet how they 

affect neurons’ responses is unclear, with some studies reporting weak recurrent effects, some 

amplification, and others showing instead local suppression. Here, we show that optogenetic 

input to mouse V1 excitatory neurons generates salt-and-pepper patterns of both excitation and 

suppression. Responses in individual neurons are not strongly predicted by that neuron’s direct 

input. A balanced-state network model reconciles a set of diverse observations: the observed 

dynamics, suppressed responses, decoupling of input and output, and long tail of excited 

responses. The model shows recurrent excitatory-excitatory connections are strong and also 

variable across neurons. Together, these results demonstrate that excitatory recurrent connections 

can have major effects on cortical computations, by shaping and changing neurons’ responses to 

input.

eTOC

Dense recurrent connections are a universal feature of cortical areas. What function do they play 

in sensory cortex? Here, by studying mechanisms of suppression in mice, O’Rawe et al.show 

recurrent connections change input-output transformations. Neural computations arise from 

feedforward and feedback influences but also depend critically on local, recurrent connectivity.

Graphical Abstract

*Correspondence and Lead Contact: mark.histed@nih.gov.
4Current affiliations:
Department of Biological Structure, University of Washington, Seattle WA USA
5National Eye Institute Intramural Program, NIH, Bethesda MD USA
Author contributions
Electrophysiology data collection: ZZ. 2-photon data: PKL, AJL, JFO. Widefield data: JFO. Histology: ZZ, HCG. JFO, MHH 
designed and implemented simulations. JFO, MHH, ZZ analyzed data. JFO, MHH wrote the manuscript.

Declaration of interests
The authors declare no competing interests.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuron. Author manuscript; available in PMC 2024 December 20.

Published in final edited form as:
Neuron. 2023 December 20; 111(24): 4086–4101.e5. doi:10.1016/j.neuron.2023.09.010.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

The cerebral cortex of mammals is specialized into areas that perform different functions1. 

Animals from rodents to primates have several different visual cortical areas, each 

containing neurons with different types of selectivity2–4. In principle, these different 

representations in different visual areas could be created purely by feedforward mechanisms, 

where transformations happen via projections from one area or layer to the next, without 

outputs of a neuron feeding back (directly or indirectly) to influence that neuron’s activity. 

In fact, in a variety of artificial neural networks, much or all computation is provided by 

feedforward mechanisms5.

Yet in the brains of animals and humans, cortical recurrent connectivity is extensive. 

Most excitatory connections that a cortical neuron receives originate within a few hundred 

microns of their cell bodies6–8. Such recurrent connections can in principle have large 

effects on neural computation9, dramatically changing how cortical neurons respond to 

input.

How recurrent connections affect cortical computation is not fully understood, but important 

aspects of the structure of cortical recurrent connectivity have been determined. Some 

features of cortical network activity, such as irregular firing, are well-described by balanced-

state models which assume strong recurrent coupling between excitatory and inhibitory 

neurons (either moderately strong, yielding ‘loose balance’, or very strong, yielding 
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‘tight balance’10). Work using inhibitory perturbations has shown that not just excitatory-

inhibitory connectivity is strong, but the average excitatory-excitatory connectivity is strong 

as well. More precisely, cortical recurrent excitatory coupling is strong enough that the 

excitatory network is unstable and self-amplifying, a phenomenon described by inhibition-

stabilized network models (ISNs)11–14.

While some consensus has developed on these average cortical connectivity properties 

(but see15), the effect recurrent connections have on transforming sensory or input signals 

has been less clear. For example, some recent studies have shown that certain patterns 

of excitatory input can be amplified by the cortical network16,17, consistent with some 

theoretical predictions18,19.However, other studies have shown that nearby neurons can 

be substantially suppressed by stimulation that excites a single or a small ensemble of 

excitatory cortical neurons20,21. How excitatory and inhibitory neurons might interact 

through recurrent connections to create such suppression has not been determined.

Here, to understand how cortical neurons’ responses are shaped by the cortical recurrent 

network, we stimulate excitatory cells in the visual cortex optogenetically and record 

responses of local neurons with electrophysiology and two-photon imaging. First, we find 

that stimulation of excitatory cells leads to a salt-and-pepper pattern of local suppression, 

consistent with the pattern of excited and suppressed cells produced when animals see a 

strong visual stimulus. To understand how this suppression effect might arise from cortical 

recurrent circuitry, we examine both the patterns of firing rate changes and the dynamics 

of responses. Recent theoretical work has shown that cortical visual responses can be 

“reshuffled” by additional excitatory input22 — that is, strong average recurrent coupling 

allows individual neurons’ firing to change significantly in response to input while the 

distribution of population activity is little-changed23,24. We implement this scenario in a 

conductance-based simulation and find that it can explain the suppression we observe. In 

addition, our data is consistent with substantial variability in local recurrent connectivity, 

with some neurons receiving large net recurrent excitation and others smaller or net 

suppressive recurrent input. Our results go beyond prior work that found strong average 
recurrent connectivity, showing that variance in excitatory-excitatory connectivity must also 

be substantial, and further show that this variance in recurrent connectivity can decouple 

neurons’ firing rate responses from the direct input they receive.

The suppression we observe during excitatory cell stimulation occurs in individual cells, 

but the mean response is elevated. This increase in mean, however, seems at odds with the 

prior finding that single-cell stimulation leads to inhibition on average20. To resolve this, 

we simulate the effect of single cell stimulation and find that the difference in the two 

results can be explained by the activation state of the cortical network. Increasing activity 

in the network with visual stimulation results in a slight decrease in mean responses to 

stimulation, showing the prior results and our current results can be described in the same 

model framework.

Thus, a balanced-state cortical model, with strong average coupling and variability in 

recurrent connectivity, explains many features of our data, including dynamics and neural 

response distributions. These results show how cortical neural suppression can be generated 

O’Rawe et al. Page 3

Neuron. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from excitatory input: variability in recurrent input means that firing rate responses are 

decoupled from (are only weakly affected by) the level of excitatory input we provide to 

that cell. This arises because much of the input a cell receives comes from recurrent sources. 

Because recurrent input varies from cell to cell, the result is many excited cells, but also a 

substantial number of suppressed neurons.

Results

Strong visual input leads to salt-and-pepper distributed suppression in primary visual 
cortex

We first measured patterns of suppression in V1 in response to visual stimuli. We presented 

small high-contrast visual stimuli to headfixed mice while measuring activity in layer 2/3 

neurons via two-photon imaging (Fig. 1A). Animals were kept awake and in an alert state25 

with occasional drops of water reward.

We imaged responses to two types of high-contrast visual stimuli, a fast-changing stimulus 

designed to minimize adaptation (“oriented noise”, Fig. 1A)26–28 and a drifting grating (Fig. 

S1D). We found a salt-and-pepper mix of suppressed and excited cells (Fig. 1B,C), with 

suppression stronger after the initial stimulus response (Fig. 1C). In other words, in response 

to both types of visual stimuli, we found some cells that responded with strongly elevated 

steady-state responses, and other cells with suppressed responses (Fig. 1C–F, Fig. S1A–E).

Deconvolving fluorescence responses to yield a proxy measure of spike rate confirmed 

this salt- and-pepper pattern, with substantial numbers of suppressed and excited neurons 

intermingled (Fig. 1D). The deconvolution revealed an initial transient response in excited 

cells (Fig 1F,G), followed by either an elevated or suppressed steady state.

We confirmed that the spatial distribution of elevated and suppressed neurons was randomly 

scattered across the cortex (Fig. 1H). We found our data was consistent with random scatter 

(data vs 2d Poisson process model for spatial randomness, p>0.05, Bonferroni correction, 

Fig. S1F–H).

The viral expression strategy we used for these experiments yields both excitatory and 

inhibitory neurons that express GCaMP. However, the large fraction of suppressed neurons 

(Fig. 1D,H–J; proportion suppressed 44%±7%, N=3 animals, mean±standard error) implies 

it is not that a group of inhibitory neurons was suppressed by stimulation, but that many 

excitatory neurons were suppressed. Below, we confirm this with electrophysiology and 

imaging.

Optogenetic excitatory drive also results in sparse and distributed suppression

To examine the influence of recurrent excitatory-inhibitory circuits on local response 

properties, we next measured V1 responses while optogenetically stimulating excitatory 

cortical cells (Fig. 2A). Direct stimulation allows us to exclude some feedforward 

mechanisms for suppression — for example, to argue against the possibility that cortical 

suppression is generated principally by suppression of thalamic inputs29.
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We injected a Cre-dependent excitatory opsin (soma-targeted ChrimsonR, or stChrimsonR) 

in layer 2/3 of a mouse expressing Cre in excitatory neurons only (Emx1-Cre30), and 

expressed GCaMP7s in all neurons with a second virus (AAV-hSyn-GCaMP7s) (Fig. 2B,E).

With optogenetic stimulation we also found a clear salt-and-pepper distribution of elevated 

and suppressed responses (Fig. 2C,F,H; short stimulation pulses Fig. 2B–D, long pulses 

with imaging of steady-state during stimulation, Fig. 2E–G). Neural responses to stimulation 

increase as power increases (Fig. 2D; asymptote may be due to opsin saturation.) As in the 

case of visual responses, we confirmed that the spatial patterns of responses were compatible 

with random scattering (all p’s>0.05, Fig. S1F–H). The proportion of suppressed neurons 

with optogenetic stimulation (Fig. 2I,J; 38%±8%, mean±SEM) was comparable to that seen 

with visual stimulation (Fig. 1IJ). These optogenetic data suggest that the network is being 

driven to a new steady state, or fixed point, by input. While there was a slight decay in 

the excited population’s response at high power (perhaps due to network effects, spike 

rate adaptation, or opsin desensitization), at moderate stimulation power (1mW, Fig. 2G), 

deconvolved firing rates are largely constant while stimulation is on.

We confirmed the opsin was expressed only in excitatory cells using fluorescence in-

situ hybridization. We labeled excitatory, inhibitory, and stChrimsonR-expressing neurons 

(RNAScope, ACD Inc; Fig. S2A,B). Excitatory neurons expressed the opsin (Fig. 2I), but 

as expected for AAV expression31, not all excitatory neurons were opsin-positive (59%, 

N=115/195, Wilson score 95% CI: [52.0%,65.7%], Fig. S2A). None of the inhibitory 

neurons (24% of neurons in the sample, N=62/257) showed expression of the opsin (Fig. 

S2B).

The two-photon imaging experiments showed a salt-and-pepper pattern of excitation and 

suppression within the imaging fields of view. To examine whether this salt-and-pepper 

pattern exists at larger distances from the stimulation site, we used electrophysiology. We 

recorded neural responses to stChrimsonR stimulation using a silicon electrode array (Fig. 

3A,E) and the same viral strategy for opsin expression as for imaging.

We found both elevation and suppression across all distances (Fig. 3B–D) and depths (Fig. 

3F–H) from the stimulation site, suggesting a salt-and-pepper organization extends over 

large distances. Across the population of recorded neurons, 56.6% (77 of 136) showed an 

elevated steady-state response to the optogenetic stimulation, and 36.0% (49 of 136) showed 

a suppressed steady-state response, comparable to our two-photon measurements (Fig. 2). 

Both elevated and suppressed cells on average showed an initial positive transient followed 

by a (positive or negative) steady-state response (Fig. 3I,J).

The electrophysiological recordings show similar dynamics to the deconvolved imaging 

timecourses (Fig. 2H), except that the recordings show an initial brief positive transient in 

the suppressed cells (Fig. 3B–D, F–H, blue lines; Fig. 3J), not just in the elevated cells, 

as in the imaging data. This transient is likely concealed in the imaging data due to the 

slower timescale of imaging. The imaging frame rate (30Hz; 33ms frames) is slower than 

the transient, so within one frame the positive transient would be averaged with suppression, 
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yielding a result near zero. In the case of elevated cells, the positive transient is averaged 

with an elevated steady state, and so the response in that frame remains positive.

Global spatial patterns arise from trends in local salt-and-pepper suppression

The neurophysiology data suggested a larger-scale organization on top of the local salt-and- 

pepper distribution. Over distances of more than a millimeter from the stimulation site, 

we found that the number of elevated units gradually decreased (Fig. 3K,L; Pearson’s 

chi-squared test, χ2=51.31, df=3, p<0.001) and the number of suppressed units increased 

(Fig. 3M,N; χ2=44.83, df=3, p<0.001; see Fig. S2E–H for proportions). There was a similar 

trend in neurons’ firing rates (Fig. S2I,J). Elevated single units showed less elevated firing 

rate with distance from the stimulation site, and suppressed single units showed more 

suppression, though the trend was stronger in unit counts than in population firing rates 

(Pearson’s r=−0.11, df=29, p=0.56, Pearson’s r=0.32, df=46, p<0.05; Fig. S2I,J). Notably, 

however, the number of elevated neurons did not go to zero even at 1.2 mm from the 

stimulation site: only the relative numbers of elevated and suppressed neurons changed.

The trends over distance we saw with physiology, however, give only a partial view into 

how population responses varied with distance from the stimulation site. To measure 

the extent of suppression across the cortex, we turned to widefield, mesoscale calcium 

imaging. We expressed GCaMP in all excitatory cells using a mouse line (to maximize 

consistency of GCaMP expression across cortical distance; Fig. 4A; Ai148::Cux2-CreERT2, 

or Ai162::Cux2-CreERT2, Methods). We restricted expression of stChrimsonR to excitatory 

cells using the CamKIIa promoter (AAV-CamKIIa-stChrimsonR).

We saw clear spatial patterns in widefield imaging, broadly consistent with the spatial trends 

we saw in the electrophysiology data. During the initial frame of stimulation (~7Hz imaging, 

140ms period), we saw an increase in activity both at the center and extending some distance 

outside the center of expression (Fig. 4B,E,H).

A center-surround pattern emerged later in the stimulation pulse (Fig. 4C,F,I) consistent 

with the large-scale patterns in the electrophysiological recordings (see Fig. S4G–I for 

spatiotemporal response). The activated area in the center reflected the area of expression, 

measured via fluorescence imaging of the cortical surface (Fig. S4A–F). Deconvolution of 

the timecourses (Fig. 4D) produced similar results (Fig. S3; several deconvolution methods; 

suppression in all cases). The suppression was strongest about 500 μm from the center 

of our laser stimulus, and extended over 1 mm from the stimulation center (Fig. 4 G–I). 

In electrophysiology, the number of suppressed cells increases by a factor of two over 

approximately this distance (Fig. 3K–N), and therefore the increased number of suppressed 

neurons may be the substrate for the suppression in this imaging data.

In summary, the physiology and imaging data together support the idea that suppressed and 

elevated neurons are locally organized in a salt-and-pepper pattern, and that the proportion 

of suppressed to elevated neurons increases with distance from the stimulation site. This 

results in a center-surround pattern that can be seen with population-level imaging.

O’Rawe et al. Page 6

Neuron. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Response dynamics support a balanced-state excitatory-inhibitory network that is driven 
to a new steady state by input

If suppression is due to local recurrent network effects, excitatory cells should be recruited 

by stimulation first, and inhibitory cells should respond slightly later as they receive 

recurrent excitatory input. After those first few milliseconds, balanced-state models predict 

excitatory and inhibitory cells should show similar response distributions10,11,32,33. In 

contrast, in weakly-coupled models, or a feedforward inhibition framework, excitatory and 

inhibitory populations can change firing rates in opposite directions: that is, input drives 

inhibitory cells to increase their rates, inhibiting excitatory cells, which decrease their 

rates. Our data supports the balanced-state recurrent model (Fig. 5) — we saw differences 

in excitatory and inhibitory responses in the first few milliseconds, but at later times 

distributions of excitatory and inhibitory rates were similar.

We classified cells into putative excitatory and inhibitory classes by waveform (Fig. 5A). 

We have previously confirmed13 with in vivo pharmacology that narrow-waveform cells 

are inhibitory interneurons, likely PV-positive fast-spiking cells, while wide-waveform cells 

are primarily excitatory neurons. Here we saw that wide-waveform (largely excitatory) 

neurons have a slightly faster onset latency than narrow-waveform inhibitory cells, faster 

by approximately 2.5ms (Fig. 5B–C; latency: narrow 7.9ms, wide 5.4ms, difference 2.5ms, 

Mann-Whitney U=1256.0, p<0.01; latency measure details: Fig. S5A).

If a group of inhibitory cells were increasing their rate and suppressing other neurons, we 

might expect to see differences in the dynamics of elevated and suppressed cells. But we 

found no significant differences in onset time or time to-steady state (Fig. 5F,G, onset time 

Mann-Whitney U=1741.0, p=0.17, time to steady state, Mann-Whitney U=801.0, p=0.32). 

This was also true when restricting the analysis to only wide-waveform cells (Fig. S5C,D). 

Another possibility could have been that neurons with suppressed steady-state responses 

were cells that did not express opsin. But the similar onset latencies of the elevated and 

suppressed cells (Fig. 5F) excludes that possibility, and provides further support to the idea 

that a balanced-state recurrent network explains the suppression.

Beyond differences in onset latency, we found other response dynamics were not different 

between excitatory and inhibitory cells. Consistent with a recurrent network with strongly 

coupled excitation and inhibition, we found that both excitatory and inhibitory populations 

increase their firing rate when excitatory cells are stimulated (wide mean Δ:14.54spk/s, 

t=5.52, df=93, p<0.001, narrow mean Δ:13.53spk/s, t=3.07, df=41, p<0.01). That is, both 

excitatory and inhibitory populations contain elevated and suppressed neurons, though 

elevated cells dominate both averages (Fig. 5E). Further, the initial transient and steady-state 

firing rate medians were not detectably different between excitatory and inhibitory cells 

(transient: Mann-Whitney U=1816.0, p=0.23, steady-state U=1866.0, p=0.31, Fig. 5D,E). 

Also, time to steady state for wide-waveform and narrow-waveform cells did not differ 

(Fig. S5B), consistent with the idea that steady-state dynamics emerge from integration of 

both inhibitory and excitatory inputs. Overall, the response distribution and dynamics we 

observed in inhibitory and excitatory cells are consistent with a strongly-coupled recurrent 

network.
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A neuron’s response is only weakly predicted by optogenetic input to that neuron

We used the imaging data to determine if suppression was explained by variation in 

optogenetic drive. We found that while there was variability in different cells’ responses, 

there was little relationship between opsin expression and cells’ firing rate changes. To 

estimate the optogenetic drive to individual neurons, we measured fluorescence of mRuby2 

(fused to stChrimsonR) in donut-shaped regions around each cell’s membrane (Fig. 6, Fig. 

S6). The measured distribution of opsin expression was well-fit by a lognormal distribution 

after excluding the 16.8% (Wilson score 95% CI: [12.7%, 22.1%]) of cells with low 

fluorescence (Fig. 6C, Methods). The in vivo estimate of the percentage of non-expressing 

cells was lower than what we observed with histology, perhaps because we selected FOVs 

with dense opsin for in vivo imaging. At the same time, however, our in vivo observations 

are consistent with past work that finds that AAV transfects adult neurons in a non-uniform 

way, producing substantial variability across cells in expression13,31.

We found that the amount of opsin-related fluorescence explained little of the variance in 

steady-state responses (Fig. 6A–D, Pearson’s r=0.21, df=106, p<0.05, high fluorescence 

neurons excluded [>0.5]; Fig. 6D–E, population: at 1mW: Pearson’s r=0.18, df=219, p<0.01, 

at 2mW: Pearson’s r=0.17, df=219, p<0.01).

This striking decoupling effect — that the amount of opsin input barely predicts how cells’ 

firing rates are modulated by stimulation — suggests that a given cell’s response may not be 

dictated by input to that cell, but instead by recurrent inputs.

Notably, both high-expressing cells and low-expressing cells showed little relationship 

between opsin expression and response (Fig. 6E). This supports the idea that the decoupling 

is not due to cell-autonomous intrinsic properties, but indeed due to recurrent network 

inputs. To further test this, we measured variability of neural responses as a function of 

stimulation intensity. If a neuron’s response were in fact controlled primarily by its direct 

optogenetic input and not network input, increasing the optogenetic intensity should keep 

response variance the same, or reduce it, because the fixed opsin level is the principal 

source of response drive (Fig. S2K). Or, if response were dictated by opsin level, increasing 

intensity might produce a bimodal response distribution, as the optogenetically-driven 

neurons separate from non-expressing neurons (Fig. S2L). We found support for none of 

these possibilities. Instead, the response pattern variance increased as stimulation grew 

stronger (Fig. S2M–O), supporting the idea that network input, not opsin level, controlled 

cells’ responses.

We next turned to simulations, fit to our data and building on the recent theoretical advances 

of Sanzeni et al. (in press), to more completely characterize recurrent network influences on 

neurons’ responses.

Input from the recurrent network dominates responses, as explained by a balanced-state 
model

Thus far, a moderately- or strongly-coupled balanced-state network seems consistent 

with both the response distributions and dynamics we observe. Indeed, recent theoretical 

work in rate-based models22 has shown that this kind of heterogeneous network 

O’Rawe et al. Page 8

Neuron. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



response (“reshuffling”) occurs in strongly-coupled cortical networks. To understand if our 

experimental data could be explained by this reshuffling mechanism, we examined network 

models with features reflecting our data, and determined which features of the models were 

important to explain the suppression.

We simulated conductance-based spiking neural networks, varying network connectivity and 

opsin drive across neurons in these models, and measured network responses to excitatory 

cell stimulation (Fig. 7A,B).

Each simulation consisted of two sparsely connected populations of conductance-based 

spiking neurons, one excitatory (80% of neurons) and one inhibitory (20%). We drew 

the opsin input strength for each neuron from a distribution fit to the imaging data, 

scaled so the 75th percentile of the network response matched the electrophysiology data 

(lognormal distribution, Fig. 7C). We also repeated these simulations using the percentage 

of non-expressing neurons estimated from the histology data (41%) and found no qualitative 

differences (Fig. S8I–M).

We first manipulated the mean connectivity strength of recurrent connections (Fig. 7B). The 

“tightly balanced” network had the strongest recurrent coupling. We confirmed that each 

simulation showed paradoxical suppression of inhibitory cells, a sign of the ISN regime, 

with strong recurrent coupling within the excitatory network11,13,34 (Fig. S7A,B).

Recurrent excitatory-inhibitory networks can be tightly or loosely balanced10, depending on 

the total amount of recurrent excitatory and inhibitory input to network neurons. To classify 

the networks, we calculated the balance index of Ahmadian and Miller10, a ratio measuring 

how completely inhibitory and excitatory input cancel in a given neuron. We found that all 

three networks we constructed are balanced, as expected due to their irregular spontaneous 

activity (index<<1), and the networks span a range from loose to tight balance (Fig. 7J).

The model replicates the long tail of positive responses, suppressed responses, and 
dynamics

Two characteristic features of our data are the long-tailed positive response and the 

substantial proportion of suppressed cells (Fig. 7D). All three simulated networks showed 

a long tail of elevated responses as in the data, with many neurons showing firing 

rate increases to stimulation, and a few showing large increases (Fig. 7H). However, 

suppression depended on recurrent coupling strength. Increasing the total recurrent input 

by varying the mean coupling strength leads to more suppressed neurons when other 

network parameters are held constant (Fig. 7E). The network that best fit the fraction of 

suppressed cells we observed (Fig. 7E,J; parameter sensitivity analysis: Fig. S8F–H), and 

the response distributions (Fig. 7F–H) was the most strongly-coupled network. Additional 

model components could lead to similar results with networks with different balance index 

values. For instance, adding structured connectivity might reduce the required coupling 

strength22. However, our data underline that recurrent coupling should be strong enough 

so when external input is given to a population of neurons, many neurons’ responses are 

substantially controlled by their recurrent input.
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Excitatory and inhibitory cells’ response distributions were similar in model and data (Fig. 

S7E,F).

Given the ability of a balanced-state model to describe the suppression, we next examined 

model dynamics. We found timecourses in model (Fig. 7I) and data (Figs. 2–3) were 

qualitatively similar. Excitatory cells first showed a brief, positive transient before the 

network settled into a new steady state with some cells excited and some suppressed. The 

initial positive transient in suppressed cells is a key observation, as it suggests a network 

mechanism where input initially excites many excitatory neurons, but later recurrent inputs 

lead to suppression in many of the same neurons. A second similar feature in model and 

data is the offset dynamics: after stimulation ends, both elevated and suppressed cells show 

a slight suppression before returning to baseline. Finally, excitatory cells have earlier onsets, 

indicating that excitatory cells were directly stimulated and inhibitory cells recruited just a 

few milliseconds later (Fig. S7D).

A feature of the dynamics seen in the data but not the model is that at high stimulation 

powers there is a slight decay during the tonic or steady-state period (Fig. 3I). However, 

this decay effect is not seen at lower stimulation intensities, suggesting it arises from 

known opsin dynamics (inactivation at high light power, e.g.35) or other known biophysical, 

non-network, effects like spike-rate adaptation.

In sum, this model recapitulates many of the features of our observations, suggesting that an 

excitatory-inhibitory mechanism with strong and variable recurrent coupling explains how 

V1 neurons respond to input.

Variability in recurrent input creates different responses in different cells, and explains the 
decoupling of a neuron’s response from its optogenetic input

In our data, we saw strikingly little correlation between opsin expression and neural 

response to stimulation (Fig. 6), suggesting recurrent input strongly governs the response. In 

fact, the tightly-coupled model showed the same pattern of responses (Fig. 7L, left).

We therefore asked which sources of variability were important to give neural responses 

weakly related to optogenetic input. To do this we varied sources of input variability in the 

model (Fig. 7K). First, we reduced variability in either the number or strength of recurrent 

inputs and found that this created a stronger correlation between optogenetic input strength 

and response (Figs. 7L, middle and right) which made the model a worse fit for the data 

(Fig. 6). The original relationship was not recovered by increasing the recurrent strength 

of the network (Fig. 7 Supp 3), implying recurrent connection variability was required to 

produce this effect and higher recurrent strength could not substitute for it. Next, we asked 

whether variability in opsin input across cells was also essential to explain the suppression 

we observed. Removing the variance in optogenetic input (so that each excitatory cell with 

opsin received the same input) significantly reduced the number of suppressed neurons and 

produced a worse fit to the data (Fig. 7M; right inset).

If input variability were the primary source of variability in neural responses, removing 

variability from both kinds of input — optogenetic input variability and recurrent input 
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variability — should substantially reduce the amount of suppression. This is what we 

found. Removing or reducing both types of variability produced a set of neural responses 

clustered tightly around the mean response (Fig. 7N) with no suppressed neurons. Thus, 

both variability in recurrent input and in optogenetic input are required to explain the data.

Together these results show that both optogenetic input variability and recurrent connection 

variability help create the variability in different neurons’ responses. Each neuron’s firing 

rate is affected not just by the optogenetic input that it receives, but also by recurrent input 

received from other neurons, and those other neurons themselves receive different amounts 

of optogenetic and recurrent input. When optogenetic input is delivered, the whole network 

changes state to a new set of firing rates, and each neuron’s new firing rates are only weakly 

related to the optogenetic input to that neuron. Thus, the recurrent network explains the 

unexpected decoupling of optogenetic input strength from neural response strength that we 

observed experimentally (Fig. 6).

A balanced-state network model with connection variability also explains expected 
responses to single cell stimulation

Past work has found that stimulating a single cell in V1 leads to mean suppression in the 

surrounding population20 Our results seem initially to contradict this finding, because our 

data and simulations both find a mean positive response across the population when we 

stimulate many excitatory cells.

To determine if the effects of single-cell stimulation could also be explained by the 

balanced-state simulation that describes our data, we performed simulations of single cell 

stimulation in the same tightly-coupled network (Fig. 7A,B), measuring the response of the 

non-stimulated population (Fig 8A,B). While single cell stimulation produced a range of 

individual cell responses (i.e. reshuffling, Fig. 8C), the mean response was not negative, 

but instead close to zero (Fig. 8C,D; mean firing rate 95% CI [−0.006,0.021], t(9998) for 

nonzero mean=1.13, p=0.26). The excitatory cells that received a direct connection from 

the stimulated cell (feedforward, FF, cells, n=107 neurons) had an elevated response. Those 

that received a connection from the inhibitory cells which received a monosynaptic input 

from the directly connected E cells had a very slightly suppressed response (i.e. E-I-E 

connections, n=4380 neurons; Fig. 8E). The small set of strongly excited cells average with 

the large number of weakly suppressed cells to lead to a mean response near zero (Fig. 

8F,G).

Single-cell stimulation alone thus did not produce the mean suppression observed in 

previous studies. We hypothesized this difference could be due to difference in the activation 

state of the network. Chettih and Harvey (2019) stimulated during visual input, while 

here we delivered optogenetic input during spontaneous activity. Balanced-state models can 

produce these differences: Sanzeni et al. (in press) found that increasing the firing rate of 

a similar network reduced the mean response of the network. Further, in models of visual 

cortex with subnetwork connectivity (e.g. higher connectivity between neurons with similar 

orientation tuning36, it has also been shown that visual input can shift the network response 

to be more negative37. We therefore simulated single-cell stimulation paired with input that 

mimics visual drive (Fig. 8G; Methods). Indeed, the mean response became negative (Fig. 
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8G; mean:−0.05;95% CI:[ −0.07,0.04]). This effect depends on the strength of the simulated 

visual input: as input grows stronger, the more negative the response (Fig. 8H).

Thus, a strongly-coupled balanced state model is consistent with not just our data, but with 

past results on single-cell stimulation. Strong mean connectivity, as well as variability in 

recurrent connectivity, shape the responses of the network.

Discussion

We found robust suppression in visual cortex in response to direct optogenetic drive to 

excitatory neurons. The salt-and-pepper distribution of excited and suppressed responses 

resembles what is observed during visual input, and arises without input to inhibitory 

neurons. Firing rate distributions and response dynamics suggest a network mechanism for 

the suppression: that recurrent input variability, combined with external input variability, 

decouples the optogenetic input strength from the firing rate response in individual cells. 

This yields a weak correlation between input and response (Fig. 6E), so that a high level of 

opsin in a cell does not necessarily mean that cell fires strongly in response to stimulation. 

This recurrent network mechanism seems likely to create variability in visual responses as 

well (Fig. 1), because these recurrent connections are present in the cortical network for all 

kinds of input, and so shape responses to visual input also.

Intuitively, the network mechanism that creates the salt-and-pepper excitation and 

suppression is that external inputs first elevate the firing rates of excitatory cells (Fig. 

5A–C), some more than others. That activation excites inhibitory cells, also some more 

than others. The result is the network settles into a new steady state (Fig. 5E–G) with a 

very broad distribution of excitatory cell firing rate changes (Figs. 6,7). Our measurements, 

showing a long tail of excited responses (Fig. 2I), a substantial number of suppressed 

cells, and response dynamics with initial transients followed by steady-state excitation and 

suppression (Fig. 3I,J), all confirm that recurrent inputs can explain the response patterns we 

see.

The salt-and-pepper pattern of responses varies gradually over space, with suppressed cells 

becoming a larger proportion of neurons with distance from the stimulation site (Fig. 

3,4). The salt-and-pepper distribution of responses we observe is therefore overlaid on 

top of the global trends we observed in widefield imaging. This global suppression, in a 

concentric surround region similar to surround suppression during vision 38, is driven by 

direct excitatory inputs, suggesting that visual surround suppression is not inherited from 

other regions but also arises from recurrent interactions.

The role of inhibition and suppression in the cortex: sharpening or high-dimensional 
pattern modification?

In principle, one role of suppression in the cortex could be to sharpen responses to input 

via attenuating responses in non-driven cells. The finding of distance-dependent suppression 

in our widefield data (Fig. 4), on its face, implies exactly this conclusion. Pioneering 

work using single-cell stimulation by Chettih and Harvey20 also found the same sort of 

suppression in non-stimulated neurons. They showed suppression falls off with distance 
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by averaging across recorded neurons. (Note this is true across tuning properties: while 

like-tuned cells in that work show less suppression than other neurons, the average effect is 

still suppression.)

But our data and model extend this to show that sharpening is not the only, or perhaps 

even the primary, effect of cortical suppression. Using individual cells’ responses with 2p 

imaging and electrophysiology combined with simulations, we demonstrate that cortical 

stimulation generates large response variability even in cells directly receiving input. That 

statement has significant consequences for how the cortex transforms its input — it is not 

just that recurrent connectivity sharpens responses, but it can create much more complex and 

high-dimensional transformations21. Such transformations are central to neural coding and 

how neural codes are created from input.

Variability in recurrent connectivity in the cortex: experimental evidence

We find that variability in connection strength between L2/3 excitatory neurons is 

necessary to create the heterogeneous responses to input we, and others39, observe. Several 

observations suggest that the brain has recurrent variability at least as large, and possibly 

larger, than we use in the simulations. First, electrophysiological studies often find a long 

tail of synaptic strengths between pairs of neurons, with a few very large connections40–42. 

The variance of individual synaptic weights may be lower43, with the larger connection 

strengths due to multiple synaptic contacts between neurons (though see44 for evidence of 

long-tailed synaptic bouton sizes.) If there is a long tail in synaptic connection strengths, this 

would still support our finding of high recurrent variance, as it would increase the recurrent 

variability even beyond the weight distributions we used, which are truncated Gaussians 

with mean and variance equal. Second, we used a connection sparsity of 2%. Connection 

probability in the brain may be higher, as for example paired recording studies have found 

connection probabilities of 10% or higher41,42. And higher connection probability will 

produce greater variance in net input into different cells, as binomially-distributed sums have 

a larger variance as connection probability increases (in the 0–50% range). Finally, patterned 

or subnetwork-specific connections, which we did not include, would also only increase 

variance, as shared tuning changes the connection probability from 10–20% on average to 

30–50% for like-tuned neurons, in some cases36. Taken together, the substantial recurrent 

variability that explains our data is consistent with experimental measurements of recurrent 

connection variability.

Strong balance, loose balance: implications for models that describe cortical networks

We find that a two-population excitatory-inhibitory model is sufficient to explain our data. 

A priori, it could have been that a model with multiple inhibitory subtypes15,45 would be 

needed to reproduce the dynamics and population statistics we saw. Recent work has argued 

for particular roles for cortical inhibitory subtypes: that parvalbumin-positive (PV) neurons 

are the primary class providing inhibition stabilization13,46, while somatostatin-positive 

(SOM) cells are involved in gain control46. These separate roles are still consistent with 

our findings. It is plausible that stimulating cortical excitatory cells as we did does not 

cause gain to vary, so that a separate gain role of SOM neurons was not evident in our 

experiments. And PV cells are likely to be the primary inhibitory cell class in our data and 
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model, as PV cells are the narrow-waveform cells that we identify in electrophysiology13 

(see Fig. 5). The narrow-waveform (PV) cells show dynamic and response firing rate 

changes expected for the inhibitory population in an E-I model, with slightly delayed onset 

latency, and similar distribution of firing rate change as E cells.

In addition to supporting the idea that recurrent connections between neurons have 

substantial variability, our results also confirm that the mean V1 recurrent connectivity is 

strong — i.e. V1 operates as an inhibitory-stabilized network, meaning that the excitatory 

network is unstable if inhibition could be frozen11,13,14,22. Within the class of balanced 

networks, two sorts of balance have been distinguished: “loose” and “tight” balance10. The 

best network in our results (Fig. 7) is on the border of the tight- and loose-balance regimes, 

with individual cells falling in either the tight or loose-balance regimes. A network near 

the transition from loose to tight balance is broadly consistent with past experimental data 

(22, reviewed in ref. 10) which do not suggest a very tightly-balanced regime for the cortex 

(Fig. 7). Recent work has shown that adding structured (tuned subclass) connectivity allows 

substantial recurrent effects with looser balance22, further supporting the idea that our data 

support loose or moderate balance.

The mechanism we find for suppression is strikingly different than paradoxical suppression 

in an ISN when inhibitory cells are stimulated12–14. In both cases, suppression is 

paradoxical: here we excite excitatory cells and see suppression of excitatory cells, and 

in an ISN, exciting inhibitory cells causes suppression in inhibitory cells. But in paradoxical 

inhibitory suppression, the mean firing rate of the inhibitory population decreases14. Here 

with excitatory cell stimulation, the mean firing rate change is non-paradoxical, as excitatory 

cell average rates increase. It is the substantial variability or heterogeneity of recurrent 

connections in combination with variability of input that causes many cells to be suppressed 

as others increase their firing. However, both types of paradoxical suppression, when 

excitatory or inhibitory cells are stimulated, require the network to operate as an ISN – 

that is, both effects happen in a network with strong average recurrent coupling13,22. The 

paradoxical suppression of excitatory cells we see here, however, requires variability around 

that strong average recurrent coupling.

Local recurrent influences

While local collaterals probably contribute the majority of recurrent cortical input, meaning 

nearby neurons influence each other via direct synapses, it is possible that long-range, 

inter-areal, connections could contribute to the experimental results we observe. Estimates 

of connectivity falloff show most connections to a given neuron come from local neurons6,7. 

But in principle, cells in other areas could form part of the recurrent population. This could 

happen for example if projections from V1 to the thalamus recruited neurons there which 

connect back to the cortex. However, our widefield imaging data (Fig. 4) shows that the 

suppression peaks a few hundred microns from the stimulation site, suggesting relatively 

local influence. Therefore, it seems likely that the recurrent connections in the simulations 

primarily reflect local connections within V1 to nearby neurons.
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Conclusion

These results suggest one primary purpose of recurrent connectivity in cortex is to 

change the steady-state firing rate of neurons, beyond input transformation by feedforward 

connections. Our results are a step forward in understanding cortical neural computation: 

how neurons change their firing in response to different patterns of input.

STAR Methods

Resource Availability

Lead Contact—Additional information and requests for resources should be directed to 

the lead contact, Mark Histed (mark.histed@nih.gov)

Materials availability—This work did not produce novel reagents.

Data and code availability

• All data to reproduce figure panels has been deposited and archived by Zenodo, 

DOI is listed in the key resources table.

• Code to access data and reproduce figure panels has been deposited and archived 

by Zenodo. DOI is listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Experimental Model and Subject Details

All procedures were approved by the NIMH Institutional Animal Care and Use Committee 

(IACUC) and conform to relevant regulatory standards. Emx1-cre animals30 of both sexes 

(N=14; https://www.jax.org/strain/005628) were used for 2-photon and electrophysiology 

experiments (5 for electrophysiology, 3 for visual stimulation imaging, 6 for optogenetic 

stimulation imaging). For widefield imaging experiments, Ai162 (N=2; https://www.jax.org/

strain/031562) and Ai148 (N=1; https://www.jax.org/strain/030328) animals50 were crossed 

with the Cux2-CreERT2 line51 (https://www.mmrrc.org/catalog/sds.php?mmrrc_id=32779), 

and GCaMP6f or GCaMP6s was induced via tamoxifen injection during adulthood (P22 or 

later, tamoxifen 2 mg intraperitoneally daily for 3 days). Preliminary analyses showed no 

influence of sex on the conclusions so all analyses were performed on a combined pool of 

male and female mice. All animals were singly housed on a reversed light cycle. During 

experiments animals were water scheduled and given occasional water rewards to keep them 

awake and alert. To ensure animals did not drift into a quiet wakefulness or quiescent state, 

we monitored animals during data collection to verify they continued to drink the delivered 

reward.

Methods Details

Implants and injections—Details of the headplate and window procedures are described 

in previous studies13,52. Optical glass windows (3 mm diameter) were placed over V1 
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(center: −3 mm ML, +1.5 mm AP, relative to lambda) for 2p and widefield imaging. 

Windows were also used before electrophysiology for imaging to localize V1.

For Emx1-Cre animals, 300 nL of AAV9-syn-jGCaMP7s-

WPRE (RRID:Addgene_10448747) and/or AAV9-Syn-DIO-stChrimsonR-mRuby 

(RRID:Addgene_10544848) were injected 250 μm below the dura (200 nL/min) prior to 

cementing the cranial window. For Ai148 and 162 animals, AAV9-CamKIIa-stChrimsonR-

mRuby2 was generated by cloning the CaMKIIa promoter (RRID:Addgene_12021949) 

into a pAAV backbone containing stChrimsonR-mRuby2 (RRID:Addgene_10544748) and 

packaged into an AAV (Vigene, Inc.). This was injected at the same depth as the hSyn-DIO-

stChrimsonR virus, but with 100 nL volume at 100 nL/min.

Electrophysiology—Electrophysiological methods are described in detail in previous 

studies13, and are summarized here. Animals were head-fixed during recording. Before 

the first session of electrophysiology, the animal’s cranial window was removed and the 

craniotomy was flushed with saline. Between recording sessions, the craniotomy was 

covered using Kwik-Sil polymer (WPI, Inc.). A fiber optic cannula (400 μm diameter, 0.39 

NA, Thorlabs) was placed to center light output at the center of stChrimsonR expression. 

For light intensity calculations, spot area was defined as the area inside the 50% contour 

of light spot intensity on the cortex, measured with a camera by imaging the spot on the 

brain surface. 1–2% agarose (Type IIIA, Sigma) was placed over the dura at the start of each 

session, and an array of four electrodes (4 probes, 32 sites in total, part #A4×8–5mm-100–

400-177-A32, NeuroNexus, Inc.) were lowered into the cortex using a micromanipulator 

(Sutter MPC-200). One probe was placed at the center of the light spot. Probes were 

advanced 600–1000 μm below the point in which the first probe touched the dura. Probes 

were not moved for 1 hour prior to recording, as we found this improved recording stability. 

Recording data was sampled at 30kHz (Cerebus, Blackrock Microsystems.)

Optogenetic stimulation was performed with randomly interleaved stimulation light pulses 

with several intensities over the range 0.2mW/mm2 to 15mW/mm2. Stimulation pulses were 

600ms long and delivered with a 4 s period.

For spike recordings, waveforms (bandpass filtered, 750Hz – 7.5kHz) were digitized and 

saved by storing a short data section around points where amplitude exceeded 3 times 

the RMS noise on that channel. Single units were identified (OfflineSorter, Plexon, Inc) 

based on clusters in the waveform PCA that were separate from noise and other clusters, 

had unimodal spike width distributions, and inter-spike intervals consistent with cortical 

neuron absolute and relative refractory periods. A single-unit score was assigned to each 

unit manually based on these factors 13,23. To compare these populations quantitatively, 

we calculated SNR for both single and multiunits53,54. Median SNR for single units was 

larger than median SNR for multiunits (SU: 3.32, MU: 2.26; Fig. S2C), consistent with prior 

reports13,53,55.

Histology—Following completion of electrophysiology experiments, mice were 

anesthetized with isoflurane and injected intraperitoneally with pentobarbital sodium 

(150 mg/kg), and perfused transcardially with cold (4°C) PBS followed by cold 4% 
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paraformaldehyde. Brains were extracted and fixed in 4% paraformaldehyde for 6–12 hr and 

then cryoprotected in a 30% (% w/v) sucrose solution in PBS until they sank. Tissue was 

cryosectioned at 10μm and mounted on charged slides. Fluorescence in situ hybridization 

was done using RNAscope’s Multiplex Fluorescent Assay v256. Inhibitory neurons were 

labeled with a VGAT probe (Slc32a1, #319191-C2; Alexa Fluor 488), excitatory neurons 

were labeled with a VGLUT1 probe (Slc17a7, #416631-C3; Cy5), and an mRuby2 probe 

(#487361; Cy3) labeled stChrimsonR-mRuby2 expressing neurons. Slides were coverslipped 

with DAPI. We imaged slides on a Zeiss LSM780 confocal microscope with a 40x oil 

immersion objective. We imaged each fluorophore separately with a single excitation laser, 

and collected all three emission channels. To compensate for bleedthrough where the other 

two fluorophores might be weakly excited by a laser selected for another fluorophore, we 

subtracted a scaled version of the primary emission channel image for each non-selected 

fluorophore from the primary channel for the selected fluorophore. Five representative areas 

were quantified independently by two observers.

Visual stimulation—Visual stimuli were presented usingmWorks (https://

mworks.github.io/). Grating stimuli (sinusoidal contrast variation, 0.1 cyc/deg, orientation=0 

deg) were masked with a circular raised-cosine envelope (15 deg FWHM). Visual stimuli 

were displayed on an LCD display, with center positioned 0–10 degrees of visual angle 

temporal to the central meridian. Oriented noise stimuli were generated by filtering white 

noise pixel arrays (each pixel drawn independently from a uniform distribution) with a 

spatial band-pass filter (peak orientation=0 deg, orientation bandwidth=10 deg, peak spatial 

frequency=0.05, frequency bandwidth=0.05). Frames were generated at 60Hz and the noise 

pattern was independent from frame to frame26–28. Visual stimuli were presented for 3 or 5 

seconds, depending on the experiment.

2-photon imaging—During 2-photon experiments, animals were awake, water-scheduled, 

and given periodic water rewards (20% probability per trial, reward once every 30 

s on average). If animals stopped licking in response to the rewards, data collection 

was ended. We imaged GCaMP7s responses (920 nm excitation) with either a galvo-

galvo (5Hz) or resonant scanning (30Hz) two-photon microscope. stChrimsonR-mRuby2 

expression was imaged at 1000 nm. The microscopes used for imaging were built using 

MIMMS components (https://www.janelia.org/open-science/mimms-21-2020) and other 

custom components, built in-house or provided by Sutter Inc. A second light path, combined 

with the 2p stimulation light path before the tube lens using a dichroic, was used to stimulate 

stChrimsonR using 530nm light (CoolLED, pE-4000). For 200ms long optogenetic pulses, 

we measured responses in the first frame after stimulation. For 4 s long optogenetic light 

pulses (6 s period), we imaged while stimulation was ongoing. To do this, we avoided 

stimulation artifacts by stimulating only during horizontal flyback (approximate pulse 

duration 19 μs, off time 44 μs, duty cycle 30%, line rate 8kHz).

Widefield imaging—For widefield imaging experiments, we used Ai162;Cux2-creERT2 

or Ai148;Cux2-creERT2 animals, expressing GCaMP6f or 6s in L2/3 excitatory cells. 

Animals were head-fixed and awake during widefield imaging experiments. Prior to 

imaging, a fiber optic cannula was aimed at the center of the focal stChrimsonR expression. 
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Images were collected using a Zeiss microscope (Discovery V12) with a 1.0x objective 

using excitation light with wavelength centered at 475 nm (Xylis X-Cite XT720L). A 

Zyla 4.2 sCMOS camera (Oxford Instruments) collected images (100ms exposure time, 

approximately 140ms frame period) with 4-pixel binning. Laser powers were randomly 

interleaved, with 50 repetitions per laser power. Laser pulses were 600ms long, and 

presented with 6 s period.

Analysis of electrophysiology data—For spike rate plots, spike counts were binned 

(1ms bins), and smoothed via LOWESS57. To classify units as having elevated or suppressed 

responses, we measured spike rate over 145–400ms after stim onset, relative to baseline 

(−1020ms–0ms relative to stim onset) for 6mW/mm2 stimulation intensity. To classify 

cells as wide- or narrow-waveform, we used a spike width threshold of 0.445ms based on 

the bimodal distribution of waveform widths (Fig. 5B). This threshold is consistent with 

pharmacological segregation of inhibitory and excitatory cells13.

For analysis of onset times, we fit a sigmoid (logistic function) to each cell’s response from 

100ms before to 100ms after laser pulse onset:

f(x) = L
1 + e−k x − x0

+ b

L: upper asymptote, b: lower asymptote, k: slope, x0: onset latency. X0 was constrained to the 

range [onset+0.5ms, onset + 30ms]. We defined onset latency as x0, the time to half-max. To 

estimate the time to steady-state, the same function was fit to data from 500ms before and 

after the laser onset, with the spike rates within a 50ms window around the initial transient 

blanked by setting to the baseline firing rate. Each cell’s time to steady-state was computed 

as the difference between the steady-state onset and the initial onset (difference between the 

x0 parameters of the two fits).

Analysis of 2-photon data—For short optogenetic stimulation (200ms pulses) during 

two-photon imaging, we avoided stimulation light influencing imaging responses by 

measuring responses in the frame after the stimulus offset. For long pulses (4 s), we 

stimulated during imaging frames by restricting stimulation to imaging line flyback and 

intensities we give are the average intensity, corrected for the 30% stimulation duty cycle. 

Because we found that the LED device we used for stimulation (pE-4000, CoolLED Ltd; 

specified bandwidth 100kHz) had some variability in onset/offset for each line, we removed 

pixels (~40% of frame) at left and right edges of field of view to ensure no stimulation 

light could affect images. Image frames were motion corrected using NoRMCorre through 

CaImAn58. Deconvolution was done with OASIS59 via CaImAn. To ease interpretability 

of the deconvolution signals, each neuron’s deconvolved signal was normalized to have 

the same maximum value as the dF/F of the corresponding fluorescence trace. To separate 

populations into elevated and suppressed cells, we performed a one-sample t-test (α=0.05, 

different from zero, two-tailed) on the deconvolved dF/F during the stimulation period (long 

pulses) or the frame just after the stimulation period (short pulses). For the short pulses, 

we used the frame just after stimulation to estimate responses for each neuron per trial. 
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For the long pulses, we averaged data within the period 750ms after stimulus onset to the 

stimulus offset in order to capture the steady-state response. For visual response data, data 

were preprocessed in the same manner as the short optogenetic stimulation experiments. We 

averaged steady-state responses from 750ms after stimulus onset to stimulus offset.

For spatial analyses, we used the spatstat package60 in R (ver. 4.2.3). For each individual 

animal, we tested the spatial distributions of elevated and suppressed responses against 

an inhomogeneous Poisson process model using the Linhom and Lcross.inhom functions. 

We used an inhomogeneous process as signal properties (e.g. slight tilt of imaging field) 

and biological properties (e.g. vasculature) may produce inhomogeneities in rate/intensity 

that could be mistaken for clustering. The L function estimates the expected number of 

discovered neurons for different diameter circular search areas centered on each neuron, 

given the modeled Poisson process. We corrected for windowing in the selected field-

of-view using Ripley’s isotropic correction. Global envelopes were generated (using the 

envelope function) with p<0.05, Bonferroni-corrected.

For 2-photon opsin measurements, for each field of view we corrected for neuropil signal by 

manually selecting a region of neuropil with no visible cell bodies/processes and subtracting 

that intensity. We measured red fluorescence in donut-shaped regions of interest around the 

border of each cell mask. Each animal’s distribution of opsin was normalized by dividing by 

their maximum opsin fluorescence, and then combined. We fit a lognormal distribution via 

least-squares (details in Fig. S6).

Analysis of widefield imaging data—Widefield fluorescence images were motion 

corrected for rigid translation, and any linear trend across the full imaging session 

was estimated via regression and subtracted. Deconvolution was done via Widefield 

Deconvolution61, which differs from single-neuron deconvolution algorithms like OASIS 

by dropping the sparsity assumption useful for spike trains of single neurons. This 

algorithm produces better results for aggregated signals, such as that from a single pixel 

during widefield imaging61. We rescaled the deconvolved signals to the maximum dF/F 

of the imaging data, as with the two-photon deconvolution. Comparison of Widefield 

Deconvolution, OASIS, and first-differencing is given in Fig. S3. For timecourse analyses, 

center and surround ROIs were defined as as the top 30% of elevated or suppressed pixels 

within a 1 mm radius of the center of response. To average images across animals, images 

were aligned on the basis of their maximum response during the late stimulation period. 

For quantification of spatial falloff (Fig 4G–I), we found the peak, averaged the responses 

radially, and then fit a curve to the responses vs. distance (LOWESS; 95% CI via bootstrap). 

Crossing points are the minimum distance at which the 95% confidence interval contains 

zero.

Spiking network model—We simulated a conductance-based neural network model 

with 10000 neurons (8000 excitatory, 2000 inhibitory) to understand the recurrent features 

that contribute to the response properties we observe during excitatory cell stimulation. 

Simulations were performed using Brian262.

Membrane and synaptic dynamics evolve according to the following equations:
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C dV
dt = gL EL − V + gE EE − V + gI EI − V + Ibackground + c ⋅ Iopto(t)

(1)

dgE
dt = − gE/τE

(2)

dgI
dt = − gI /τI

(3)

Each synapse was stepped by its corresponding connection weight for every presynaptic 

spike.

Connections between neurons were made with 2% probability, independently for each 

potential connection36,41,63.

Synaptic weights were drawn from truncated (rectified) Gaussian distributions. Mean 

connectivity parameters were based on published measurements, with excitatory connection 

strength an order of magnitude weaker than inhibitory connection strength36,64,65 and I-to-E 

connectivity stronger than I-to-I connectivity65. For each set of network parameters, we 

adjusted a background input current to either excitatory or inhibitory neurons to hold the 

spontaneous firing rate of the neurons at a value (~5.4spk/s) consistent with the data (Fig. 

S8F). Other network parameters are shown in Table 1.

Optogenetic stimulation simulations—Optogenetic stimulation was an additional 

constant current for the length of the stimulation period, with onset and offset ramped 

linearly over 3ms. The strength of the optogenetic stimulation (c in Eq. 1 was chosen 

from a lognormal distribution derived from data (Fig. 6), or held constant (Fig. 7M,N). 

For each simulation, this stimulation distribution was scaled by a constant to reproduce the 

response rate from data, at the 75th percentile across excitatory cells. Steady-state response 

was measured for each cell as their firing rate during the 1 s baseline period subtracted 

from the firing rate during the last 500ms of the stimulation period. To reduce connection 

strength variability (Fig. 7N), we reduced the variability of the truncated Gaussians that 

define connection strength by a factor of 100 (setting both the synaptic strength variability 

and connection number variability to zero produced a network that was less stable).

Single cell stimulation simulations—A single cell was stimulated with intensity from 

maximum of input distribution (Fig. 7H). Controls: same parameters but no stimulation. To 

simulate single cell stimulation with visual input, we provided single cell stimulation during 

either the lognormal optogenetic stimulation, as previously described, or during uniform 

input of both excitatory and inhibitory cells. Balance index
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Balance index—We computed the balance index as described by Ahmadian and Miller 

(2021). For each neuron, we computed this index as the net current (excitatory + inhibitory) 

divided by the excitatory current. The index becomes smaller as balance becomes tighter, 

with component currents becoming larger, and the index becomes larger as inhibitory input 

from the network shrinks.

Quantification and Statistical Analysis

All analyses, unless specifically noted in Methods Details, were performed in python using 

NumPy and SciPy packages57,66. Degrees of freedom and statistical tests are described in 

the results text. Error metrics plotted in figures are listed in the figure legends. Significance 

was adjusted for multiple testing using a Bonferroni correction when appropriate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Visual and optogenetic input to mouse V1 produce salt-and-pepper 

suppression

• Opsin expression levels do not predict neural responses; recurrent inputs 

dominate

• A model shows recurrent connections are variable across cells

• Recurrent connections have large effects on computations in sensory cortex
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Figure 1: V1 neurons show salt-and-pepper suppression to strong visual stimuli.
(A) Experimental setup. Awake mice viewed a small visual stimulus with rapidly changing 

oriented noise (Methods). (B) Example 2-photon data, during the transient and (C) steady-

state periods. Time intervals used for averaging in (B-D): green and purple in (G). 

Intermixed (salt-and-pepper) elevated and suppressed responses emerge during the steady-

state period. (D) Deconvolved responses from (C), projected onto cell masks (Methods). 

(E) Example dF/F traces for one elevated and one suppressed cell. Shaded regions: SEM 

across trials. Red: optogenetic stimulation time. (F) Deconvolution of the traces in (E) 

reveals an initial transient period and then a steady-state response. (G) Average responses 

for all cells (data in B-D) (H) Spatial distribution of elevated (red) and suppressed (blue) 

cells collapsed across animals (N=3; 339 neurons), showing random distribution of neurons 

across the cortex (statistical analysis; Fig. S1F–H). (I) Visual response amplitudes are 

similar across animals. Thin lines: CDFs for individual animals, thick line: population CDF. 

Inset: medians are near zero, m1-m3: individual animals, error bars:±SEM. (J) Proportion of 

cells suppressed in each mouse. Error bars: Wilson score 95% confidence intervals. Black 

line: group mean (44%±7%). See also Fig. S1.
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Figure 2: Salt-and-pepper elevation and suppression to optogenetic excitation.
(A) Experimental setup. 2-photon imaging (GCaMP7s, all cells, 920nm) and optogenetic 

excitation of excitatory neurons (stChrimsonR, 595nm). (B) Example field of view. (C) 
Deconvolved steady-state response (scaled to match dF/F %) to optogenetic stimulation 

(200ms) from (B). Red: elevated firing rate relative to baseline, blue: suppression. (D) 
Increasing power leads to stronger elevation and suppression (steady-state response). Shaded 

region: SEM across cells. (E) Field of view, example animal, long (4 sec) optogenetic 

pulses; stimulation during imaging flyback (Methods). Gray: areas omitted from analysis 

to exclude stimulation artifact. (F) Deconvolved responses, conventions as in (C). (G) 
Population timecourses for cells in (F). Red region: optogenetic stimulation period. Steady-

state response averaging period: 200– 3750ms. Light lines: individual cell traces, heavy 

lines: population averages. Shaded region (largely obscured by thick lines): SEM across 

cells. (H) Spatial distribution of elevated (red) and suppressed (blue) cells collapsed across 

all animals (N=3), same conventions as Fig 1H. Statistical analysis: Fig. S1F–H. (I) 
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Optogenetic response amplitudes are similar across animals. Conventions as in Fig. 1I. (J) 
Proportion of cells suppressed by optogenetic stimulation. Error bars: Wilson score 95% 

confidence intervals. Black line: group mean (38%±8%).
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Figure 3: Stimulation of V1 excitatory neurons yields salt-and-pepper organization across the 
cortex.
(A) Neural responses recorded across the cortex. Recordings in vivo from awake mice. 

(B, C, D) Example neurons at three distances from stimulation center (0 μm, 400 μm, 

1200 μm), showing elevated and suppressed cells at all distances. (E) Neural responses 

recorded through cortical depth. (F, G, H) Neurons recorded at three depths (250μm, 

550μm, 800μm), showing elevated and suppressed cells at different depths. (I) Population 

average timecourses of elevated cells. Blue bar: interval for steady-state rate calculation. 

Shaded regions: SEM across cells. (J) Population time courses of suppressed cells, same 

conventions as (I). (K) Counts of elevated units (single and multi-units) by distance and 

depth, smoothed with a Gaussian kernel for display. (L) Distribution of elevated steady-state 

responses across horizontal distance, summed across depth. Shaded region: Wilson score 

95% CIs. Note lower limit of y-axis not zero. (M-N) Same as (K-L), but for units with 

suppressed steady-state responses. See also Fig. S2.
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Figure 4: Widefield imaging of excitatory neurons shows average center-surround organization 
during steady-state periods.
(A) Experimental setup: stChrimsonR in excitatory neurons via viral transfection (AAV-

CamKIIa-stChrimsonR), expression of GCaMP via mouse line (either Ai148::Cux2-

creERT2, GCaMP6f, or Ai162::Cux2-creERT2, GCaMP6s; induced with tamoxifen as adult; 

Methods). Right: imaging field of view for one animal. (B-C) Mean deconvolved response 

(see Fig. S3) during first frame (B) and during the late stimulation period (C) in an example 

animal (Fiber for light delivery slightly obstructs the imaging field, see Fig. S4D–F). (D) 
Average response over time (N=3). Red shaded region: stimulation period, orange bar: first 

frame, maroon bar: late stimulation (steady-state) time period. (E,F) Average responses, 

N=3 animals. Responses for each animal were aligned spatially to the peak during the late 

stimulation period (Methods), smoothed for visualization. (G) Response as a function of 

distance, averaged from data in E, F. Smoothing: LOWESS. Shaded regions: bootstrapped 

95% CIs. Vertical lines: zero crossings and inflection points. Zero crossings defined by 

shortest distance at which 95% CI included zero. Black lines: late stimulation period. Solid 

black: first zero crossing, dotted black: local minimum. Red dashed line: early response, first 
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zero crossing. (H, I) Same as (E,F) but with superimposed circles whose radii correspond to 

lines in (G). See also Figs. S3–4.
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Figure 5: Response dynamics are consistent with steady-state suppression shaped by a recurrent 
network mechanism.
Wide-waveform (excitatory) units have slightly earlier onset latencies than narrow 

(inhibitory) units, but other quantities do not differ across neural populations. (A) Wide/

narrow sorting approach. Bimodal widths (classification threshold: 0.445ms). (B) Average 

traces for narrow- and wide-waveform units (Methods). Inset: enlarged view of laser onset, 

highlighting latency difference between narrow and wide units. Green markers: time to half 

peak. (C) Onset latencies slightly shorter for wide-waveform units. (D) Peak firing rate does 

not differ between wide and narrow units (medians, wide: 24.5spk/s, narrow: 31.2spk/s). (E) 
Steady-state firing rate does not differ (medians, wide: 4.0spk/s, narrow: 5.1spk/s). (F) Onset 

latencies do not differ for elevated and suppressed populations. Conventions as in C. (G) 
Time to steady state does not differ for elevated and suppressed populations. See also Fig. 

S5.
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Figure 6: stChrimsonR expression only weakly predicts 2-photon steady-state response.
(A) Left: Red (stChrimsonR-mRuby2) and green (GCaMP7s) fluorescence of an example 

cell with a suppressed steady-state response during optogenetic stimulation. Right: donut-

shaped region of interest (ROI), see Methods. (B) Example cell showing elevated response, 

conventions as (A). Suppressed cell showsbrighter red fluorescence than elevated cell, 

quantified in D. (C) Distribution of opsin fluorescence intensity (N=3 animals). Orange: 

Lognormal fit, excluding non-expressing cells (gray; Fig. S6). (D) Weak relationship 

between opsin expression and response. x-axis: red fluorescence (n=113 cells, N=1 animal; 

2mW stimulation power). Example cells shown in colored markers, letters. (E) Population 

data: same as D for N=3 animals (N=244 neurons). Two laser intensities, 1mW (brown), 

2mW (red). Heavy lines: LOWESS fits; shaded regions: bootstrapped standard error. Slight 

decline at high values may be due to response saturation or overexpression of opsin in a 

few cells. Inset: Zoomed view of dashed box, cells with the least opsin expression show a 

slightly smaller response on average. See also Fig. S6.
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Figure 7: Strongly-coupled recurrent neural network model with heterogeneous connectivity 
describes the data.
(A,B) Simulation design: (A) conductance-based spiking network model, 8000 excitatory, 

2000 inhibitory cells. (B) We vary mean recurrent strength. (C) Optogenetic input strengths 

sampled from a lognormal distribution fit from in vivo 2p measurements (Fig. 6C). (D) 
Schematic of data features simulations describe. (E) Tightly-balanced model fits long 

tail of excitation and proportion of suppressed neurons. (F-H) Responses to stimulation 

during (F) electrophysiology, (G) 2-photon experiments, and (H) simulations. (I) Left, mean 

timecourse, elevated cells, strongest recurrent network. Right, same but for suppressed cells. 

(J) Balance indices10. (K) Schematic of types of input variability: variation in number of 

recurrent inputs, strength of recurrent inputs, or optogenetic input strength. (L) Simulated 

responses to optogenetic input, with (left, same as Fig. 7F) and without (center) variability in 

number of recurrent inputs. Relationship strengthens when variance sources are removed (R2 
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original=0.50, R2 reduced conn. num. var.=0.66; R2 reduced conn num and reduced strength 

var.=0.77) (M) Steady-state firing rate distributions when input variability components are 

removed. Purple: parameters as in panels E (tight),H,I,L. Right: Same data, zoom to the 

suppressed portion of the distribution. Some suppression exists if either source of variance 

is removed, but suppression is nearly abolished when both sources of variance are removed. 

(N) Reducing also the variance in synaptic weights (by 10x) nearly removes response 

variability and suppression. See also Figs. S7–8.
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Figure 8: Single cell stimulation produces elevated firing rates in a small subset of cells, but 
widespread weak suppression across the population.
(A) Simulation schematic: one cell stimulated (‘tight’ network, Fig. 7B,E,H). (B) Single-cell 

stimulation weakly modulates other cells. (C) Reshuffled response distribution; individual 

neurons change (black, note variance), mean/median remain near zero. (D) Densities, same 

data as (C). (E) Defining cells by their connectivity to/from the stimulated cell (direct input, 

FF, brown; input from an inhibitory cell receiving FF input, blue) reveals a small number 

of excited cells. N=1 instantiation of network (weight choice). (F) Means of E across many 

instantiations. Black: full population of E cells, Brown, blue: same conventions as E. Error 

bars: SEM. (G) Simulated visual input during stimulation creates mean suppression. Red: 

lognormally distributed input + single cell stimulation, black: single cell stimulation alone. 

Red mean is negative. (H) Mean suppression increases with stronger input.
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Table 1:

Spiking neural network model parameters

Parameter Value Parameter Value

τE 5ms Mean WII 4.0 nS

τI 10ms Variance WII 4.0 nS

EL −60 mV Mean WIE 5.0 nS

EI −80 mV Variance WIE 5.0 nS

EE 0 mV E cell Ibackground Full Network 260 pA

gL 10.0 nS I cell Ibackground Full Network 140 pA

Mean WEE 0.4 nS E cell Ibackground 50% Network 227.5 pA

Variance WEE 0.4 nS I cell Ibackground 50% Network 172.5 pA

Mean WEI 0.8 nS E cell Ibackground 25% Network 208.5 pA

Variance WEI 0.8 nS I cell Ibackground 25% Network 191.5 pA

Neuron. Author manuscript; available in PMC 2024 December 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

O’Rawe et al. Page 39

Key resources table

Reagent or resource Source Identifier Additional information

Chemicals, peptides, and recombinant proteins

Tamoxifen Sigma-Aldrich T5648–5G

Experimental models: organisms/strains

Ai148 The Jackson Laboratory RRID:IMSR_JAX:030328

Ai162 The Jackson Laboratory RRID:IMSR_JAX:022731

Cux2-CreERT2 MMRRC RRID:MMRRC_032779-MU

Emx1-cre The Jackson Laboratory RRID:IMSR_JAX:005628

Bacterial and virus strains

AAV9-hSyn-jGCaMP7s-WPRE Dana et al., 201947 RRID:Addgene_104487

AAV9-Syn-DIO-stChrimsonR-mRuby Pegard et al., 201748 RRID:Addgene_105448

pAAV-CaMKIIa-eGFP-Cre Ahrlund-Richter et al., 201949 RRID:Addgene_120219

pCAGGS-ChrimsonR- mRuby2-ST Pegard et al., 201748 RRID:Addgene_105447

Software and algorithms

Mworks ThemWorks Project mworks.github.io

Deposited data

Data and code to reproduce figure panels This paper DOI:10.5281/zenodo.8310172

Other

C and B Metabond Parkell S380

Kwik-sil World Precision Instruments KWIK-SIL
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