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Abstract

Bacteria contribute to many physiological functions of coral holobionts, including responses to bleaching. The bacterial genus,
Endozoicomonas, dominates the microbial flora of many coral species and its abundance appears to be correlated with coral bleaching.
However, evidences for decoupling of bleaching and Endozoicomonas abundance changes have also been reported. In 2020, a severe
bleaching event was recorded at reefs in Taiwan, providing a unique opportunity to re-examine bleaching-Endozoicomonas association
using multiple stony corals in natural environments. In this study, we monitored tissue color and microbiome changes in three coral
species (Montipora sp., Porites sp., and Stylophora pistillata) in Kenting National Park, following the bleaching event. All tagged Montipora
sp. and Porites sp. recovered from bleaching within 1 year, while high mortality occurred in S. pistillata. Microbiome analysis found no
correlation of Endozoicomonas relative abundance and bleaching severity during the sampling period, but found a stronger correlation
when the month in which bleaching occurred was excluded. Moreover, Endozoicomonas abundance increased during recovery months
in Montipora sp. and Porites sp., whereas in S. pistillata it was nearly depleted. These results suggest that Endozoicomonas abundance may
represent a gauge of coral health and reflect recovery of some corals from stress. Interestingly, even though different Endozoicomonas
strains predominated in the three corals, these Endozoicomonas strains were also shared among coral taxa. Meanwhile, several
Endozoicomonas strains showed secondary emergence during coral recovery, suggesting possible symbiont switching in Endozoicomonas.
These findings indicate that it may be possible to introduce Endozoicomonas to non-native coral hosts as a coral probiotic.
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Introduction
Ocean warming due to climate change has raised great con-
cerns about its impact on coral reefs globally. Bleaching refers
to disruption of symbiosis between corals and photosynthetic
dinoflagellates of the family Symbiodiniaceae, a phenomenon
commonly observed in thermally stressed corals [1]. Since its first
documentation in the 1980s, coral bleaching has been reported
with increasing frequency, with three pan-tropical coral bleaching
events in 1998, 2010, and 2016 [2-6]. Regional bleaching episodes
have also been recorded from tropical reefs in Australia [7-10] and
the Caribbean [11, 12] to subtropical regions such as Okinawa,
Japan [13-15], and Taiwan [5, 16-18]. As photosynthates from
dinoflagellate symbionts constitute the major carbon source in
stony corals [19, 20], severe bleaching can devastate coral physi-
ology. Subsequent coral mortality can also change the structure
of coral reef ecosystems, impacting all associated species.

In addition to dinoflagellates, corals are associated with a great
diversity of bacteria—collectively termed the coral microbiome.
Bacteria are thought to participate in many physiological func-
tions of coral holobionts, including ontogeny [21, 22], metabolism
[23, 24], immunity [25], and stress tolerance [23, 26]. In both
laboratory and field studies, coral bleaching has been associated
with decreases in Gammaproteobacteria [27-29]. Increases in Vibrio
bacteria have also been documented in several stony corals during
bleaching [1, 27, 30-32]. In fact, early studies demonstrated that
Vibrio shiloi and Vibrio coralliilyticus induce bleaching in Oculina
patagonia and Pocillopora damicornis, respectively [33, 34]. How-
ever, our knowledge of functional associations between the coral
microbiome and bleaching, especially for nonpathogenic sym-
bionts, is still limited.

Endozoicomonas (Gammaproteobacteria; Oceanospirillales; and
Endozoicomonadaceae) constitutes a dominant bacterial taxon in
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several corals [35-38]. Based on genomic evidence, recent studies
have proposed that Endozoicomonas regulates various biological
functions in corals, such as metabolism, signaling, and nutrient
cycling, suggesting that these bacteria are potentially beneficial
for corals [39, 40]. Using denaturing gradient gel electrophoresis
and cloning techniques, Bourne et al. [30] first identified a
correlation between Endozoicomonas abundance (identified as
Spongiobacter sp. in that study) and zooxanthella density in
Acropora millepora. Occurrence of microbiome changes prior to
visible signs of bleaching led to the hypothesis that Endozoicomonas
is an early indicator of coral health/stress [30]. Thereafter, several
studies reported that Endozoicomonas abundance decreases during
natural [28, 29, 41] or experimental bleaching in other corals [26,
27, 42]. However, decoupling of coral bleaching and Endozoicomonas
abundance changes has also been observed. For instance, Núñez-
Pons et al. [38] monitored microbiome changes in three stony
corals (Montipora capitata, Porites compressa, and Pocillopora acuta)
in Hawaii following a natural bleaching event in 2016 and
found no significant correlation between Endozoicomonas relative
abundance and bleaching severity in those corals. In laboratory
experiments, dynamics of Endozoicomonas abundance in Pocillopora
verrucosa and Euphyllia glabrescens were also independent of the
bleaching induced by excess dissolved organic carbon (DOC)
and dark treatments, respectively [43, 44]. These contradictory
findings suggest that the association between bleaching and
decreased Endozoicomonas abundance is probably more compli-
cated and may depend on specific combinations of Endozoicomonas
bacteria and host corals.

Interestingly, in A. millepora, Bourne et al. [30] also found high
microbiome similarity between unbleached and recovered (post-
bleaching) corals, suggesting that Endozoicomonas recovery accom-
panies coral recovery. As Endozoicomonas is rare in seawater [45]
and shows strong host-specificity in symbiosis with corals [35],
it may be that the taxonomic composition of Endozoicomonas
remains relatively stable during bleaching recovery. Supporting
this hypothesis, Pootakham et al. [28] showed clear evidence that,
in Porites lutea, dominant Endozoicomonas bacteria returned to pre-
bleaching densities during coral recovery without changing their
relative dominance. However, as similar studies on other corals
are still limited, whether the same phenomenon applies to other
stony corals remains unknown. In 2020, an extremely warm sum-
mer caused intense coral bleaching in coral reefs around Taiwan,
with 57%–84% of shallow (3 m depth) corals in Kenting, southern
Taiwan, showing partial or complete bleaching [46]. Given that
Kenting National Park is a marine protected area, this bleaching
event provided an opportunity to study bleaching-Endozoicomonas
correlation in multiple coral species with minimal anthropogenic
disturbance. By monitoring tagged corals for 1 year following the
bleaching event, we examined two hypotheses: (i) Endozoicomonas
abundance in corals negatively correlates with bleaching severity;
(ii) the taxonomic composition of Endozoicomonas bacteria does not
change after natural bleaching.

Materials and methods
Coral and seawater sampling
In 2020 and 2021, we collected corals six times from reefs located
in Kenting National Park in southern Taiwan. Sampling covered
the bleaching event in August 2020 (herein, the bleaching month)
and five times during the following year: September 2020, Octo-
ber 2020, November 2020, April 2021, and August 2021 (recovery
months) to examine coral recovery. Fifteen bleached colonies
of Montipora sp. (N = 5), Porites sp. (N = 5), and Stylophora pistillata

(N = 5) were tagged in August 2020 and were monitored for tissue
color changes in subsequent fieldwork. Colonies of the same
species were selected at distances >5 m from one another to
maximize genetic randomness. Photos of tagged colonies were
taken to estimate bleaching extents based on categories defined
in Fisch et al. [47]. At each sampling time, three fragments (2–
3 cm2) from each tagged, living colony and 1 liter of seawater were
collected, comprising a total of 243 samples (237 coral tissues +
6 seawater samples). Immediately after sampling, coral tissues
were washed once with 0.22-μm-filtered natural seawater and
were preserved in 99% ethanol. Coral tissue and seawater samples
were transported at 4◦C and were then stored at −20◦C until DNA
extraction.

Deoxyribonucleic acid extraction and 16S
amplicon sequencing
Genomic DNA was extracted from coral tissues and seawater
samples (filtered through 0.22-μm membranes) using a modified
cetyltrimethylammonium bromide method [48]. To construct 16S
amplicon libraries, we first performed polymerase chain reaction
(PCR) to amplify the V6-V8 hypervariable region of 16S rRNA
gene using the 968F (5’-AACGCGAAGAACCTTAC-3′) and 1391R (5’-
ACGGGCGGTGWGTRC-3′) primers with following PCR conditions:
initial step at 94◦C for 5 min, followed by 30 cycles of 94◦C for 30 s,
52◦C for 20 s, and 72◦C for 45 s, and a final step at 72◦C for 10 min.
PCR products were tagged using DNA-tagging PCR, following the
protocol in Chen et al. [49]. The 16S amplicon libraries that were
constructed were submitted to Yourgene Health Co., Ltd (New
Taipei City, Taiwan) for sequencing using a Miseq reagent kit v3
(300-bp paired-end sequencing; 600 cycles) on an Illumina MiSeq
system.

Amplicon sequence analysis
Quantitative Insights Into Microbial Ecology 2 (QIIME2) was used
to analyze the 16S rRNA amplicon sequences [50]. Briefly, raw
reads from Illumina MiSeq sequencing were first reoriented,
primers were trimmed, and sequences were demultiplexed
using the cutadapt plugin [51]. Demultiplexed reads were then
truncated to 235 bp from both ends and were denoised using
the DADA2 plugin [52]. To refine the sparseness of the amplicon
sequence variant (ASV) abundance table, ASVs acquired from
QIIME2 were reclustered to k-mer taxonomic units (KTUs) using
the “ktusp” function of the KTU algorithm in the R environment
(v4.2.1). This procedure has been proposed to improve biological
explanations of microbiome data [53]. Taxonomy of each KTU was
assigned based on the SILVA 138 SSU reference database using the
“kaxonomy” function (annotation parameter: consensus = 0.5)
in the KTU algorithm. KTUs affiliated with chloroplasts or
mitochondria were removed, as were those affiliated with
unclassified kingdoms or phyla. Libraries with <1000 remaining
sequences (seven libraries) were removed from subsequent
analyses.

Statistical and biodiversity analyses of coral
microbial communities
To examine microbiome structure, we first rarefied coral tissue
and seawater libraries to 1000 sequences/library. Coral tissue
libraries of the same colony at the same sampling time were
then pooled and re-rarefied to 1000 sequences to remove pseudo-
replicates, yielding a total of 85 merged libraries for subsequent
analyses (30 for Montipora sp., 30 for Porites sp., 19 for S. pistillata,
and 6 for seawater). However, as library merging tends to inflate
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estimates of species richness (Supplementary Table S1), pseudo-
replicate removal in alpha diversity was conducted by calculating
alpha diversity on a per-sample basis and by averaging over
coral colonies for each sampling time. Alpha diversity was
estimated with the Chao1 and Shannon indexes. Statistical
analyses for group comparisons of alpha diversity were conducted
using the Kruskal–Wallis test with Dunn’s post hoc test. Beta
diversity of microbial communities was assessed using Bray–
Curtis dissimilarity and was visualized with principal coordinate
analysis (PCoA). Heterogeneity among communities was analyzed
using Analysis Of Similarities (ANOSIM; permutations = 1000) in
Mothur [54]. To examine Endozoicomonas abundance changes and
composition shifts, low-abundance Endozoicomonas KTUs (<20
sequences across merged libraries) were removed to minimize
stochastic errors. This resulted in 19 Endozoicomonas KTUs.
Abundance changes of Endozoicomonas during the sampling period
were analyzed using the Kruskal–Wallis test and Dunn’s post
hoc test for coral species. Correlations between Endozoicomonas
relative abundance and bleaching extent for each coral colony
was examined using Pearson’s correlation test. A significance
level of α = 0.05 was set for all analyses in this study. Given
that sample numbers in this study were not high (N = 3 or 5 for
each group), no p-value adjustment was conducted for multiple
comparisons.

Species identification and phylogenetic analysis
of Endozoicomonas k-mer taxonomic units
Species-level taxonomy of 19 non-rare Endozoicomonas KTUs were
identified by Blast search against the National Center for Biotech-
nology Information (NCBI) r/RNA/ITS database. A phylogenetic
tree was reconstructed using the Maximum Likelihood method
and the Tamura-Nei model based on representative sequences
of these Endozoicomonas KTUs with 500 bootstrap replicates in
MEGA11 [55]. 16S rRNA genes from nine Endozoicomonas bacteria
(trimmed to the V6–V8 region) were included in the phylogenetic
analysis as references, with an Aliivibrio fischeri 16S rRNA gene
sequence (NR_029255.1) as the outgroup taxon.

Results
Coral physiology
In August 2020, intense coral bleaching was observed at Kenting
National Park in southern Taiwan. Bleached colonies of Montipora
sp., Porites sp., and S. pistillata were tagged and subsequently mon-
itored for 1 year. Both Montipora sp. and Porites sp. showed signs of
color recovery commencing in October 2020, and all tagged Mon-
tipora sp. and Porites sp. colonies visually recovered from bleaching
in 2021 (mean bleaching extent: 1.65; Fig. 1). In contrast, S. pistillata
showed no signs of color recovery following thermal bleaching.
Mortality of S. pistillata was detected in November 2020, and all
tagged S. pistillata colonies were dead and covered with algae in
August 2021 (Fig. 1).

Sequencing overview and bacterial composition
Due to deaths of S. pistillata, only three colonies of S. pistillata
were sampled in November 2020 for microbiome analysis and one
colony in April 2021, while no S. pistillata colonies were sampled in
August 2021. After data processing, seven libraries were removed
from subsequent analyses due to low sequencing depth (<1000
bacterial sequences/library). This yielded a total of 2 280 673
bacterial sequences from 236 coral tissue and seawater libraries
(1052–40 839 sequences/library), which were clustered into 10 044
KTUs affiliated with 115 bacterial classes. After data rarefication

(1000 sequences/library) and pseudo-replicate removal, 5873
KTUs remained across 85 merged libraries. In both seawater
and merged coral tissue libraries, Gammaproteobacteria, Alphapro-
teobacteria, and Cyanobacteriia were the dominant bacterial classes
(Fig. 2). The merged dataset is available in Supplementary
Table S2.

Alpha diversity
During the sampling period, different patterns of alpha diversity
changes were found among sample types (Fig. 3). In Montipora sp.,
both bacterial species richness (Chao1 index) and evenness (Shan-
non index) showed weak trends of increase during the sampling
period, with significant differences identified in the Chao1 index
for samples collected in August and September 2020 compared
to those collected in 2021 (Supplementary Table S3). In con-
trast, Porites sp. showed decreasing trends in Chao1 and Shannon
indexes during the sampling period. Significant differences were
found in the Shannon index for samples collected in August
and November 2020 compared to those in 2021. In S. pistillata,
both species richness and evenness showed pronounced increases
during the sampling period, which became significant in October
2020, compared to the bleaching month.

Beta diversity
Analysis of beta diversity showed significant differences among
coral species and seawater (Fig. 4; ANOSIM; 1000 permutations;
p < 0.05; Supplementary Table S4). In all three coral species, sig-
nificant changes were identified during the study. In Montipora sp.
and S. pistillata, multiple comparisons yielded significant differ-
ences in combinations both within and across years (for Montipora
sp.), whereas in Porites sp., significant differences were found
mostly in cross-year comparisons.

Endozoicomonas composition
Nineteen KTUs were retained after removal of low-abundance
Endozoicomonas KTUs. Total Endozoicomonas abundance varied sig-
nificantly among sampling times for Porites sp. and S. pistillata
(Kruskal–Wallis test; p < 0 .05; Supplementary Table S5). For Mon-
tipora sp. and S. pistillata, decreasing Endozoicomonas relative abun-
dance occurred during the bleaching month and the first few
recovery months. For Porites sp., the bleaching month showed
the lowest Endozoicomonas relative abundance during this study.
During recovery months, both Montipora sp. and Porites sp. showed
increases in Endozoicomonas relative abundance, whereas Endo-
zoicomonas became almost undetectable in S. pistillata after Octo-
ber 2020. Taxonomically, dominant Endozoicomonas KTUs varied
between coral species (Fig. 5). During the sampling period, tax-
onomic composition of dominant Endozoicomonas remained rel-
atively stable in the three coral species, with structural fluc-
tuations occurring only sporadically (Fig. 5B). When comparing
Endozoicomonas relative abundances and bleaching extents in the
three coral species, no significant correlation was found dur-
ing the entire sampling period (Fig. 5C). However, a significant,
negative correlation was found when the bleaching month was
excluded from the analysis (Fig. 5D). Disregarding abundances,
several KTUs were present in corals in recovery months but
not in the bleaching month (Montipora sp.: three KTUs; Porites
sp.: eight KTUs; S. pistillata: zero KTUs; Fig. 6). A phylogenetic
analysis and Blast search against the NCBI database showed that
most Endozoicomonas KTUs in our data could not be clearly affili-
ated with known Endozoicomonas bacteria, with 11 Endozoicomonas
KTUs showing <95% sequence identity to their corresponding
best match sequences in the NCBI database (Fig. 7).

https://academic.oup.com//article-lookup/doi/10.1093//ycae001#supplementary-data
https://academic.oup.com//article-lookup/doi/10.1093//ycae001#supplementary-data
https://academic.oup.com//article-lookup/doi/10.1093//ycae001#supplementary-data
https://academic.oup.com//article-lookup/doi/10.1093//ycae001#supplementary-data
https://academic.oup.com//article-lookup/doi/10.1093//ycae001#supplementary-data
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Figure 1. Morphological changes of corals following the 2020 bleaching event. (A) Representative photos of three coral species during the sampling
period. Numbers of collected samples at each sampling time are indicated under photos, with numbers in parentheses indicating numbers of colonies
∗ numbers of fragments. (B) Bleaching extents of three coral species during the sampling period. Data are presented as means ± standard deviations,
and numbers of libraries at each sampling time are indicated. Coral species are labeled by genus.

Discussion
Tissue color recovery after bleaching
In this study, we monitored tagged colonies of Montipora sp., Porites
sp., and S. pistillata at Kenting National Park in southern Taiwan
following an intense bleaching event in 2020. Bleaching is a com-
mon coral response to thermal stress, but it is also considered a
means to rapidly adapt to changing environments [56]. According
to this concept, bleaching averts intracellular accumulation of
ROS generated by Symbiodiniaceae at elevated temperatures,
allowing a coral to survive thermal stressors [57, 58]. When
stresses abate, corals can re-establish the coral–Symbiodiniaceae
symbiosis by either repopulating remnant photosynthetic
dinoflagellates within their tissues or by capturing planktonic
symbionts from ambient seawater [56, 59]. Commensurate with
this notion, encrusting Montipora sp. and massive Porites sp. in this
study showed recovery of color several months after the bleaching

event (Fig. 1). Branched S. pistillata, however, was covered with
algae and died the next year. Lower survival rates in branched
corals compared to massive or encrusting corals have been
reported previously in Mombasa and Okinawa following the
extremely warm summer in 1998 El Nino [14, 60]. Given that
branched corals have lower metabolic rates than massive corals,
Gates and Edmunds [61] suggested that branched corals may
have reduced capacity to respond to environmental changes. Loya
et al. [14] also hypothesized that lower mass-transfer efficiency
associated with branched morphology compared to encrusting
and massive morphologies may be responsible for higher post-
bleaching mortality in branched corals. Furthermore, lower tissue
masses of branched corals may mean that branched corals
have smaller energy reservoirs available for post-stress recovery
[60]. This morphology-dependent survivorship may explain the
variation in recovery among corals in this study. However, given
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Figure 2. Bacterial composition at the class level. Data are presented for each coral colony/seawater at each sampling time, with numbers of collected
samples indicated in parentheses. Bacterial classes with <1% relative abundances across all merged libraries are presented as “others”. M: Montipora
sp.; P: Porites sp.; S: S. pistillata; SW: seawater.

that we did not measure tissue thickness or metabolic rates in
our corals and that only three coral species were examined in this
study, a definitive conclusion awaits further investigation.

Bacterial community
Consistent with observations in other corals [26, 27, 62],
Gammaproteobacteria, Alphaproteobacteria, and Cyanobacteriia dom-
inated all coral samples collected in this study (Fig. 2). However,
three coral species showed different microbiome dynamics

following the bleaching event. For example, significant micro-
biome changes in Montipora sp. and S. pistillata were found in
most pairwise comparisons throughout the sampling period,
whereas microbiome changes in Porites sp. occurred primarily
in comparisons across 2020 and 2021, but not within individual
years (Fig. 4). Composition of microbiomes and their responses
to environmental factors reportedly vary by coral species, sites,
stress histories, and even between different compartments of a
given coral colony [27, 28, 45, 63-65]. Our findings provide further



6 | Chuang et al.

Figure 3. Alpha diversity of bacterial communities in coral tissue and seawater libraries. Chao1 and Shannon indexes were used to estimate alpha
diversity. Boxes and whiskers indicate quartiles and full data ranges, respectively. Numbers of libraries at each sampling time are indicated in
parentheses. Dashed lines indicate statistically significant differences (Dunn’s post hoc test; p < 0 .05).

Figure 4. PCoA plots of bacterial composition at the KTU level. Pairwise comparisons are indicated with dashed lines on the side of each PCoA plot
with statistically significant differences highlighted (ANOSIM; p < 0 .05).

evidence of the complexity of coral microbiomes. Unfortunately,
in this study, microbiomes were not examined prior to the
bleaching event. Therefore, whether microbiome changes in
our corals, especially Montipora sp. and Porites sp., represent

restoration of “pre-bleaching” bacterial communities cannot be
definitively concluded. The lack of negative controls in this study
and a relatively high number of PCR cycles (30 cycles) may also
have resulted in some biases. Although we do not believe that
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Figure 5. Endozoicomonas bacterial composition and correlation with bleaching extent. (A) Percentages of Endozoicomonas bacteria versus total
microbiome. (B) Percentages of Endozoicomonas bacteria versus total Endozoicomonas communities; Data are presented as averages for each sampling
time, with numbers of libraries indicated in parentheses. KTUs with <20 sequences across merged libraries are not included and KTUs with <1% of
the total Endozoicomonas community across merged libraries are presented as “others”. (C) Correlation of Endozoicomonas relative abundance and
bleaching extent during the entire sampling period. (D) Correlation of Endozoicomonas relative abundance and bleaching extent with the bleaching
month removed. Statistical significance of data correlation was examined using Pearson’s correlation test.

these biases significantly affected the structure of dominant coral
microbiomes, this possibility should be considered.

Endozoicomonas abundance changes
Healthy corals host more abundant Endozoicomonas than bleached
corals [27, 28, 30, 41, 66, 67]. Consistent with these observations,
increases in Endozoicomonas relative abundance paralleled tissue
color recovery in our corals, and a significant negative correlation
between bleaching extent and Endozoicomonas abundance was
found during recovery months (September 2020 to August 2021;
Fig. 5D). However, the correlation was insignificant when data
from the bleaching month were included (Fig. 5C), suggesting
a more complicated association between coral bleaching and
Endozoicomonas dynamics. In A. millepora in the Great Barrier Reef,
Bourne et al. [30] identified shifts in coral microbiomes prior to
visible signs of bleaching, including a decrease in Endozoicomonas.
Although the low Endozoicomonas abundance in our Porites sp. in
the bleaching month supports this hypothesis, both Montipora
sp. and S. pistillata showed the highest Endozoicomonas relative
abundances in the bleaching month. These findings suggest that
Endozoicomonas decreases can also happen (or at least continue)
after a bleaching event, raising the possibility that changes in
Endozoicomonas abundance may not be an “early” indicator of coral
stress in all coral taxa.

In an early study on Hawaiian corals, it was proposed that
Montipora verrucosa possesses a lower lipid metabolic rate com-
pared to Porites compressa [68]. In addition, branched corals have
lower metabolic rates than corals of massive or encrusting mor-
photype [14, 61]. Although in this study we did not analyze lipid
reserves, we assumed that Porites sp. in our study experienced
earlier starvation due to faster consumption of its lipid reserve
after bleaching, whereas Montipora sp. and S. pistillata showed
delayed responses due to slower metabolism. According to this
concept, Endozoicomonas abundance in a coral, instead of serving
as an “early” stress indicator, more likely represents a “gauge”
of coral health. This hypothesis helps to explain the correlation
between Endozoicomonas deprivation and coral mortality in our S.
pistillata and the decoupling of coral bleaching and Endozoicomonas
abundance changes observed in other field surveys [28, 38] and
laboratory experiments [43, 44]. Nevertheless, given that only
three coral species were examined in this study and neither coral
microbiomes before the bleaching event nor lipid reserves were
available for our corals, further investigation is needed to test the
global applicability and robustness of this hypothesis.

Endozoicomonas composition shifts
Despite dynamics of Endozoicomonas abundance, taxonomic
composition of dominant Endozoicomonas bacteria was largely
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Figure 6. Heatmap of Endozoicomonas KTUs in coral tissue and seawater libraries. Data are presented as averaged relative abundances of
Endozoicomonas KTUs for each sampling time, with numbers of libraries indicated in parentheses. Data of zero abundance are highlighted in white.
KTUs with abundances <20 sequences across merged libraries were not included to avoid bias.

stable in our corals throughout the sampling period, suggesting
strong selection upon Endozoicomonas communities by coral hosts
(Fig. 5B). However, most Endozoicomonas KTUs were common
to multiple corals (Fig. 6). Although no negative controls were
included in our microbiome sequencing, all our Endozoicomonas
KTUs showed best matches to bacteria isolated/identified from
seawater or marine invertebrates, indicating their presences in
multiple corals were not likely due to contamination (Fig. 7).
Furthermore, although most of our Endozoicomonas KTUs are likely
novel Endozoicomonas species/strains (Fig. 7), two Endozoicomonas
KTUs showed 100% sequencing identity to the E. acroporae strain

Acr-14 and E. atrinae strain WP70, previously isolated from
an Acropora coral and a comb pen shell, respectively [69, 70].
These findings suggest certain levels of flexibility in symbiosis
between Endozoicomonas bacteria and corals and possibly also
among dissimilar marine invertebrates. In addition, variations
in levels of dominance among Endozoicomonas bacteria were
detectable (Figs 5B and 6). For instance, KTU00005 was the
dominant Endozoicomonas in Montipora sp. in the bleaching month,
but it was surpassed by KTU00006 or KTU00001 during recovery.
In Porites sp., the dominant KTU00001 showed a remarkable
decrease in September 2020, when KTU00033 and KTU00048
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Figure 7. Phylogenetic tree of Endozoicomonas KTUs in this study. Sequences of publicly available Endozoicomonas bacteria were included as
references, with A. fischeri (NR_029255.1) serving as an outgroup taxon. Best matches against the NCBI database are provided following KTU numbers
with sequence identities in parentheses. Bootstrap values are presented at the node of each branch.KTUs with 100%, >97%, and <95% sequences
identities to their best matches in the NCBI database are differently highlighted.

became dominant. Species shuffling in the genus Endozoicomonas
has been reported in P. verrucosa and E. glabrescens in response to
DOC and dark treatments, respectively [43, 44] and in Acropora
muricata during a reciprocal transplant experiment [45]. The
present findings provide further evidence for Endozoicomonas
shuffling in corals during recovery from a natural bleaching event.
As Endozoicomonas bacteria show great genomic diversity [71],
species shuffling in this bacterial genus may imply significant
functional shifts in coral holobionts.

Interestingly, in our corals, we found a great variation in taxo-
nomic composition of Endozoicomonas beside the dominant taxa
(Fig. 6). Symbiont switching is defined as acquisition of novel
symbionts from the environment, which was recently identified
in algal symbionts of corals following natural disturbances [72,
73]. However, there is still no evidence of switching in coral-
associated Endozoicomonas. Given that detection of rare bacteria
can be strongly affected by sequencing depth, in our analysis,
we filtered out low-abundance KTUs in an attempt to minimize
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this potential bias. Still, we found that several secondary Endo-
zoicomonas appeared in recovery months in our corals, particu-
larly in Porites sp., suggesting possible species switching in coral-
associated Endozoicomonas community. Furthermore, most sec-
ondary Endozoicomonas KTUs were absent in seawater samples but
were primary to other corals (Fig. 6), implying bacterial swapping
among sympatric corals. Coral mucus harbors an abundant bac-
terial community [25, 74], in which dominance of Endozoicomonas
is evident, as in A. muricata and Porites astreoides [27, 75]. Therefore,
horizontal Endozoicomonas transfer between corals may be due
to mucus secretion. Contamination with coral mucus may also
explain the similarity of Endozoicomonas communities between
the seawater sample in August 2021 and those in Porites sp.
(Fig. 6). However, absence of certain Endozoicomonas bacteria in the
bleaching month may also be due to the difficulty in detecting
rare bacterial taxa. Accordingly, whether emergence of secondary
Endozoicomonas in our corals is truly de novo requires further
examination.

In this study, we analyzed bacterial community changes,
particularly for Endozoicomonas, in three coral species following a
bleaching event in 2020. These results challenge the early hypoth-
esis that decreases of Endozoicomonas are linked to coral bleaching
and suggest instead that Endozoicomonas abundance is likely
correlated with host health. Furthermore, our findings provide
evidence of species shuffling and possible switching within coral-
associated Endozoicomonas following a disturbance. Flexibility
in coral–Endozoicomonas symbiosis suggests the possibility of
inoculating non-native coral hosts with Endozoicomonas. However,
different dynamics of the same Endozoicomonas bacterium were
observed between coral species, implying that effectiveness
of Endozoicomonas as a coral probiotic may depend on coral
species. Transient presence of secondary Endozoicomonas bacteria
also suggests that repeat inoculation might be necessary for a
long-term effect. Together, these findings show the potential of
employing Endozoicomonas as a coral probiotic, which warrants
further study.
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