
Air pollution and epigenetic aging among Black and White 
women in the US

Sarah H. Koenigsberga,b, Che-Jung Changb, Jennifer Ishb, Zongli Xub, Jacob K. 
Kresovichb,c, Kaitlyn G. Lawrenceb, Joel D. Kaufmand, Dale P. Sandlerb, Jack A. Taylorb, 
Alexandra J. Whiteb,*

aDepartment of Epidemiology, Gillings School of Global Public Health, University of North 
Carolina, 123 W. Franklin St., Chapel Hill, NC 27517, USA

bEpidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander 
Dr, Research Triangle Park, NC 27709, USA

cDepartments of Cancer Epidemiology and Breast Oncology, H. Lee Moffitt Cancer Center and 
Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA

dDepartments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology 
University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA

Abstract

Background: DNA methylation-based measures of biological aging have been associated with 

air pollution and may link pollutant exposures to aging-related health outcomes. However, 

evidence is inconsistent and there is little information for Black women.

Objective: We examined associations of ambient particulate matter <2.5 μm and <10 μm 

in diameter (PM2.5 and PM10) and nitrogen dioxide (NO2) with DNA methylation, including 

epigenetic aging and individual CpG sites, and evaluated whether associations differ between 

Black and non-Hispanic White (NHW) women.

Methods: Validated models were used to estimate annual average outdoor residential exposure 

to PM2.5, PM10, and NO2 in a sample of self-identified Black (n=633) and NHW (n=3493) 

women residing in the contiguous US. We used sampling-weighted generalized linear regression 

to examine the effects of pollutants on six epigenetic aging measures (primary: DunedinPACE, 

GrimAgeAccel, and PhenoAgeAccel; secondary: Horvath intrinsic epigenetic age acceleration 

[EAA], Hannum extrinsic EAA, and skin & blood EAA) and epigenome-wide associations for 

individual CpG sites. Wald tests of nested models with and without interaction terms were used to 

examine effect measure modification by race/ethnicity.
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Results: Black participants had higher median air pollution exposure than NHW participants. 

GrimAgeAccel was associated with both PM10 and NO2 among Black participants, (Q4 versus 

Q1, PM10: β=1.09, 95% CI: 0.16–2.03; NO2: β=1.01, 95% CI 0.08–1.94) but not NHW 

participants (p-for-heterogeneity: PM10=0.10, NO2=0.20). In Black participants, we also observed 

a monotonic exposure–response relationship between NO2 and DunedinPACE (Q4 versus Q1, 

NO2: β=0.029, 95% CI: 0.004–0.055; p-for-trend=0.03), which was not observed in NHW 

participants (p-for-heterogeneity=0.09). In the EWAS, pollutants were significantly associated 

with differential methylation at 19 CpG sites in Black women and one in NHW women.

Conclusions: In a US-wide cohort study, our findings suggest that air pollution is associated 

with DNA methylation alterations consistent with higher epigenetic aging among Black, but not 

NHW, women.
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1. Introduction

Air pollution exposure is linked to many adverse age-related health outcomes. An estimated 

4.2 million premature deaths globally were caused by ambient outdoor air pollution in 2019, 

with the majority of these deaths attributable to aging-related conditions, such as heart 

disease, stroke, and cancer (WHO, 2022). The link between air pollution and age-related 

diseases may be due, in part, to air pollution effects on biological processes that underlie 

aging (Peters et al., 2021). Biological age measures efficiently integrate molecular processes 

that underlie aging and may therefore be useful tools in understanding the relationship 

between air pollution and age-related disease risk.

Biological age can be estimated in a variety of ways, including telomere length and 

epigenetic markers such as histone modification and DNA methylation (Ferrucci et al., 

2020). Several DNA methylation-based measures have been developed that use site-specific 

patterns of DNA methylation to predict chronological age (e.g., Hannum and Horvath), 

mortality risk (e.g., PhenoAge and GrimAge), or aging rates (e.g., DunedinPACE) (Belsky et 

al., 2022; Hannum et al., 2013; Horvath, 2013; Levine et al., 2018; Lu et al., 2019).

Several studies have suggested that ambient air pollution is associated with DNA 

methylation-based measures of biological age (Nwanaji-Enwerem et al., 2016, 2017; Ward-

Caviness et al., 2016; White et al., 2019). However, the evidence is inconsistent and existing 

literature has mainly focused on the Hannum, Horvath, and PhenoAge clocks. To our 

knowledge no prior studies have yet examined the more recently developed DunedinPACE 

measure, which, along with GrimAge and PhenoAge, may be a more robust marker of 

age-related disease risk than the Horvath and Hannum clocks based on the outcomes they 

were designed to predict.

Prior studies have primarily been conducted among non-Hispanic White (NHW) 

populations, leaving knowledge gaps concerning other racial and ethnic groups. Racial 
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and ethnic identity are social factors that, driven by historical and ongoing racism, are 

associated with differences in exposure levels, proximity, and chemical composition of 

ambient air pollution (Lane et al., 2022; Tessum et al., 2021) as well as susceptibility to the 

harmful effects of air pollution (Josey et al., 2023; Younan et al., 2021). Similar differences 

have been documented for chronic disease risk, biological age, and methylation patterns 

(Barcelona de Mendoza et al., 2018; Caraballo et al., 2022; Geronimus et al., 2010). Thus, 

associations between pollutants and epigenetic aging may vary by race and ethnicity and 

warrant exploration.

White et al. (2019) examined cross-sectional associations of air pollutants with age 

acceleration measured by the Hannum, Horvath, and PhenoAge clocks and conducted 

an epigenome-wide association study (EWAS) among a sample of NHW participants in 

the Sister Study. Here we extend this work to include Black participants (Hispanic or 

non-Hispanic) and to examine cross-sectional associations of PM2.5, PM10, and NO2 with 

two measures of epigenetic aging acceleration (PhenoAgeAccel and GrimAgeAccel) and 

a measure of aging rate (DunedinPACE). As a secondary analysis, we assess associations 

with three additional measures of epigenetic aging acceleration (Horvath intrinsic epigenetic 

age acceleration [IEAA], Hannum extrinsic epigenetic age acceleration [EEAA], and skin 

& blood clock epigenetic age acceleration [SBEAA]). For convenience, we refer to all six 

as epigenetic aging measures. Further, we explore if these associations differ among Black 

and NHW participants and evaluate pollutant associations with individual CpG sites by 

performing an EWAS.

2. Methods

2.1. Study sample

The Sister Study is an ongoing, prospective cohort of self-identified women from across 

the United States (US) that was established to study risk factors for breast cancer. Between 

2003 and 2009, 50,884 females aged 35–74 who had at least one biological sister with 

a diagnosis of breast cancer and no history of breast cancer themselves were enrolled 

(Sandler et al., 2017). At enrollment, participants provided information through computer-

assisted telephone interviews, including demographics, lifestyle factors, medical history, 

and residential history. Participants self-classified their race and ethnicity based on Census 

categories required by the Office of Management and Budget. While race and ethnicity are 

distinct concepts, given their combined use in subgroup classification for the present study, 

we henceforth refer to the subgroups as “race/ethnicity” subgroups. A trained examiner 

visited participants’ homes to collect anthropometric information and fasting blood samples 

(Sandler et al., 2017). All participants provided written informed consent and the study was 

approved by the National Institute of Environmental Health Institutional Review Board, and 

is currently overseen by the centralized NIH Institutional Review Board. The data used is 

from data release version 10.1.

Subsets of Black, Hispanic or non-Hispanic, and NHW participants with available blood 

samples (>99 % of cohort) were selected for assays at two times for separate case-cohort 

studies designed to assess the association between DNA methylation and incident breast 

cancer, as previously described (Kresovich et al., 2023). Briefly, 2875 NHW participants 
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were selected for the case-cohort in 2014. In 2018, a set of 2166 participants were selected, 

specifically oversampling for Black participants (n=738), and including 541 participants that 

were also sampled for the first case-cohort. After accounting for overlap and excluding 

participants whose methylation data failed quality control procedures, 4482 participants with 

DNA methylation data remained.

Among this sample, we excluded participants who lived at their residence for less than one 

year prior to baseline (n=268), were missing all exposure data (n=28), or were missing 

covariate information (n=60). This resulted in 4126 participants who were eligible for at 

least one analysis (Supplemental Fig. S1).

2.2. Air pollution exposure estimates

Annual average outdoor air pollution concentrations for PM2.5 and NO2 were estimated at 

participants’ baseline residence using validated spatiotemporal models, while concentrations 

for PM10 were estimated using validated universal kriging models, as previously described 

(Kirwa et al., 2021; Sampson et al., 2013). Briefly, the models leveraged data from over 

1000 regulatory monitors, such as Environmental Protection Agency Air Quality System 

monitoring data and interagency monitoring of protected visual environments network data. 

The spatiotemporal models additionally included data from over 900 research monitors, 

including residential monitoring campaigns and gradient monitoring near roadways for 

NO2. All models incorporated spatial smoothing and geographic covariates. We used 

concentrations from calendar-year 2006 for PM2.5 and NO2, as this was the middle of 

the Sister Study enrollment period. Data for PM10 was only available for 2000 and 2010, 

therefore, estimates for 2000 were used to capture PM10 exposure prior to enrollment and 

blood draw.

2.3. DNA methylation and epigenetic aging outcomes

DNA methylation was measured using the Illumina Infinium HumanMethylation450 

BeadChip (450K array) and the Infinium MethylationEPIC V1 BeadChip (EPIC array) for 

participants assayed in 2014 and 2018, respectively. For participants whose methylation 

data was assayed on both platforms, we used data from the EPIC array. DNA methylation 

processing and quality control (QC) procedures have been described previously (Kresovich 

et al., 2023). Briefly, the ENmix R package was used for preprocessing and quality checks 

(Xu et al., 2016), and CpG sites and participants with low quality data were removed. 

Methylation was measured as a β value using the formula β=M/(U+M+100) where U and 

M were the individual’s proportion of unmethylated and methylated sites, respectively, at a 

given locus. β values were logit-transformed to M-values for the EWAS.

DunedinPACE (‘Pace of Aging Calculated from the Epigenome’) is proposed to estimate 

the pace, or rate, at which a person is aging (Belsky et al., 2022). DunedinPACE 

values are always positive, where a value of 1.0 signifies the expected amount of aging 

per chronological year of life; values greater than one represent faster rates of aging 

whereas values less than one represent slower rates of aging. DunedinPACE was calculated 

separately for the 450K and EPIC array samples using the methylAge function as part 
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of the ENmix R package on Bioconductor (https://www.bioconductor.org/packages/release/

bioc/html/ENmix.html).

Age acceleration as estimated by the GrimAge (GrimAgeAccel) and PhenoAge 

(PhenoAgeAccel) epigenetic clocks represents the interval between DNA methylation-

predicted biological age and chronological age. GrimAgeAccel and PhenoAgeAccel were 

calculated as the residuals from regressing DNA methylation-predicted biological age 

onto chronological age, where positive values indicate epigenetic age is greater than 

chronological age and negative values indicate epigenetic age is less than chronological 

age. PhenoAgeAccel and GrimAgeAccel were estimated separately for the 450K 

and EPIC array samples using an online calculator without fast imputation (https://

dnamage.genetics.ucla.edu/home). For both race/ethnicity groups, 9 out of 514 CpGs 

for PhenoAgeAccel and 4 out of 173 CpGs for DunedinPACE were missing; GrimAge 

component CpGs are not publicly available.

Three additional age acceleration measures were evaluated in secondary analyses as they 

offer different advantages than the primary aging measures: Horvath IEAA, which is 

proposed to be independent of blood cell composition; Hannum EEAA, which is proposed 

to incorporate aging of the immune system; and SBEAA, which is reported to have 

greater accuracy in blood samples compared to the original Horvath clock (Horvath et al., 

2018; Smith et al., 2019). These measures are calculated similarly to GrimAgeAccel and 

PhenoAgeAccel and were estimated using the same online calculator.

2.4. Statistical analysis

Cross-sectional associations between residential air pollution concentrations and the 

epigenetic aging measures were estimated using sampling-weighted multivariable linear 

regression models for each air pollutant (PM2.5, PM10, NO2) and epigenetic aging 

outcome (DunedinPACE, GrimAgeAccel, PhenoAgeAccel). Air pollution concentrations 

were modeled in two ways: linearly scaled by an interquartile range (IQR) increase and 

as quartiles, defined in the overall sample and treated categorically, to assess possible 

exposure–response relationships or thresholds of effects. Confounders were identified using 

a directed acyclic graph and included DNA methylation array (450K, EPIC), chronological 

age, self-reported race/ethnicity (Black, NHW), highest attained education level (high 

school/GED or less, some college/associate or technical degree, college degree or more), 

body mass index at home exam (BMI, continuous), physical activity (hours per week, 

continuous), smoking status (never, past, current), total cigarette smoking pack-years 

(continuous), region (Midwest, Northeast, South, West), and a neighborhood-level measure 

of socioeconomic disadvantage, the area deprivation index (ADI, percentile, continuous) at 

the 2000 census block group level (Kind et al., 2014).

Among the 4126 participants eligible for at least one analysis, those who had acceleration 

measures more than 4 standard deviations away from the sample mean (n=3 for 

DunedinPACE, n=6 for GrimAgeAccel, n=3 for PhenoAgeAccel) or were missing one of 

the pollutant estimates (n=33 for PM2.5 and NO2) were excluded for the relevant models. We 

conducted complete case analysis due to the low percentage of missing data (<3.0 %).
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P-for-heterogeneity values to assess effect measure modification by race/ethnicity were 

calculated using Wald tests of nested models with and without interaction terms between 

race/ethnicity and air pollutant exposures. P-for-trend values were determined using Wald 

tests on ordinal categories for exposure quartiles.

We conducted a sensitivity analysis where all pollutants were included in the same 

model to account for possible mutual confounding. Secondary analyses with the additional 

aging measures (IEAA, EEAA, SBEAA) were performed using the same approach as 

for the primary aging outcomes. Sampling-weighted Pearson correlation coefficients were 

calculated for all aging measures and chronological age by race/ethnicity to assess possible 

performance differences in the epigenetic age measures by race/ethnicity.

For the EWAS, we assessed associations between IQR increases in pollutants and individual 

CpG sites using sampling-weighted generalized linear regression, separately for each race/

ethnicity group, adjusting for Houseman cell type proportions (B-cell, CD4+ T-cell, CD8+ 

T-cell, granulocyte, monocyte; natural killer was left out) (Houseman et al., 2012) in 

addition to the covariates used for the epigenetic aging analyses. For the NHW subgroup, 

probes from the 450K (469,412 post QC) and EPIC array (847,518 post QC) were analyzed 

separately and overlapping probes (431,879) were meta-analyzed using a random effects 

model as part of the metafor R package. EWAS results were additionally checked for 

differentially methylated regions (DMRs) using the ipDMR method from the ENmix R 

package (Xu et al., 2020a). We corrected for multiple testing using a false discovery rate 

(FDR) of q<0.05. The top 100 probes for each pollutant in each racial/ethnic group (i.e., 

six separate analyses) were analyzed for pathway enrichment using the Ingenuity Pathway 

Analysis (IPA) database, as previously described (Xu et al., 2020b).

In all analyses, participants were weighted by their inverse probability of selection into the 

case-cohort samples. Sampling weights were based on race/ethnicity as well as future breast 

cancer status and characteristics (i.e., estrogen receptor status), so that the study sample 

could represent the full sample of Black and NHW participants in the Sister Study (O’Brien 

et al., 2022). The weighted models for epigenetic aging outcomes were estimated using 

PROC SURVEYREG in SAS 9.4. Analyses were conducted using SAS 9.4 (Cary, NC) and 

R (4.1.0).

3. Results

3.1. Participant characteristics

Sample characteristics are displayed in Table 1. The median chronological age at baseline 

was 54.8 and 56.9 years among the Black and NHW participants, respectively, and more 

than half of all participants had a college degree or more. A majority of the Black 

participants resided in the South (59%), while the NHW participants resided more evenly 

across the four US Census regions (30% Midwest, 18% Northeast, 30% South, and 22% 

West). Black participants were more likely to be never smokers than NHW participants 

(64% versus 53%) and reside in a neighborhood with greater deprivation (median ADI 44.0 

versus 27.0).
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3.2. Distribution of exposure and outcome by race/ethnicity

Black participants were exposed to higher median air pollutant concentrations than NHW 

participants for all three pollutant categories, with the greatest difference in median NO2 

level (Black: 10.8 ppb; NHW: 8.0 ppb; Table 1). Black participants also exhibited modestly 

higher median epigenetic aging by all three primary measures (median DunedinPACE: 1.10 

versus 1.05, GrimAgeAccel: 0.16 versus −0.81, PhenoAgeAccel: −0.08 versus −0.39).

3.3. Air pollutants and epigenetic age measures

Overall, there was little evidence of associations between PM2.5 and the primary epigenetic 

aging measures for either Black or NHW participants (Fig. 1A and Supplemental Table S1). 

In Black participants, some quartiles exhibited higher aging values compared to quartile 1, 

but there was no evidence of monotonic trends. Similarly, in the NHW subgroup there were 

modest inverse associations between some quartiles of PM2.5, but no monotonic trends.

Among Black participants, an IQR increase in PM10 was associated with higher 

GrimAgeAccel of 0.42 years (95% CI: 0.09, 0.76) whereas no effect was observed among 

NHW participants (β=−0.04 [95% CI: −0.17, 0.09]; p-for-heterogeneity=0.01) (Fig. 1B and 

Supplemental Table S1). Quartile analysis among Black women found the increase was most 

evident among the highest quartile of exposure which, relative to quartile 1 was associated 

with 1.09 years (95% CI: 0.16, 2.03) of acceleration with evidence of an exposure–response 

relationship (p-for-trend 0.05). In contrast, among NHW participants, we found negligible 

or inconsistent associations of higher quartiles of exposure with GrimAgeAccel (p-for-

heterogeneity=0.1) and no evidence of trend (p-for-trend=0.3).

Higher levels of NO2 were associated with GrimAgeAccel among Black participants 

(quartile 4 versus quartile 1: β=1.01 [95% CI: 0.08, 1.94]; p-for-trend=0.07), whereas 

no association was observed in NHW participants (β=−0.05 [95% CI: −0.40, 0.30]; p-for-

trend=0.8; p-for-heterogeneity=0.2) (Fig. 1C and Supplemental Table S1). Similarly, among 

Black participants the highest quartile of exposure was associated with higher DunedinPACE 

(β=0.029 95% CI: 0.004, 0.055; p-for-trend=0.03). In contrast, in NHW participants there 

was no evidence of an exposure trend (p-for-trend=0.3; p-for-heterogeneity=0.09).

In a sensitivity analysis where all pollutants were included in the same model, the findings 

were similar except the association between quartile 4 versus quartile 1 of NO2 and 

GrimAgeAccel among Black participants was attenuated towards the null (Supplemental 

Table S2). No associations were identified between pollutants and IEAA, EEAA, or SBEAA 

measures (Supplemental Table S3). The measures overall demonstrated high magnitudes of 

correlation with chronological age for both race/ethnicity groups, except for DunedinPACE 

which, unlike the other measures, was not designed to be a measure of chronological or 

biological age (Supplemental Fig. S2).

3.4. EWAS of air pollutants

The EWAS of Black women identified 19 CpG sites associated (FDR q<0.05) with pollutant 

exposures (Table 2). An IQR increase in NO2 was associated with lower methylation at one 

CpG site (cg24269657) on chromosome 13, mapped near the F7 gene; and an IQR increase 
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in PM2.5 was associated with lower methylation at 15 CpG sites and higher methylation at 

3 CpG sites. Of these 18 CpG sites, the site with the smallest q-value was cg07635198, 

whose closest gene is PRPF40A on chromosome 2. Given possible inflation in the EWAS of 

PM2.5 among Black participants (λ=1.41; Supplemental Fig. S3), we performed a sensitivity 

analysis using surrogate variable analysis methods to check if the EWAS was affected by 

unobserved confounders (Leek and Storey, 2007). The surrogate variable analysis (adjusting 

for 68 surrogate variables) produced a similar QQ-plot (λ=1.25), and the results were 

correlated with the original analysis (adjusting for 13 covariates), especially for the set of 

statistically significant probes (Supplemental Fig. S6). The EWAS among NHW women 

identified no sites among the separately analyzed 450K and EPIC probes and a single site 

from the meta-analyzed probes, cg24537688, on chromosome 2 for which methylation was 

inversely associated with NO2 exposure (Table 2). None of the 20 statistically significant 

CpG sites are included in calculation of PhenoAge or DunedinPACE; GrimAge component 

CpGs are not publicly available.

Among Black women, we found 272 DMRs for PM2.5, 8 DMRs for PM10, and 15 DMRs 

for NO2 (Supplemental Table S4). Among NHW women we identified only 2 DMRs, both 

of which were associated with PM2.5; none were observed for NO2 or PM10. One DMR 

(Chr8: 2238275–2238306) was associated with both PM10 and NO2 among Black women. 

Four CpG sites identified in the EWAS of PM2.5 among Black participants were also 

present in significant DMRs identified in association with PM2.5 (cg08097847, cg13538431, 

cg06738602, cg10011083) and one was present in a DMR associated with NO2 among 

Black participants (cg23717809).

Using the EWAS results for Black women, IPA pathway analysis of the top 100 CpGs 

associated with each exposure suggested enrichment of 17 pathways for NO2, 1 for PM2.5, 

and none for PM10 (Supplemental Table S5). Using the EWAS results for NHW women, IPA 

pathway analysis of the top 100 CpGs associated with each exposure suggested enrichment 

of 5 pathways for NO2, 3 for PM2.5, and 17 for PM10 (Supplemental Table S5). Five 

of the pathways identified were found in more than one of the exposure and race/ethnicity-

specific analyses. Among the 38 distinct pathways identified in the six IPA analyses, the 

most common categories included intracellular and second messenger signaling (n=6) and 

cardiovascular signaling (n=5).

4. Discussion

This study presents novel air pollution associations with DNA methylation and recently 

developed measures of epigenetic aging among Black women. We found evidence of 

heterogeneity by race/ethnicity in air pollution exposure associations with epigenetic aging 

measures. Among Black participants, we found positive associations between PM10 and 

GrimAgeAccel as well as NO2 and GrimAgeAccel and DunedinPACE. In contrast, in NHW 

women we observed little evidence of association between any pollutant and epigenetic 

aging outcomes. In EWAS analysis, there was little evidence of associations among NHW 

women, but a number of individual CpGs and DMRs were associated with the three different 

exposures among Black women.
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Previous studies of PM2.5, PM10, and NO2 and epigenetic aging have produced mixed 

findings. Prior research conducted in the Sister Study among NHW women, who were 

also included in the present study, found no overall association of PM10 or PM2.5 with 

acceleration based on the Hannum, Horvath, or PhenoAge clocks and an inverse association 

between NO2 and acceleration using the Hannum clock (White et al., 2019). A study of 

Black and White participants of the Health and Retirement Study (n=2960) yielded no 

associations between NO2 or PM2.5 with GrimAgeAccel and DunedinPACE’s precedessor, 

DunedinPoAm, in the overall sample but found a statistically significant interaction between 

race and PM2.5 with DunedinPoAm suggesting greater vulnerability to PM2.5 among Black 

participants (Yannatos et al., 2023). While less directly comparable to the present study, 

results from the Cooperative Health Research in the Region of Augsburg (KORA, n=1777) 

and the Normative Aging Study (NAS, n=589), a cohort of elderly males, both reported 

positive associations between PM2.5 and accelerated age on the Horvath clock (Nwanaji-

Enwerem et al., 2016; Ward-Caviness et al., 2016). In the KORA study, a subgroup analysis 

among females (n=855) found that NOx, but not PM10, were associated with accelerated age 

using the Horvath clock.

The different patterns we observed between pollutants and the epigenetic aging measures 

among Black and NHW participants could relate to a variety of race-related environmental 

and social factors that increase Black individuals’ susceptibility to harmful exposures, such 

as lower health care quality or heightened psychosocial stress (Bailey et al., 2017). For 

example, several studies have found stronger associations between air pollution and adverse 

health outcomes among those experiencing greater psychosocial stress (Ailshire et al., 2017; 

Astell-Burt et al., 2013; Padula et al., 2020). We also observed higher median air pollution 

concentrations in Black than NHW women, which could account for variation observed with 

quartile 4 of exposures by race/ethnicity. Such differences in exposure levels aligns with 

previous research that observed disparities in residential pollution levels by neighborhood 

racial composition (Jbaily et al., 2022; Lane et al., 2022).

For PM10, the different associations with epigenetic aging measures by race/ethnicity may 

also reflect differential exposure sources and thus chemical composition of PM10. Relative 

to NHW participants in our sample, Black participants were more likely to reside in an 

urban setting and live in the South, and there are documented differences in air pollution 

profiles by geographic region and urbanicity. For example, Kundu and Stone (2014) showed 

variations between PM2.5 sources and components between urban and rural areas in Iowa 

(Kundu and Stone, 2014), while White et al. (2019) found variation in the association 

between PM2.5 and epigenetic aging by geographic region and by PM2.5 component profiles 

in the Sister Study (White et al., 2019), which could apply similarly to PM10. Another 

publication in NAS similarly found different associations with age acceleration by specific 

PM components (Wang et al., 2020). While of interest, we did not have sufficient sample 

size, particularly among Black participants, to explore possible heterogeneity by region or 

PM component clusters in the present study.

Among the Black subgroup, we observed a signal for faster aging based on GrimAgeAccel 

associated with PM10, but negligible evidence for PM2.5, though PM2.5 is included in PM10 

and considered a greater threat due to its ability to penetrate farther into the lungs (Ferrari 
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et al., 2019). This may indicate that the harm of PM10 is driven by PMcoarse (PM2.5–10). 

Studies in Boston and Los Angeles revealed differences of the elemental composition and 

sources of PM2.5 and PMcoarse in these urban areas (Masri et al., 2015; Oroumiyeh et al., 

2022), while another study in Colorado found that PMcoarse comprises approximately 50% 

of PM10 in urban residential and rural areas and up to 70% of PM10 in urban roadside 

areas (Clements et al., 2016). These findings support the plausibility that PM10 could have 

different effects than PM2.5. These studies also support that PM10 may be a proxy for 

traffic-related pollution, which would align with the attenuated association of NO2 and 

GrimAgeAccel in the sensitivity analysis after including all pollutants in the same model.

Inconsistent findings across the aging measures may reflect differences in how the measures 

were designed. DunedinPACE estimates the pace of aging and was developed using 

indicators of aging among a single-year birth cohort from Dunedin, New Zealand (Belsky et 

al., 2022). PhenoAge was designed to predict phenotypic age based on clinical markers of 

aging-related outcomes, including physical functioning and mortality (Levine et al., 2018). 

GrimAge estimates age based on predicted healthy lifespan and incorporates methylation-

based estimators of circulating protein concentrations and cigarette smoking pack-years (Lu 

et al., 2019). Low to moderate correlations across the different epigenetic aging measures 

have been shown previously, suggesting they capture distinct features of aging (Belsky et 

al., 2022; Kresovich et al., 2022). The inclusion of CpG sites specifically related to smoking 

may make GrimAge more sensitive to air pollution exposure than the other measures given 

shared constituents and pathologic pathways between air pollution and cigarette smoking 

(Forman and Finch, 2018).

The exact biochemical mechanisms linking air pollution to DNA methylation and specific 

DNA methylation patterns associated with pollutants remains uncertain. Nonetheless, the 

biological connection between air pollution and DNA methylation is supported by several 

EWAS and global methylation studies that have found that medium and long-term exposures 

to PM and NO2, among other pollutants, are associated with methylation changes (Chi et 

al., 2022; Poursafa et al., 2022; Wu et al., 2021). Randomized crossover trials and animal 

studies of short-term exposure to pollutants further support a causal relationship between 

exposure to pollutants and methylation alterations (Chen et al., 2016; Ding et al., 2016; Du 

et al., 2022).

To our knowledge, none of the 20 CpG sites identified in our EWAS have been reported in 

previous research on PM2.5, PM10, or NO2 and methylation. However, several significant 

sites from the PM2.5 analysis among the Black subgroup map near genes (ZCCHC24, 
MARCH10, TBC1D16, SETBP1, GALC, VOPP1) that have been found to have other CpG 

sites differentially methylated in association with PM2.5 and NO2 in studies of the KORA, 

NAS, and LifeLines cohorts (de F.C.Lichtenfels et al., 2018; Panni et al., 2016; Wang et al., 

2022). Several of the identified CpG sites have been previously associated with aging: an 

EWAS of epigenetic changes associated with age from birth through adolescence reported 

both of the CpG sites associated with NO2 in the Black and NHW subgroups (cg24537688, 

cg24269657) and 6 of the 18 CpG sites associated with PM2.5 in the Black subgroup 

(cg06738602, cg04902542, cg05411829, cg10011083, cg18580650, cg11130461) (Mulder 

et al., 2021). Additionally, one CpG site associated with PM2.5 in the Black subgroup 
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(cg06738602) is included in the Horvath clock (Horvath, 2013). Many of the pathways 

identified in IPA analysis align with previously reported systems implicated in human 

response to environmental pollutants, such as cellular immune response and intercellular 

communication (Peters et al., 2021). Several pathways also relate to aging-related outcomes, 

such as cardiovascular disease and cancer (Jaul and Barron, 2017), and may point to the 

molecular underpinnings linking air pollution to these diseases. However, findings from the 

EWAS, DMR, and IPA analyses for PM2.5 among Black participants should be interpreted 

with caution considering inflation detected in this analysis.

As mentioned, one limitation of the present study is that we did not have sufficient 

sample size to assess possible heterogeneity by factors that may clarify the differences 

we observed between race/ethnicity groups, including region or PM component profiles. 

Another limitation is the cross-sectional nature of the analyses, which prevents us from 

exploring trends of aging-related DNA methylation patterns over time. Additionally, though 

the Sister Study is a US-wide sample, generalizability of findings may be limited by 

the high level of educational attainment and the requirement that all participants have a 

biological sister with breast cancer. Finally, all three primary epigenetic aging measures 

were developed in predominantly White cohorts. However, PhenoAge, GrimAge, and 

DunedinPACE’s predecessor, DunedinPoAm have been used and demonstrated validity in 

samples of Black participants (Belsky et al., 2022; Levine et al., 2018; Lu et al., 2019).

On the other hand, ours is one of the largest studies to date of air pollution and 

methylation-based age and is among the first to include Black women, who are often 

underrepresented in epigenetics research (Breeze et al., 2022). Additionally, the pollutant 

exposure estimates are highly specific to each participant’s baseline residence and based on 

sophisticated spatiotemporal and universal kriging models. We also use multiple measures of 

methylation-based biological aging, including the more recently developed GrimAge clock 

and DunedinPACE metric that may capture effects of aging better than previous estimates 

based on measures of chronological age. Finally, comprehensive data collection at Sister 

Study baseline allowed for a high degree of confounder control.

5. Conclusions

Using recently developed DNA methylation-based measures of aging, this study presents 

evidence of novel associations between ambient air pollution and DNA methylation. We 

observed that higher PM10 and NO2 levels were associated with higher epigenetic aging 

among Black women, but not among NHW women. We also identified 19 differentially 

methylated CpG sites associated with pollutants among Black participants and one 

site among NHW participants. These findings underscore the importance of ongoing 

environmental justice efforts to reduce harmful exposures in Black communities.
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Abbreviations:

450K Illumina Infunium HumanMethylation450 BeadChip

ADI area deprivation index

BMI body mass index

Chr chromosome

CI confidence interval

CpG Cytosine-phosphate-Guanine

DMR differentially methylated region

DNA deoxyribonucleic acid

EEAA extrinsic epigenetic age acceleration

EPIC Illumina Infinium MethylationEPIC V1 BeadChip

EWAS epigenome-wide association study

FDR false discovery rate

IEAA intrinsic epigenetic age acceleration

IPA Ingenuity Pathway Analysis

IQR interquartile range

KORA Cooperative Health Research in the Region Augsburg study

NAS Normative Aging Study

NHW non-Hispanic White

NO2 nitrogen dioxide

P-het p-for-heterogeneity

PM10 particulate matter <10 μm in diameter

PM2.5 particulate matter <2.5 μm in diameter
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PMcoarse particulate matter >2.5 and <10 μm in diameter

Ppb parts per billion

Q1–4 quartile 1–4

QC quality control

SBEAA skin & blood epigenetic age acceleration

US United States
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Fig. 1. 
Effect estimates and 95% CIs for the associations between (A) PM2.5, (B) PM10, and 

(C) NO2 and epigenetic aging measures, by race/ethnicity. Notes: [a] β estimates are 

the result of linear regression for the association between either an IQR increase in 

air pollutants or quartiles 2–4 (compared to quartile 1) of air pollutants and epigenetic 

aging adjusting for methylation array, chronological age, race/ethnicity, education, BMI, 

physical activity, smoking status, cigarette smoking pack-years, region, and ADI at the 

census block group level. [b] P-for-trend values are from models where quartiles are 

treated ordinally. [c] P-het values displayed are from Wald tests of nested models 

with and without interaction terms for quartiles and race/ethnicity. P-het values for 

the IQR models are from an interaction term between pollutants and race/ethnicity: 

Panel A. P-het DunedinPACE=1.0, GrimAgeAccel=0.6, PhenoAgeAccel=0.6. Panel B. 

P-het DunedinPACE=0.9, GrimAgeAccel=0.01, PhenoAgeAccel=0.6. Panel C. P-het 

DunedinPACE=0.8, GrimAgeAccel=0.1, PhenoAgeAccel=0.8. Abbreviations: ADI, area 

deprivation index; BMI, body mass index; CI, confidence interval; IQR, interquartile 

range; NHW, non-Hispanic White; NO2, nitrogen dioxide; P-het, p-for-heterogeneity; PM10, 
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particulate matter<10 μm in diameter; PM2.5, particulate matter<2.5 μm in diameter; Q1–4, 

quartile 1–4.
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Table 1

Baseline study population characteristics stratified by race/ethnicity in the Sister Study 2003–2009 (n=4126).

Black
(n=633)

NHW
(n=3493)

Age (years), median (IQR) 54.8 (48.6, 59.6) 56.9 (50.6, 63.6)

Education level, n (%)

High school/GED or less 63 (10%) 537 (15%)

Some college/associate or technical degree 215 (34%) 1135 (33%)

College degree or more 355 (56%) 1821 (52%)

Region, n (%)

Midwest 141 (22%) 1040 (30%)

Northeast 61 (10%) 639 (18%)

South 374 (59%) 1046 (30%)

West 57 (9%) 768 (22%)

BMI (kg/m 2 ), median (IQR) 30.2 (26.4, 35.4) 26.4 (23.3, 30.5)

Smoking status, n (%)

Never 405 (64%) 1844 (53%)

Past 176 (28%) 1393 (40%)

Current 52 (8%) 256 (7%)

Total pack years among current and past smokers, median (IQR) 8.6 (2.9, 18.1) 10.5 (3.1, 23.0)

Physical activity (hours per week), median (IQR) 11.0 (6.9, 16.0) 12.5 (7.7, 19.0)

ADI of primary residence (percentile), median (IQR) 44.0 (24.0, 69.0) 27.0 (12.0, 48.0)

Air pollutants, median (IQR)

PM2.5 2006, μg/m3 12.0 (10.9, 13.2) 10.4 (8.5, 11.7)

PM10 2000, μg/m3 23.4 (20.7, 26.6 21.4 (18.4, 24.2

NO2 2006, ppb 10.8 (8.0, 14.7) 8.0 (5.5, 11.2)

Epigenetic aging measures, median (IQR)

DunedinPACE 1.10 (1.05, 1.17) 1.05 (1.00, 1.11)

GrimAgeAccel 0.16 (−1.86, 2.89) −0.81 (−2.51, 1.48)

PhenoAgeAccel −0.08 (−4.91, 4.45) −0.39 (−4.17, 3.69)

Abbreviations: ADI, area deprivation index; BMI, body mass index; IQR, interquartile range; NHW, non-Hispanic White; NO2, nitrogen dioxide; 

PM10, particulate matter<10 μm in diameter; PM2.5, particulate matter<2.5 μm in diameter; Ppb, parts per billion.

Environ Int. Author manuscript; available in PMC 2024 February 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Koenigsberg et al. Page 20

Ta
b

le
 2

FD
R

-c
or

re
ct

ed
 s

ig
ni

fi
ca

nt
ly

 d
if

fe
re

nt
ia

lly
 m

et
hy

la
te

d 
C

pG
 s

ite
s 

by
 a

ir
 p

ol
lu

ta
nt

s.
a,

b

A
ss

oc
ia

te
d 

po
llu

ta
nt

P
ro

be
M

ap
pe

d 
ge

ne
C

hr
R

el
at

io
n 

to
 C

pG
 

is
la

nd
B

la
ck

N
H

W

E
ff

ec
t 

es
ti

m
at

e
95

 %
 C

I
P

-v
al

ue
E

ff
ec

t 
es

ti
m

at
e

95
 %

 C
I

P
-v

al
ue

N
O

2
cg

24
53

76
88

–
2

−
0.

00
6

(−
0.

03
9,

 0
.0

27
)

0.
72

5
−

0.
04

9
(−

0.
06

6,
 −

0.
03

1)
8.

47
E

-0
8

cg
24

26
96

57
F7

13
N

or
th

 s
ho

re
−

0.
11

8
(−

0.
15

9,
 −

0.
07

7)
2.

90
E

-0
8

0.
01

2
(−

0.
01

5,
 0

.0
39

)
0.

37
3

PM
2.

5
cg

07
63

51
98

PR
PF

40
A

2
−

0.
11

5
(−

0.
15

4,
 −

0.
07

6)
1.

11
E

-0
8

0.
01

4c
(−

0.
01

7,
 0

.0
45

)
0.

37
0

cg
08

09
78

47
Z

C
C

H
C

24
10

N
or

th
 s

ho
re

0.
20

7
(0

.1
36

, 0
.2

78
)

1.
76

E
-0

8
−

0.
06

1c
(−

0.
12

4,
 0

.0
01

)
0.

05
5

cg
01

59
35

70
M

A
R

C
H

10
17

−
0.

13
3

(−
0.

18
2,

 −
0.

08
4)

1.
18

E
-0

7
−

0.
00

9c
(−

0.
04

6,
 0

.0
29

)
0.

64
3

cg
13

53
84

31
R

P1
1–

12
52

I4
.2

;R
P1

1–
42

3H
2.

1;
R

P1
1–

42
3H

2.
3

5
−

0.
16

4
(−

0.
22

5,
 −

0.
10

3)
2.

00
E

-0
7

0.
02

7c
(−

0.
02

0,
 0

.0
74

)
0.

26
1

cg
23

71
78

09
R

P1
1–

51
0 

M
2.

1
16

So
ut

h 
sh

or
e

−
0.

11
4

(−
0.

15
7,

 −
0.

07
1)

2.
44

E
-0

7
−

0.
03

0c
(−

0.
07

0,
 0

.0
10

)
0.

14
3

cg
06

73
86

02
PT

G
E

R
2

14
N

or
th

 s
ho

re
0.

18
5

(0
.1

15
, 0

.2
56

)
3.

05
E

-0
7

−
0.

00
8

(−
0.

05
3,

 0
.0

36
)

0.
71

1

cg
00

21
22

45
–

8
−

0.
10

3
(−

0.
14

2,
 −

0.
06

3)
3.

73
E

-0
7

−
0.

01
1c

(−
0.

04
2,

 0
.0

19
)

0.
46

5

cg
01

90
61

02
SS

X
1;

 S
SX

5
X

−
0.

12
1

(−
0.

16
8,

 −
0.

07
4)

4.
89

E
-0

7
0.

00
4

(−
0.

02
2,

 0
.0

30
)

0.
76

1

cg
04

90
25

42
T

B
C

1D
16

17
N

or
th

 s
he

lf
−

0.
07

7
(−

0.
10

6,
 −

0.
04

7)
5.

00
E

-0
7

0.
00

7
(−

0.
00

9,
 0

.0
24

)
0.

36
1

cg
05

41
18

29
–

16
−

0.
08

8
(−

0.
12

2,
 −

0.
05

4)
5.

08
E

-0
7

−
0.

00
4

(−
0.

02
2,

 0
.0

13
)

0.
61

5

cg
08

05
27

51
SE

T
B

P1
18

−
0.

12
8

(−
0.

17
7,

 −
0.

07
8)

5.
92

E
-0

7
−

0.
00

2c
(−

0.
03

9,
 0

.0
34

)
0.

90
7

cg
11

51
42

93
G

A
L

C
14

−
0.

09
3

(−
0.

12
9,

 −
0.

05
6)

8.
01

E
-0

7
0.

00
5c

(−
0.

02
6,

 0
.0

35
)

0.
76

2

cg
10

01
10

83
V

O
PP

1
7

Is
la

nd
0.

17
3

(0
.1

04
, 0

.2
41

)
9.

71
E

-0
7

−
4.

87
E

-0
4

(−
0.

02
6,

 0
.0

25
)

0.
97

1

cg
16

72
20

16
–

12
−

0.
12

5
(−

0.
17

5,
 −

0.
07

5)
1.

02
E

-0
6

−
1.

58
E

-0
5c

(−
0.

03
8,

 0
.0

38
)

0.
99

9

cg
18

58
06

50
–

5
N

or
th

 s
he

lf
−

0.
08

3
(−

0.
11

6,
 −

0.
05

0)
1.

08
E

-0
6

−
0.

01
4

(−
0.

03
0,

 0
.0

02
)

0.
08

5

cg
11

13
04

61
Z

B
T

B
20

3
Is

la
nd

−
0.

16
1

(−
0.

22
5,

 −
0.

09
7)

1.
10

E
-0

6
−

0.
00

3
(−

0.
06

2,
 0

.0
56

)
0.

93
1

cg
24

54
43

56
FS

T
L

5
4

−
0.

08
7

(−
0.

12
2,

 −
0.

05
3)

1.
15

E
-0

6
−

0.
01

0c
(−

0.
04

1,
 0

.0
21

)
0.

52
8

cg
17

60
85

85
R

P1
1–

10
55

B
8.

3
17

N
or

th
 s

ho
re

−
0.

11
4

(−
0.

16
0,

 −
0.

06
9)

1.
23

E
-0

6
0.

01
6c

(−
0.

01
8,

 0
.0

50
)

0.
35

6

[a
] Su

rv
ey

-w
ei

gh
te

d 
ge

ne
ra

liz
ed

 li
ne

ar
 r

eg
re

ss
io

n 
m

od
el

s 
w

er
e 

pe
rf

or
m

ed
 s

ep
ar

at
el

y 
by

 r
ac

e/
et

hn
ic

ity
 s

ub
gr

ou
p.

 M
od

el
s 

ad
ju

st
ed

 f
or

 H
ou

se
m

an
 c

el
l t

yp
e 

pr
op

or
tio

ns
, c

hr
on

ol
og

ic
al

 a
ge

, e
du

ca
tio

n,
 B

M
I,

 
ph

ys
ic

al
 a

ct
iv

ity
, s

m
ok

in
g 

st
at

us
, c

ig
ar

et
te

 p
ac

k-
ye

ar
s,

 r
eg

io
n,

 a
nd

 A
D

I 
at

 th
e 

ce
ns

us
 b

lo
ck

 g
ro

up
 le

ve
l.

[b
] C

pG
 s

ite
s 

th
at

 w
er

e 
si

gn
if

ic
an

t f
or

 a
t l

ea
st

 o
ne

 o
f 

th
e 

ra
ce

/e
th

ni
ci

ty
 s

ub
gr

ou
ps

 a
re

 p
re

se
nt

ed
 f

or
 b

ot
h 

su
bg

ro
up

s,
 f

or
 c

om
pa

ri
so

n.

Environ Int. Author manuscript; available in PMC 2024 February 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Koenigsberg et al. Page 21
[c

] E
ff

ec
t e

st
im

at
es

, C
Is

, a
nd

 p
-v

al
ue

s 
fo

r 
pr

ob
es

 th
at

 w
er

e 
no

t m
et

a-
an

al
yz

ed
 a

m
on

g 
N

H
W

 p
ar

tic
ip

an
ts

 a
re

 f
ro

m
 th

e 
E

W
A

S 
of

 E
PI

C
 p

ro
be

s 
on

ly
 (

n=
13

11
).

 A
bb

re
vi

at
io

ns
: A

D
I,

 a
re

a 
de

pr
iv

at
io

n 
in

de
x;

 
B

M
I,

 b
od

y 
m

as
s 

in
de

x;
 C

hr
, c

hr
om

os
om

e;
 C

I,
 c

on
fi

de
nc

e 
in

te
rv

al
; C

pG
, C

yt
os

in
e-

ph
os

ph
at

e-
G

ua
ni

ne
; F

D
R

, f
al

se
 d

is
co

ve
ry

 r
at

e;
 N

H
W

, n
on

-H
is

pa
ni

c 
W

hi
te

; N
O

2,
 n

itr
og

en
 d

io
xi

de
; P

M
2.

5,
 p

ar
tic

ul
at

e 

m
at

te
r<

2.
5 

μm
 in

 d
ia

m
et

er
.

Environ Int. Author manuscript; available in PMC 2024 February 16.


	Abstract
	Introduction
	Methods
	Study sample
	Air pollution exposure estimates
	DNA methylation and epigenetic aging outcomes
	Statistical analysis

	Results
	Participant characteristics
	Distribution of exposure and outcome by race/ethnicity
	Air pollutants and epigenetic age measures
	EWAS of air pollutants

	Discussion
	Conclusions
	References
	Fig. 1.
	Table 1
	Table 2

