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Abstract

There is an unmet need to classify cancer-promoting kinase mutations in a mechanistically 

cognizant way. The challenge is to understand how mutations stabilize different kinase 

configurations to alter function, and how this influences pathogenic potential of the kinase and 

its responses to therapeutic inhibitors. This goal is made more challenging by the complexity of 

the mutational landscape of diseases, and is further compounded by the conformational plasticity 

of each variant where multiple conformations coexist. We focus here on the human MEK1 

kinase, a vital component of the RAS/MAPK pathway in which mutations cause cancers and 

developmental disorders called RASopathies. We sought to explore how these mutations alter 

the human MEK1 kinase at atomic resolution by utilizing enhanced sampling simulations and 

free energy calculations. We computationally mapped the different conformational stabilities of 

individual mutated systems by delineating the free energy landscapes, and showed how this relates 

directly to experimentally quantified developmental transformation potentials of the mutations. 

We conclude that mutations leverage variations in the hydrogen bonding network associated with 

the conformational plasticity to progressively stabilize the active-like conformational state of 

the kinase while destabilizing the inactive-like state. The mutations alter residue-level internal 

molecular correlations by differentially prioritizing different conformational states, delineating 

the various modes of MEK1 activation reminiscent of a gear-shifting mechanism. We define 

the molecular basis of conversion of this kinase from its inactive to its active state, connecting 

structure, dynamics, and function by delineating the energy landscape and conformational 

plasticity, thus augmenting our understanding of MEK1 regulation.
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Introduction

Cells must receive and respond to signals in order to co-ordinate activities and to determine 

cell fate [1–3]. Signaling relies on various biomolecules to transfer information along 

the key biochemical pathways, and protein kinases play a crucial role by mediating 

phosphorylation of protein substrates to control their activity [4]. Errors in signaling due 

to aberrant kinase activity underlie many cancers [5]. Through research spanning decades, 

kinases have thus been identified as prime therapeutic targets for small molecule inhibitors 

that can correct aberrant signaling. Beyond the central roles that they play in signaling 

biology [6–8], kinases are rich targets because of the substantial role played by their 

structure and inherent conformational plasticity [9] combined with the conformational 

selectivity of inhibitors that can selectively bind to specific conformational states [6,10].

The canonical kinase domain (KD) can be subdivided into two lobes: the N-lobe and 

the C-lobe. ATP and most (ATP-competitive) inhibitors bind in the pocket between these 

lobes. Three switch-like structural distinguish the active/active-like and inactive/inactive-like 

configurations in protein kinases: unfolding of the activation loop (A-loop) from a partially 

helical (inactive) to an extended loop (active) structure; the presence (active) and absence 

(inactive) of a predicted salt bridge between a lysine side chain in strand β3 (K97 in MEK1) 

and a glutamate in the αC helix (E114 for MEK1); and the conformation of the so-called 

‘DFG motif’, which adopts a ‘DFG-in’ conformation in the active state (with D208 of 

MEK1 projecting towards the ATP binding pocket and F209 facing outwards) versus the 

‘DFG-out’ conformation in the inactive state.

Through improvement in gene sequencing technologies, numerous kinase mutations have 

been identified in patients’ tumors, leading to a burgeoning amount of data. For example, 

mutations observed in cancer patients number in the millions in the COSMIC database 

[11]. Mutations in protein kinases are well spread over the different subdomains [12], 

and may contribute in different ways to the oncogenic potential and/or inhibitor response 

in a way that demands that each must currently be studied individually. Hence, there is 

an unmet potential for computational techniques both to classify or cluster the mutations 

and to provide mechanistic insights into how they alter kinase conformation to alter the 

function — and how this relates to the oncogenic potential [13] as well as inhibitor response 

[14]. However, the complexity of the cancer mutational landscape frustrates the process 

of rational identification of drivers that potentiate an oncogenic/invasive phenotype [15]. 

Moreover, a large part of the human kinome remains unexplored and uncharacterized [16].

The inhibitors that bind to protein kinases are classified into various types based on their 

conformational selectivity [17]. Introducing a mutation may alter this selectivity and lead to 

altered drug sensitivity and thus treatment resistance. In general, the effects of each mutation 

are unknown unless probed individually.

In this study, we focus on the human MEK1 kinase, which is a vital component of the RAS/

MAPK pathway. Mutations in the RAS/MAPK pathway are known to drive many cancers, 

and also cause several developmental disorders called RASopathies [18,19]. Our goal is to 

develop a metric to classify or cluster mutations in kinases based on an understanding of the 
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central role of protein dynamics in determining kinase function [20,21], and computational 

work that has addressed protein dynamics more generally [22–27]. Specifically, we sought 

to explore molecular mechanisms (and effects of mutations) at atomic resolution in the 

human MEK1 kinase against the backdrop of experimental work on reporters of enzyme 

kinetics in the literature [28]. We utilized enhanced sampling simulations and free energy 

calculations to perform metadynamics simulations for an aggregate 8 μs per system for 

key mutated systems and found that computationally mapping the different conformational 

stabilities of each mutated system by delineating free energy landscapes related well 

to previously experimentally determined transformation potentials of the same mutations 

expressed in vivo in Drosophila melanogaster.

We conclude that mutations leverage conformational plasticity to progressively stabilize the 

active-like conformational state while destabilizing the inactive-like state, thereby driving 

kinase activation. Moreover, by differentially stabilizing different conformational states, 

the mutations alter residue-level internal molecular correlations by perturbing a hydrogen 

bonding network. We like the various modes of MEK1 activation to a gear-shifting 

mechanism in which mutations significantly perturb the correlations between the N-lobe 

and the C-lobe. At a more granular subdomain resolution, hydrogen bond (HB) distributions 

are essential contributors to the varied patterns of internal correlation.

Results

Conformational plasticity of MEK1 wild type revealed through free energy landscape from 
metadynamics simulations

Metadynamics simulations were performed for 8 μs total for wild type (WT) MEK1 (see 

Figure 1a). The resulting energy landscape represents metastable states in a two-dimensional 

projection of the two collective variables, with free energy values represented by colors 

in Figure 1a legend. The convergence of the free energy plot was tracked as outlined 

in Methods, and the results of the convergence analyses for WT MEK1 are provided in 

Supplementary Figure S1. On the landscape, certain zones of interest were identified that 

represent active, inactive, and several intermediate configurations. The zones depicted in 

Figure 1 as free energy contour maps are numbered and color coded in Supplementary 

Figure S2; moreover, the characteristics of each zone are elaborated in Supplementary 

Figures S2(f) and S3.

The progression of the MEK1 WT system from inactive to active configuration was tracked 

by delineating the properties of each zone (state) using the three switch variables described 

earlier, defined based on the unfolding of the A-loop, the K/E salt bridge, and the DFG 

conformation (see Supplementary Figure S3). The DFG flip is quantified by measuring 

the dihedral angle formed by the four atoms: C(207 Cα)-C(207 Cβ)-D(208 Cα)-D(208 

Cγ). In the active conformation, the D of the DFG motif (D208 for MEK) points towards 

the ATP binding pocket, and the F of the motif (F209 for MEK) flips outwards. This is 

the DFG-in conformation (e.g. in zones 3, 5–8 for WT in Supplementary Figure S3). In 

contrast, in the inactive conformation, the D of the DFG motif points away from the ATP, 

whereas the F is flipped ‘in’ (the DFG-out conformation (zone 1 for WT in Supplementary 

Figure S3)). The KE salt bridge is completely broken in all instances in zones 1 and 3 
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(inactive-like) for WT, while it is formed in the majority of instances (active-like) in zones 

2, 7 (Supplementary Figure S3). Similarly, the A-loop is partially helical in zones 1 and 2 

in WT while fully unraveled in zone 5, 6 (as quantified by the HB occupancy histogram 

of the A-loop. We adopt a set of three binary representations of these switch variables 

according to the convention KE salt bridge = 0/1; DFG flip = 0/1; A-loop conformation = 

0/1, where 0 = inactive-like and 1 = active-like. Therefore, [0:0:0] is the most inactive-like 

conformation, and [1:1:1] is the most active-like conformation. Based on these metrics for 

the three switch variables (order parameters), zone 1 represents the inactive-like (and also 

thermodynamically the most stable) state for WT MEK1. Zone 7, by contrast, represents the 

most active-like state.

Based on the computed free energies, we infer that the WT MEK system disproportionately 

favors the inactive configuration (see Supplementary Figure S3 and Table 1 for free 

energies), and the system navigates to the active conformation through a series of 

conformational transitions involving different changes in the three switch variables (see 

Supplementary Figure S3). The free energy of the MEK WT configuration increases as the 

differential transition towards the active configuration occurs. The KE salt bridge is formed 

between K97 in strand β3 and E114 in the αC helix (defined as 3–4 Å separation). In 

the case of the WT system, this close approach has a significant free energy cost and is, 

therefore, inaccessible under normal conditions. We observed two distinct conformational 

states for the DFG-out state (zones 1, 2, 3), characteristic of inactive MEK. Flipping of 

the DFG motif to the DFG-in state was observed in zone 4 and the subsequent zones 5–8 

stabilized the active DFG-in state. The smallest free energy difference between the DFG-out 

and DFG-in sustaining states is 1–3 kcal/mol (between zones 3 and 5).

Conformational plasticity analysis of MEK1 variants suggests a gear-shift mechanism of 
MEK1 hyperactivation

The conformational plasticity of the mutated and post-translationally modified 

(phosphorylated) systems, SSDD, E203K, F53S, and di-phosphorylated MEK1, were 

investigated by carrying out an aggregate of 8 μs of metadynamics using a similar approach 

to that described for the WT MEK1 system. It is evident from the resulting free energy 

landscapes (Figure 1) that the alterations introduced significantly alter the free energy 

landscapes when compared with wild type. Both the number of zones and the free energies 

of the zones are different; see Figure 1 and note that the zones for each system are defined in 

Supplementary Figure S2.

The progression of the MEK1 variant systems (SSDD, E203K, F53S, and DP) from 

inactive to active configuration was again tracked by delineating the properties of each 

zone (state) using the switch variables used to describe WT MEK1 above; compare 

Supplementary Figures S4–S7 with Supplementary Figure S3. Each variant system displays 

similar conformational plasticity as seen in the WT system, with the characteristics of each 

zone (metastable state) delineated by the unfolding of the A-loop, the status of the K/E 

salt bridge, and the DFG conformation. The categorization of each zone in Supplementary 

Figures S4–S7 is provided using the [X:Y:Z] convention based on the values of the 

three switch variables (order parameters). As collectively observed in the conformational 
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landscapes, all systems visit inactive-like zones (states), active-like zones, and intermediate 

zones. The cube plots in Figure 2 depict the possible distribution of 25 states based on 

the categorization provided by the switch variables and the populated states in each of the 

MEK1 systems; here, the numbers correspond to the zone numbers and the indices I, S, and 

A denote the inactive, stable, and active zones in each system. The cube plots enable a quick 

comparison of the zones across MEK1 systems.

Computation of the free energy landscape enables us to ascribe relative stabilities (free 

energies) to each zone. A comparison of the most stable conformational state/zone across 

the five MEK1 systems is provided in Figure 2. An intriguing pattern emerges in which the 

most stable state displays a different transition as we move down the list of systems. For 

WT, each of the collective variables (K/E bridge, DFG motif and A-loop conformations) 

is inactive-like. The DFG motif is intermediate/mid for SSDD, F53S and E203K and the 

A-loop is unfolded or partially unfolded for F53S and E203K. Although all of the systems 

studied display a broken KE salt bridge, it is evident that the distances between the K and E 

residues favor lower values of the activating mutants F53S and E203K.

Table 1 summarizes the computed free energy difference between the active-like and the 

inactive-like conformations of MEK1 in order of decreasing difference between these 

values. The free energy difference between the inactive conformation and the most stable 

conformation increases progressively as one progresses down the table with the exception 

of E203K, and the free energy difference between the active conformation and the most 

stable conformation decreases (except for F53S). This trend implies a cascading gear-shift 

mechanism of activation in which each shift in one of the conformational switch variables 

stabilizes a different stable conformational state that is more activating than the previous. 

The E203K mutation enhances stability of the active conformation, whereas the F53S 

mutation decreases the stability of the inactive conformation. The F53S and E203K systems 

show higher degrees of the shift in stabilities noted above than the phospho-mimetic mutant 

SSDD and the post-translationally modified DP systems.

Interestingly, the most stable states for F53S and E203K display partially active 

characteristics, with several switch variables stabilized either in the active state or part 

way between active and inactive (see last column of Table 1). For this reason, if the 

stable state is also taken as the active state, we can rank the activity of MEK1 based 

on the free energy difference between the active and the inactive states for the MEK1 

variants: WT < SSDD < DP < E203K < F53S. The corresponding free energy difference 

between active and stable states decreases in the order WT > SSDD > DP > E203K~F53S. 

The phospho-mimetic mutation SSDD, which is a proxy to mimic the phosphorylated 

environment in MEK, is seen to rank closer to the DP MEK1 system as expected. The 

F53S and E203K mutations are predicted to be the most activating mutations in the list. The 

free energy difference between active and inactive states decreases for all MEK1 variants 

compared with the WT, in agreement with experimental literature that reports these variants 

as activating [28]. Intriguingly the trend in the free energy differences reported here also 

closely tracks the experimental trend of the transforming ability of these MEK1 variants 

seen in D. melanogaster experiments performed in vivo [19,28]. Remarkably, there is a near 

Patil et al. Page 5

Biochem J. Author manuscript; available in PMC 2024 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



linear correlation between the energy differences calculated here and the previously reported 

experimental data, as shown in Figure 1f.

Internal correlations at the slow conformational switching timescales may be responsible 
for the gear-shifting mechanism

Next, we asked whether the individual MEK1 variants differ in conformational plasticity 

and the nature of internal motions in the KD. By analyzing conformational fluctuations, 

we can infer a wealth of information beyond free energies to help delineate dynamic 

aspects of molecular mechanisms. To this end, we computed Boltzmann weighted 

dynamical correlations (BW-DCs), which serve as extensions to the more traditional 

covariance analysis and extend the time domain to the experimentally relevant timescales of 

conformational transitions. Figure 3a–e maps the Boltzmann weighted normalized residue-

level correlations for the different MEK1 variants, and the fingerprint of subdomain level 

motions are discernably different between the individual MEK1 systems. A direct way of 

quantifying the similarities and differences in residue-level correlations across systems is to 

perform a hierarchical clustering analysis based on the pairwise squared distance between 

the Boltzmann weighted correlation matrices, see Figure 3f.

Based on the internal correlations and the computed tree, we can classify the different 

MEK1 variants into distinct classes, showing that the WT is distinct from the activating 

MEK1 variants. Moreover, the individual activated MEK1 variants differ substantially from 

one another in the patterns of residue-level correlations. The most striking features in WT 

are co-ordinated strongly positive correlations within the N-lobe (residues 1–144) and the 

C-lobe (residues 149–367) plus the substantial anti-correlation between the C-lobe and the 

N-lobe [9]. These features are clearly compromised in all of the MEK1 variants. In the 

DP and F53S MEK1 systems, the sub-block of N-lobe correlations shift and extend to part 

of the C-lobe, including the C-lobe elements αD (149–159), αE (162–185), the catalytic 

loop (186–194), β7 (196–198), β8 (204–206), and the A-loop (208–233). The sub-block of 

C-lobe correlations also shrinks to include just αG (309–319), αH (331–342), and αI (351–

367) — even though the correlations themselves appear to maintain correlation intensity. 

The SSDD and E203K systems show fingerprints similar to those of DP and F53S MEK1, 

but with the strengths of the correlation intensities diminished. One notable differentiator 

between the highly activating variants (DP, E203K, F53S) and the weakly (or non) activating 

variants (SSDD and WT) is an enhanced correlation between the Nα subdomain and other 

subdomains in the highly activated variants that are absent from the weakly activating 

ones. This feature highlights the importance of Nα and its interactions in the activation 

mechanism, a property that has been confirmed by previous structural studies in the context 

of some activating MEK1 mutants such as C121S [29].

To translate the patterns of the Boltzmann weighted correlation matrices of Figure 3 into 

more readily interpretable observations, we used coarse-grained correlation matrices to 

record averaged correlations between secondary structure elements and kinase subdomains 

as a 18 × 18 matrix (Figure 4); for reference, the 18 elements are described in Table 2. 

Among the lower sub-block (Nα-β5), where the patterns of correlations are most diverse 

across the MEK1 systems, we find that the regions β1, P-loop (PL), β2, β3, β4, are strongly 
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correlated in both the WT and mutated systems. However, in comparison with WT, the αC 

helix correlations are lost in the mutant systems, suggesting a relatively free motion and 

a lower energetic barrier for the αC helix to move ‘in’ and ‘out’. Overall several other 

subdomain correlations are also significantly weaker in magnitude (and opposite in sign) 

in the mutated variants than in WT (e.g. αG-β4, β8-β2), consistent with the significant 

stabilization (lowering of the free energies) of the active-like states in the mutants. The 

comparison of the coarse-grained correlations between subdomains is easily visualized 

in the chord plots in Figure 4, which show connections between the elements when 

the average correlation/anti-correlation exceeds a magnitude of 0.7. The variation in the 

subdomain-level average correlations depicted in the chord plots is akin to differences in 

the engagement of gears and crankshafts that can be thought of as driving activation of the 

various MEK1 systems. Based on the chord plots, we conclude that compared with WT, the 

SSDD variant weakens the magnitudes of positive correlations within the N- and C-lobes 

as well as negative correlations between the lobes. The DP system instead strengthens 

positive correlations across the KD and diminishes negative correlations. The F53S and 

E203K variants both display weakened correlations overall compared with WT and DP, 

but show different patterns. The F53S variant shows strengthened correlations between the 

β-strands, whereas the E203K variant enhances the correlations involving the α helices. 

These differences present a striking correlation with the different modes of stabilization, 

namely E203K stabilizes the active-like and inactive-like conformational states, whereas the 

F53S mutation primarily destabilizes the inactive-like conformational state. The enhanced 

correlations between Nα and other subdomains that are seen only in highly activating 

variants (DP, E203K, F53S) are also clearly evident from the chord plots in Figure 4.

Implications for solvent accessibility, hydrogen bonding, and hydrogen-deuterium 
exchange propensity

Altered internal correlations will necessarily also change HB occupancy and solvent 

accessible surface area, which should, therefore, differ across the MEK1 variants. 

HB networks and solvent accessibility are two of the most prominent molecular-level 

properties impacted by internal protein motion, and can connect the dynamics observed in 

biomolecular simulations with experimental observations of hydrogen–deuterium exchange 

(HDX), for example. Although it is traditionally routine to analyze molecular dynamics 

(MD) trajectories to compute these two properties, the timescale accessed in the simulations 

usually severely limits the value of the analysis. Since our study provided access to 

protein configurations and the associated free energy landscapes, we are able to compute 

Boltzmann weighted hydrogen bond (BW-HB) occupancies and Boltzmann weighted 

solvent accessibilities (BW-SASA), and have done so for three MEK1 systems (WT, 

the moderately activating SSDD, and the hyperactivating E203K variant) as shown in 

Supplementary Figure S8.

As expected, the A-loop in WT MEK1 (which is partially helical) has higher HB occupancy, 

and this is partly retained in the SSDD system. However, the E203K system has significantly 

lower HB occupancy, consistent with the extended (active-like) conformation of the A-loop 

being the more stable state. This trend for the A-loop is also evident by examining the HB 

occupancy of the stable zone in Figure 2 across the different MEK1 systems.
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There is elevated solvent accessibility for the residues of the A-loop in the MEK1 WT 

system when compared with the two variants. The HB occupancy of the αC helix in the 

WT system is higher than that of SSDD and E203K, reflecting the in/out motion of the αC 

helix that accounts for some of the conformational plasticity. We also observe that the P-loop 

solvent accessibility is significantly higher for E203K than for WT or SSDD. In comparison, 

the catalytic loop has lower HB occupancy and solvent accessibility across all systems. 

The HB occupancy and solvent accessibility for β-strand regions do not vary significantly 

across the systems. The above observations suggest that although E203K and SSDD are both 

activating mutations, they may utilize different activation modes. Namely, E203K shows a 

reduced HB network and altered solvent accessibility around the A-loop, whereas SSDD 

utilizes differences in solvent accessibility of a few crucial residues of the A-loop.

Since our results integrate conformational plasticity, dynamics, and function (activation), 

we sought to compare the inferences of our computational results with experimentally 

determined HDX. The rate of exchange of backbone amide hydrogens with solvent occurs 

on two timescales: one in which the rate of unfolding/folding is limiting and one limited 

by the rate of intrinsic hydrogen exchange itself. If the rate of intrinsic hydrogen exchange 

is greater than the rate of unfolding/folding, the kinetics are classified as EX1. Conversely, 

EX2 kinetics apply if the rate of folding/unfolding is greater than the rate of hydrogen 

exchange. The mass spectrometry-based HDX experiments reported for MEK [30] described 

specific regions to have mixed EX1/EX2 kinetics while the rest were described to follow 

EX2 kinetics.

We reasoned that a proxy for the rate of intrinsic hydrogen exchange available from 

our computations is (1−BW‐HBoccupancy); i.e. exchange rate should also depend on the HB 

occupancy, i.e. the higher the HB occupancy (protection), the lower the exchange rate. 

Analogously, a proxy for the rate of local folding/unfolding is the associated fluctuations 

in BW-SASA, which accompanies the conformational fluctuations; more specifically, we 

computed the coefficient of variation (or the ratio of standard deviation to the mean:

σSASA/μSASA) in the BW-SASA. Our reasoning for these proxies is premised on the BW-HB 

and BW-SASA sufficiently capturing long-timescale conformational fluctuations, which 

traditional MD simulations typically run for microseconds do not capture. To distinguish 

between EX1 and EX2, we compute the ratio log(σSASA/μSASA)/(1 − HBoccupancy) as a proxy for the 

ratio of the rate of folding/unfolding to that of intrinsic exchange. We depict the ratio of the 

coefficient of variation in BW-SASA and 1− (BW‐HBoccupancy) for MEK1 WT and two of the 

MEK1 variants (SSDD and E203K) in Supplementary Figure S8. If this computed ratio is 

high, we predict that the exchange will be in EX2 mode, where the rate of conformational 

fluctuations exceeds that of the backbone hydrogen exchange. In contrast, a low value of 

the ratio is indicative of a mixed EX1/EX2 mode of exchange kinetics (see Supplementary 

Figure S8c,f,i) in which the rate of conformational changes is lower than that of exchange. 

For WT, for which HDX experimental data are available, an average value of the ratio we 

are calculating over the residues spanned by the peptides defined in the HDX experiments 

[30] is plotted as a bar at that value. It is evident that the peptides colored in red have a lower 

ratio (mixed EX1/EX2), and many of the green peptides show a higher ratio (EX2), which is 

correctly predicted. We note that our method does incorrectly resolve a few peptides colored 
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in green (experimentally classified as EX2) but show a low computed ratio: this could be 

attributed to unfolding coupled to solvent fluctuations, which are not currently sampled in 

our calculations and will be the subject of a future study. While the comparisons between 

experiments and simulations are made for MEK1 WT, we have computed the same ratio 

for SSDD and E203K variants (see Supplementary Figure S8), for which we do not have 

experimental HDX data. Nevertheless, we note that the peptides around residue number 200 

(marked by a black circle), which undergo a significant change in the ratio, also correspond 

to the location of the SSDD mutations, S218D, and S222D; intriguingly, we observe a 

similar trend for E203K, which is also close to this location.

Discussion and conclusion

Allostery and multiple states cause a combinatorically large set of possibilities for drug and 

ATP-bound states, and different inhibitors can sensitize different states based on context. 

It is well appreciated that multiple conformational states mediate the inactive-to-active 

transitions in kinases [7], shedding light on the conformational plasticity of these enzymes. 

Here we show that numerous states further exemplify the complexity even for the monomer 

kinase in its activation, and that individual mutations differentially stabilize these states.

We find that the MEK1 variants display widely differing distributions of metastable states 

with different relative thermodynamic stabilities. By comparing the relative stabilities of 

the active-like and inactive-like states in reference to the most stable conformational 

state, we conclude that activating mutations leverage the conformational plasticity of 

the KD, preferring intermediate conformations while either destabilizing the inactive-like 

conformational state or stabilizing the active-conformational state to promote activation. 

We observed a progressive and step-wise activation mode for MEK1 in our simulations, 

reminiscent of a gear-shifting mechanism, for activation both by post-translational 

modification (DP and SSDD) and by mutation (F53S and E203K). WT MEK1 favors 

stabilization of the inactive kinase configuration, E203K favors the active state the most, and 

our computed free energy differences correctly rank the MEK1 variant systems according 

to their transformational ability in experimental studies. Most kinases are known to have 

allosteric mode for activation and the role of N and C terminal in such positive and negative 

regulation are well known. Our results focus on just the KD in the absence of the additional 

allosteric interactions from subdomains outside the kinase, and the gear-shifting mechanism 

points to a core machinery that regulates conformational plasticity.

We report new analysis methodologies to map the free energy landscape of the 

conformational plasticity on to long-timescale protein dynamical correlation in MEK1 

kinase variants by connecting the underlying conformational plasticity that emerges 

from the metastable states or zones of the free energy landscape with internal residue-

level Boltzmann weighted molecular correlations. We conclude that mutations leverage 

conformational plasticity to alter residue-level internal molecular correlations, delineating 

the various modes of MEK1 activation involved in the gear-shifting mechanism. The 

mutations significantly perturb correlations between the N-lobe and the C-lobe at the full 

kinase system resolution. At a more granular subdomain resolution, HB distributions are 

essential contributors to the altered patterns of internal correlation. The tree based on 
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hierarchical clustering projects these correlation differences into one dimension based on the 

squared-difference metric. This clustering places the WT kinase in a distinct class from the 

activating MEK1 variants. Based on the ensemble weighted dynamical correlations, we also 

observed that the activating mutations disrupt correlations between the C- and N- lobes, and 

the two most activating mutations (E203K and F53S) lead to different patterns of subdomain 

level correlations, with the former coordinating the α helices and the latter coordinating the 

β strands. Intriguingly the three most activating variants, DP, E023K, and F53S each show 

enhanced correlations between the Nα subdomain and other subdomains, a feature that is 

absent from WT and the mildly activating SSDD variant.

We also observe that the activating mutations increase the flexibility of the A-loop, P-loop, 

as recorded by the increase in root-mean-squared deviations (RMSDs) associated with these 

regions (see Supplementary Figure S9a). This pattern of altered flexibility has been reported 

in other kinase systems, where it was also shown to be correlated with an altered HB 

network [13]. We show in Figure 2 and Supplementary Figures S3–S7 that the HB network 

surrounding the A-loop is perturbed significantly across the zones and across the systems. 

Hence, we were curious if we could infer this from standard unbiased MD simulations 

(see Supplementary Methods). Indeed, we observe this to be the case for MEK1, where 

activating mutations disrupt the HB network between the αC helix and the A-loop of 

MEK1 (Supplementary Figure S9b); see also Methods for how the persistence in HB is 

computed. For comparison, we note that the neutral (non-activating) mutation, E203Q, does 

not conform to this pattern. Intriguingly, we further investigated whether this trend holds 

for 21 known activating mutations of MEK1 as reported in Supplementary Figure S9c (all 

except P124S, C121S, E203V, A257V, L235H), there was a persistent disruption of one or 

more HBs in the inactive state.

We note that this signature of destabilizing the inactive-like conformation by perturbing 

the HB network in the αC helix and the A-loop is shared across other kinase systems 

and appears to account for the mechanism in 60% of kinase mutations observed in ALK, 

BRAF, HER2, and EGFR in cancers [12,13]. The exceptions noted above for MEK1 could 

represent activation through other mechanisms or could represent a false negative (likely 

due to insufficient sampling of HB statistics in 1 μs MD simulations). In addition, we 

note that the linear trend between enzyme activity and cell transformation index has also 

been observed in ALK-driven cancers [13], consistent with our similar findings for MEK1. 

In furthering this observation of the linear correlation in MEK1-driven transformation we 

conclude that the activating MEK1 variants utilize conformational plasticity to stabilize the 

active-like conformation through a perturbation of the HB network, which explains why the 

persistence of HB is a good indicator of kinase activation, especially given the important 

rearrangement surrounding the 310helix in the A-loop during activation.

A direct comparison between the conformational plasticity revealed by our computations 

and experiment could be made if protection factors per residue were available from HDX 

experiments. Nevertheless, our approach in utilizing the Boltzmann weighted HB and 

SASA obtained from the free energy landscape paves a concrete path forward to compare 

conformational fluctuations at long-time scales, thereby encapsulating the conformational 

plasticity that is not captured through conventional MD. This ensemble weighting approach 
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enables the classification of MEK1 variants based on long-timescale dynamical fluctuations 

informed by molecular mechanisms, including allosteric mechanisms that are at play. 

Specifically, utilizing data from the free energy landscape obtained through enhanced 

sampling, we have defined and computed a new metric based on Boltzmann weighted 

averaging of solvent accessibility and hydrogen bonding and the associated fluctuations to 

correlate to HDX kinetics regimes in experiments.

Mutations cause aberration and induce drug sensitivity and resistance through altered ATP 

binding affinity, drug binding affinity, and kinase activation [12]. We note that our attempts 

at docking ATP to multiple zones of the WT, SSDD, and E203K systems revealed that the 

zones do not for the most part preferentially exclude ATP binding and can accommodate 

the favorable interactions with ATP in several (but not all) of the zones; see details of 

the docking protocol in Methods and the summary of data in Supplementary Figure S10 

and Table S1. Notably, several of the ATP-bound conformations also produce reactant 

competent geometries of the active site upon substrate binding, see Supplementary Figure 

S11 and Table S2. This insight can be utilized in allosteric modulation, drug design, and 

understanding the molecular mechanisms of drug efficacy in cancer and Rasopathies [31]. 

Indeed, in a recent report, Khan et Al. solved several crystal structures of MEK bound to 

various MEK inhibitors, observing unexpected modes of drug binding directly attributed to 

the conformational plasticity of the kinase. They showed that these new binding modes have 

direct implications for the design of next-generation drugs that target the RAS pathway [32]. 

It would also be interesting to extend our work to include MEK1 in complex with BRAF and 

KSR to investigate the activation mechanisms in the context of MEK1 heterodimers.

MAP kinase-1 (MEK1) phosphorylates and activates the MAP kinases, ERK1 and ERK2, 

in the MAP kinase cascade, a signaling pathway that regulates mammalian cell growth 

and differentiation. Several inhibitors of MEK1 have been identified as therapeutics for 

cancer or common Mendelian diseases referred to as RASopathies [33,34]. The high 

frequency of gain-of -function mutations in the RAS–MAPK pathway across cancers has 

prompted the development of inhibitors. However, most drugs have been limited due 

to poor efficacy, toxicity, or resistance [35]. The escape mechanisms to current MAPK 

inhibitors, which often occur through re-activation of the pathway [36–38], reveal clear 

limitations in currently available drugs. They also suggest that more effective strategies to 

target the MAPK cascade may still achieve therapeutic responses in a broader range of 

cancer patients. Mutations in MEK1/2 have been described as a resistance mechanism to 

BRAF/MEK inhibitor treatment. Therefore, the main contribution of the current work is 

defining the molecular basis of conversion of this kinase from its inactive to its active state, 

connecting structure, dynamics, and function through delineating the energy landscape and 

conformational plasticity essential in understanding the regulation of MEK1.

Materials and methods

Structural modeling of MEK1 variants

All structures and homology models were constructed using MODELLER [39]. The inactive 

WT MEK KD structure (residues 34–393) was prepared by filling in missing residues in the 

crystal structure of MEK1 in an inactive conformation (PDB: 3EQD) [40]. The homology 
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model of active MEK KD was generated with MODELLER, using the active human MST3 

kinase KD structure (PDB: 3A7F) [41] as the primary template. The human MST3 kinase 

shows the highest sequence similarity to MEK1 among the serine threonine kinases for 

which a canonical active structure is available in the PDB. The MEK1 variant structures 

were generated by using MODELLER to introduce the relevant point mutations and 

CHARMM-GUI [42] to phosphorylate residues to mimic MEK1 regulation. The variants 

included the phosphor-mimetic SSDD double mutant, E203K and F53S single mutants, and 

the DP MEK1 system. We utilized modeller instead of Alphafold2 because the structure 

of human MEK1 from Alphafold2 results in a model for the inactive conformation for 

which there is already a crystal structure. All structures were initially modeled without a 

bound substrate; however, in in further analysis, we investigated structures bound to ATP 

and substrate as noted in sections below.

Molecular dynamics

Simulations were run using GROMACS 2018 [43] with the Charmm27 force field [44] 

using TIP3P [45] explicit solvent in a periodic water box with at least 12 Å between the 

protein and box edge. An ionic concentration corresponding to 0.15 M NaCl was used, 

and the final charge of the whole system was zero. Energy minimization was carried 

out using the steepest descent. The system was equilibrated first at constant volume and 

temperature using the Berendsen thermostat [46] before ‘production’ MD simulations were 

carried out at constant pressure using the Parrinello–Rahman barostat [47]. Equilibration 

and production MD runs were carried out at a constant temperature with the linear center 

of mass motion removal. LINCS [48] was used to constrain all bonds during equilibration, 

and HBs were constrained during production MD. A time-step of 2 fs was used in the 

integration. The particle mesh Ewald method [49] was used to account for long-range 

electrostatics interactions. Unbiased simulations were run for 1 μs before they were 

subjected to metadynamics. All the input scripts are available on GitHub [50].

Metadynamics and collective variables

GROMACS 2018.6 was patched to PLUMED 2.3.5 [51] to enable enhanced sampling to be 

performed using metadynamics. The well-tempered metadynamics or WTMD [52] method 

was adopted to sample the large-scale configurational space between the inactive and the 

active configurations of MEK. The collective variables are geometry-based, i.e. RMSD from 

the active structure and RMSD from the inactive structure. In computing the RMSD, only 

the αC helix and the A-loop residues are considered; i.e. the structures are aligned taking 

all residues except the αC helix and the A-loop into consideration, and the RMSD is then 

calculated. These collective variables are effective in capturing all the three transitional 

switches mentioned above, i.e. β3K/αC E salt bridge (intact in active state, absent from 

inactive state); DFG (in — active, out — inactive); and the A-loop (extended loop in active 

state, partially helical in inactive state), as these are all connected to the motion in the αC 

helix and the A-loop. We note that while we have relied on HB analysis for determining 

the partial folding of the A-loop, a comparison to the secondary structure classification 

database using the DSSPs (define secondary structure of proteins) analysis provided similar 

conclusions, as noted in Supplementary Figure S12. We also note that other choices of 
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switch variables including the C- and R-spine could be used, but are already considered 

within the variables used in this work as discussed in the literature [53,54].

Metadynamics involves adding an external history-dependent Gaussian potential for the 

system to be able to cross the barrier given by

V s , t =
kτ < t

W kτ exp −
i = 1

d si − s‾i kτ 2
2σi

2

(1)

The metadynamics are run in parallel using 10 walkers, i.e. 10 parallel simulations that 

sample the configurational space simultaneously and are collectively informed about the 

deposited Gaussian potentials on the CV grid space through the file sharing system of 

PLUMED. The well-tempered metadynamics uses decaying Gaussian height to ensure 

smoother convergence.

W kτ = W oexp −
V s , kτ

kBΔT

(2)

In the large time limit, the free energy for the CV space is given by

V S, t ∞ = − ΔT
T + ΔT F S + C

(3)

In the PLUMED script, we set the energy in kcal/mol and length in Å. The parameters used 

in this study to perform WTMD are as follows: bias factor γ = T + ΔT /T = 20, height = 0.6, 

and pace = 500. The PLUMED script is available on GitHub [50].

Since we carry out the metadynamics under constant volume, we compute the Helmholtz 

free energy F . Convergence of the free energy landscape in metadynamics was ensured 

by computing the free energies of specific states (zones) and requiring that these zones of 

interest in the free energy landscape of each system converged to within 1 kcal/mol over a 1 

μs extension of the metadynamics simulations. The evolution of the free energy of the zones 

or states was tracked according to:

Fs = − kBT ln ∬  e−βF̂ s1, s2 ds1 ds2

(4)

Here, Fs is the free energy of the state, F̂ s1, s2  is the free energy value at that collective 

variable co-ordinates s1, s2 , obtained directly from the free energy landscape.
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Metadynamics simulations were performed on a Linux-based high-performance computing 

cluster called ‘rusty’ at the Flatiron Institute, NY, requiring a total of 710.6k CPU hours.

Choice of collective variables

The basic fundamental function of any enhanced sampling method (ESM) is to address 

the bottleneck of MD simulations regarding the high-energy barriers that hinder the system 

from accessing the configurations in multiple minima, thereby making it a rare event [55]. 

The procedure is to accelerate thermodynamics calculations by modifying the potential 

energy surface by adding a bias potential to the Hamiltonian of the system and thereby 

reducing the energy barrier for the transition. These bias potentials may or may not be 

given certain predefined essential co-ordinates or vectors before depositing them on the 

high-dimensional complex landscape of the system, known as collective variables. ESMs 

are, therefore, broadly classified into two categories based on their working strategy: 

collective variable-based methods (CVMs) and collective variable-free methods (CVFMs). 

Examples of CVM methods include Umbrella Sampling [56] implemented along with the 

weighted histogram analysis method (WHAM) [57], Metadynamics [58], and Temperature 

Accelerated Molecular Dynamics [59]. Examples of CVFMs include parallel tempering [60] 

or replica exchange MD [61], and BOLAS [62]. Recently, the Parrinello group introduced 

a new class of collective variable-based ESMs called ‘On the fly Probability Enhanced 

Sampling’ (OPES) simulation, that work towards unifying the CVM and CVFM ESMs [63]. 

The OPES method aims to modify the physical distribution of CVs by iteratively adding 

the bias potentials to reach the target probability distribution in configuration space that is 

explicitly or implicitly sampled by any CV or CV-free ESMs. The OPES method has been 

used to sample any expanded ensembles including multicanonical [63] and multithermal-

multibaric ensemble [64], which are usually sampled via CVM approaches such as replica 

exchange.

Machine-learning (ML) enabled collective variable identification and ML-enabled enhanced 

sampling is an emerging area to explore free energy landscapes, some of which are 

described in a perspective article summarizing ML-based ideas that are solving both of these 

limitations, with a focus on their key theoretical underpinnings and remaining challenges 

[65].

In the current work, we chose to pursue a CVM route, using prescribed CVs based on 

RMSDs and the method of metadynamics primarily because our end anchor states (inactive 

and active confirmations) are well defined and the CVs chosen to meet the important criteria 

of both distinctly separating the two anchor states and correctly capturing the experimentally 

recognized transitions in the various conserved subdomains. Moreover, since our focus 

is on the thermodynamic stabilities of metastable states rather than transition pathways, 

our approach enables a straightforward quantification of the free energy landscape that is 

experimentally tractable, as we show later by correlating our results with HDX experiments. 

We note that we do not make any claims of transition pathways [66,67] or transition states in 

this study as they are beyond the scope of our objectives — although these are nevertheless 

worth exploring separately in future studies.
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Data analysis

Trajectory analyses were performed, unless otherwise noted, on the whole trajectory using 

the MDAnalysis package [68] in Python. In aggregate, 8 μs simulations for five systems 

totaling 40 μs of enhanced sampling simulations generated an extensive dataset for analyses, 

and we implemented parallel computing in Python using the package mpi4py [69] to obtain 

Boltzmann weighted average quantities such as the BW-DC matrices, solvent accessible 

surface area (BW-SASA), and hydrogen bond (BW-HB) occupancies. Python scripts that 

implement these analyses using parallel Python libraries are available on GitHub [50].

BW-DC—The normalized covariance matrix gives the traditional residue-level dynamical 

correlation. We propose a modified BW-DC given by

Cij =
Δri ⋅ Δrje−βFk

k

Δri
2e−βFk

k

1/2
Δrj

2e−βFk
k

1/2

(5)

here, Δri, k = ri, k − μr, i, where ri, k is co-ordinate of residue i in frame k; and μr, i is the mean 

location of residue i over total N frames. The computation of μr, i is also Boltzmann 

weighted, wherein:

μr, i =
k = 1

N rie−βFk

k = 1
N e−βFk

(6)

Here, N is the total number of frames, and Fk is the free energy mapped to the configuration 

in frame k. Each conformation visited in the metadynamics is mapped to a probability given 

by e−βF i/∑e−βF i.

Hierarchical clustering—Under the assumption of equal weight for all residues, we 

compute the element-wise square difference between the matrices of the BW-DC of all pairs 

of the MEK1 systems to perform hierarchical clustering of the mutants.

Coarse-grained BW-DC—To obtain correlations at the subdomains or secondary 

structure level and ascribe a broad mechanism, we coarse-grained the residue-level BW-DC 

matrix to their secondary structure [70] as follows. The following residue number ranges 

were assigned to each of the 18 subdomains (see Table 2). The NxN BW-DC matrix was 

reduced to a 18 × 18 coarse-grained matrix by averaging the correlation coefficients in each 

sub-block.

BW-SASA—Boltzmann weighted solvent accessible surface area is computed as

SASA
B, i

=
k = 1

N SASAi, ke−βFk

k = 1
N e−βFk
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(7)

Here, SASAi, k is the solvent accessible surface area of residue i in frame k;  N is the total 

number of frames in the trajectory; Fk is the free energy of the frame k of the trajectory; 

and SASA B, i is the Boltzmann weighted SASA of residue i. The variance of BW-SASA is 

computed as

Var SASAB, i = ΔSASAB, i
2 = SASAB, i

2 − SASAB, i
2

(8)

 Standard Deviation  = Var SASAB, i

(9)

BW-HB—The BW-HB is computed as

H
B, i

=
k = 1

N H = 1 IF YES, 0 IF NO  e−βFk

k = 1
N e−βFk

(10)

Here, H B, i is Boltzmann weighted H-bond occupancy of residue i.

Chord plots—The chord plots (graphs with nodes and edges) were derived from the 

coarse-grained 18 by 18 matrices and made using the Python package nxviz [71], where 

the nodes represent the secondary structure domain, and the edges represent the correlation 

value above a chosen cutoff value of 0.7.

Analysis of persistence of hydrogen bonding occupancy

Step 1. For hydrogen bonding (HB) occupancy of WT and mutated MEK1, we first 

calculated the average number of HBs formed by each residue OWT, i and OMUT, i  from both 

the αC helix domain (residues 105–123) and A-loop (residues 206–229) from the last 50 

ns of MD simulation trajectories using MDAnalysis version 0.20.1 [72]; note that the HB 

is considered to be formed if: (1). The distance between hydrogen acceptor and hydrogen 

donor is less than 0.32 nm and (2). The donor-hydrogen-acceptor angle is larger than 

150°. In addition, the HB is excluded if a salt bridge is formed between the H-donor and 

H-acceptor. Note that each amino acid is considered to have a maximum of three possible 

HBs: a backbone donor, a backbone acceptor, and the side chain (if possible). Some residues 

such as Arg or Asp can have more than one side chain HBs in a single frame, in which case 

those excess side chain HBs are excluded.

Step 2. Calculate the HB occupancy difference between the mutant and WT MEK1 protein 

as ΔMUT, i = OMUT, i − OWT, i for each residue within the two domains. If the condition ΔMUT, i > 0.5
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is satisfied, ΔMUT, i will be added to the accumulated HB occupancy, AMUT, i = ∑ ΔMUT, i as is 

plotted in Supplementary Figure S9c.

Molecular docking

In a previous study it was reported that specific inhibitors can bind their target proteins 

in multiple conformational states of the protein [73]. Schrodinger’s (v. 2019.4) Glide 

software [74,75] was used to perform induced fit docking of ATP to MEK structures 

extracted from the zones of the metadynamics simulations [76,77]. First, the ATP ligand 

was prepared by adding missing atoms, assigning charges, and optimizing the geometry 

using the ‘Ligand Preparation Wizard’ tool. Next, the MEK kinase structure was prepared 

by adding missing atoms, assigning charges, optimizing the hydrogen bonding network, and 

performing restrained minimization using the ‘Protein Preparation Wizard’ tool. The kinase 

structure was then aligned to a known crystal structure of MEK (PDB: 3EQD) [40], which 

has water molecules, ATP-γS, and Mg2+ ions in the active site. The water molecules, Mg2+ 

ions, and ATP-γS are now effectively aligned to the binding site of the KD structure. The 

Mg2+ ions and water molecules are important as they co-ordinate key interactions between 

ATP and the MEK binding site residues. The centroid of ATP-γS is used as the center of the 

box for the docking protocol, as this provides the best estimate of the centroid of the binding 

site. Next, the Standard Induced Fit Docking protocol was followed, using the OPLS3e force 

field [78] and Standard Precision (all other settings are default), to dock ATP to the MEK 

kinase structure. The poses output by the docking algorithm are scored using the GlideScore 

function, which calculates a predicted binding affinity. The top-ranked poses are further 

filtered by assessing for biological validity. A pose is considered reaction competent if it 

meets the following criteria: (1). The DFG motif of MEK is in the ‘in’ conformation (D in) 

and the carboxyl group of MEK is positioned such that it is close to coordinating Mg2+; (2). 

The adenine region of ATP forms at least two HBs with residues in the hydrophobic pocket 

of MEK and the ribose group of ATP is positioned properly away from the hydrophobic 

region; and (3). The Mg2+ in the active site co-ordinates with the oxygens from two of the 

phosphate groups of ATP. All the input scripts are available on GitHub [50].

Peptide substrate was docked to reaction competent MEK1 + ATP + Mg2+ complexes to 

model the transition states of target residue phosphorylation. The peptide substrate was 

modeled from the sequence 181FLTEYVA187 in the A-loop of ERK1 (PDB: 5UMO). The 

rigid-receptor Glide docking protocol was used for peptide docking with the box center 

defined in the proximity of the γ-phosphate and other settings kept as default. Resulting 

peptide poses were assessed based on biological validity. Peptide poses were marked valid 

if the hydroxyl group on either the peptide tyrosine or threonine was oriented towards the 

γ-phosphate by following the metrics described in a previous study [79].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BW-DC Boltzmann weighted dynamical correlation

BW-HB Boltzmann weighted hydrogen bond

BW-SASA Boltzmann weighted solvent accessible surface area

CVFMs collective variable-free methods

CVMs collective variable-based methods

DP di-phosphorylated

ESM enhanced sampling method

HB hydrogen bond

HDX hydrogen-deuterium exchange

KD kinase domain

MD molecular dynamics

MEK1 MAP kinase-1

ML machine-learning

OPES on-the-fly probability enhanced sampling method

RMSD root-mean-squared deviation

WHAM weighted histogram analysis method
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Significance statement

Every cancer patient will have their genome sequenced; already true for many cancers. 

What does an oncologist do with this information, and how can they personalize 

therapy based on the knowledge of mutations? Classifying driver mutations from 

passengers in kinases, among the most common drug targets, is a grand challenge 

best addressed through interpretable prediction algorithms. Moreover, we need to know 

the molecular mechanisms associated with disease-driving mutants to design rational 

therapies or overcome resistance. Computational tools that are accurate enough for 

reliable predictions and fast enough to be deployed in real-time can significantly aid 

in clinical decision making and optimization of therapy, thus advancing the goal of 

personalized medicine.
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Figure 1. 
Free energy landscapes of MEK1 WT, SSDD, di-phosphorylated (DP), F53S, and E203K 

(a–e). A remarkable linear correlation is observed between the change in the free energies of 

active and inactive states and the transformational ability in a developmental assay (f). The 

transformation ratio is the ratio of cell proliferation after and before activation of MEK1, and 

corresponds to cell proliferation propensity in the active relative to inactive MEK1 systems.
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Figure 2. 
The categorization of each of the zones is provided using the [X = KE salt bridge:Y = DFG 

flip: Z = A-loop helicity] convention based on the values of the three switch variables. Cubes 

depict the full extent of 25 states possible from the combinations of switch variables and the 

states populated in each MEK1 system. The numbers in each cube correspond to the zone 

numbers in the free energy plot and the inactive, stable, and active zones are marked with 

I, S, A, respectively. The comparison of switch variables of the most stable conformational 

state/zone across the five MEK1 systems.
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Figure 3. 
Boltzmann weighted residue-residue dynamical correlation (BW-DC) matrix for MEK1 

variants (a–e). Hierarchical cluster using mean-squared distance between correlation 

matrices as a distance metric (f).
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Figure 4. 
18 × 18 Coarse-grained correlation matrices as well as internal correlations of kinase 

subdomains in MEK1 from coarse-grained BW-DC matrices (top) depicted as a chord plot 

generated with a threshold of 0.7 (bottom).
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Table 1.

Stability of active conformation in MEK1 variants reported through differences in computed free energies 

between states: active–inactive; active–stable; inactive–stable

In order of least active 
to most active systems 
(reorder this)

Δ Free energy (kcal/mol) Conformation most stabilized
KE salt bridge: DFG flip: A-loop
(Inactive = 0, Active = 1, anything intermediate = 0.5)Active-inactive Active-stable Inactive-stable

WT 12.85 12.85 0 [0:0:0]

SSDD 7.91 10.58 2.67 [0:0.5:0]

DP MEK 4.94 8.15 3.21 [0:0:0.5]

F53S 1.65 11.93 10.28 [0.5:0.5:0.5]

−10.28 0 10.28 (if the most stable zone is kinase active)

E203K 1.05 2.53 1.48 [0.5:0.5:1]

−1.48 0 1.48 (if the most stable zone is kinase active)

The third column lists the status of the [KE salt bridge: DFG flip: A-loop], each showing either Inactive = 0, Active = 1, or intermediate = 0.5 
characteristics.
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Table 2.

Definitions of subdomains in MEK1

CG subdomain Sequence CG subdomain Sequence

1: N terminal helix (Nα) 43–60 10: αE 162–185

2: β1 68–74 11: Catalytic loop 186–194

3: P-loop 75–81 12: β7 196–198

4: β2 82–87 13: β8 204–206

5: β3 92–100 14: A-loop 208–233

6: αC 107–125 15: αF 242–259

7: β4 129–134 16: αG 309–319

8: β5 138–144 17: αH 331 −342

9: αD 149–159 18: αI 351–367
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