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Abstract

Background: As the largest organ in the human body, skin is continuously exposed to intrinsic 

and extrinsic stimuli that impact its functionality and morphology with aging. Skin aging entails 

dysregulation of skin cells and loss, fragmentation, or fragility of extracellular matrix fibers that 

are manifested macroscopically by wrinkling, laxity, and pigmentary abnormalities. Age-related 

skin changes are the focus of many surgical and non-surgical treatments aimed at improving 

overall skin appearance and health.

Summary: As a hallmark of aging, cellular senescence, an essentially irreversible cell cycle 

arrest with apoptosis resistance and a secretory phenotype, manifests across skin layers by 

affecting epidermal and dermal cells. Knowledge of skin-specific senescent cells, such as 

melanocytes (epidermal aging) and fibroblasts (dermal aging), will promote our understanding 

of age-related skin changes and how to optimize patient outcomes in aesthetic procedures.
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Key Messages: This review provides an overview of skin aging in the context of cellular 

senescence and discusses senolytic intervention strategies to selectively target skin senescent cells 

that contribute to premature skin aging.
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Introduction

Aging, associated with a time-dependent functional decline in most living organisms, has 

piqued the quest to slow or reverse biological aging throughout the history of humankind 

[1, 2]. Skin aging, akin to organismal whole-body aging, is characterized by gradual 

loss of function and regenerative capacity [3]. The human epidermis has the innate 

capacity to renew approximately every 40-56 days but slows with aging [4]. Intrinsic and 

extrinsic insults drive the skin aging process [5]. Intrinsic aging primarily reflects genetic 

background, whereas extrinsic aging reflects environmental triggers, such as ultraviolet 

(UV) exposure, air pollution, smoking, alcohol intake, and poor nutrition, among others 

[6], resulting in reduced regenerative potential. Clinically, skin aging is linked to reduced 

barrier protection, poor wound healing [7], increased inflammation [8], deficient water 

and thermal homeostasis [9], and susceptibility to skin disorders, including skin cancers 

[10]. Indeed, the interlinked hallmarks of whole-body aging, characterized by a progressive 

loss of physiological integrity, include genomic instability [11], telomere attrition [12], 

epigenetic alterations [13], loss of proteostasis [14], deregulated nutrient-sensing [15], 

mitochondrial dysfunction [16], cellular senescence [17], stem cell exhaustion [18], and 

altered intercellular communication [19] (Figure 1). In this review, we primarily focus on the 

role of cellular senescence in skin aging and regeneration.

Cellular senescence is an essentially permanent state of cell cycle arrest with both beneficial 

and detrimental effects in development and aging. Leonard Hayflick and Paul Moorhead 

originally hypothesized the connection between aging and senescence in 1961 after noticing 

limited proliferative capacity in serially-subcultured human primary fibroblasts [20]. While 

cellular senescence has an evolutionarily advantageous role in facilitating tissue remodeling 

during development and after injury, it can also play a damaging role in the aging process 

by impairing tissue regeneration, causing inflammation and fibrosis, and promoting tumor 

growth [21]. Senescent cells exhibit extensive alterations in chromatin architecture and gene 

expression in addition to growth arrest [22]. The senescence-associated secretory phenotype 

(SASP) is a prominent characteristic of senescent cells that can includes the secretion 

of several pro-inflammatory cytokines, chemokines, growth factors, proteases, bioactive 

lipids (bradykines, ceramides, prostenoids), non-coding nucleotides (e.g., microRNA’s and 

mitochondrial DNA), and other factors [23, 24, 25, 26, 27, 28]. The SASP portfolio, which 

includes factors that modulate immune cell proliferation and migration, allows senescent 

cells to activate, suppress, modulate, and/or evade the immune system [29] (shown in 

Fig. 1). Indeed, various types of cellular stressors can trigger cellular senescence in vitro 
[30]; yet, the identification of unique senescence markers, particularly in vivo, is still 

under investigation. Therefore, the field of translational geroscience continues to define the 
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senescent phenotype in specific tissues and identify new pathways for therapeutic removal of 

senescent cells directly relevant to the skin.

Histology of Skin Aging

Skin consists of three layers: the epidermis, dermis, and subcutaneous tissue. The epidermis, 

comprised of multiple cell types including keratinocytes, melanocytes, Langerhans cells, 

and Merkel cells, is a stratified squamous epithelium that undergoes continuous renewal 

[31]. Histologically, skin aging results in epidermal thinning with flattening of the dermal-

epidermal junction [32]. This manifests as increased skin fragility and reduced nutrient 

transfer between dermis and epidermis, attributed to the loss of surface area of the dermal-

epidermal interface. Furthermore, epidermal cell turnover decreases with age [33], which 

accounts for less effective desquamation and reduced wound healing.

Beyond the epidermis, the dermis experiences the most significant ultrastructural change 

with age [34]. The dermis, divided into the more superficial papillary dermis and the 

deeper reticular dermis, consists of extracellular matrix (ECM) fibers, which are crucial 

for maintaining skin's structural integrity [35]. Deterioration causes the dermis to separate 

from the epidermis, resulting in skin laxity and decreased epidermal stem cell renewal [36]. 

Fibroblasts, the most prevalent cells in the dermis, deposit the collagen and elastic fibers of 

the ECM [37]. Throughout the aging process, fibroblasts synchronously decrease in number 

and function [38]. Young dermal fibroblasts produce glycosaminoglycans and extracellular 

matrix fibers, including elastin and type I collagen, which make up approximately 90% of 

the extracellular matrix [39]. As the number and diameter of collagen fibers decrease with 

age, the ratio of type III collagen to type I collagen increases [40]. Furthermore, aged skin is 

associated with dermal collagen and elastin fragmentation, which presents as decreased skin 

elasticity and turgor [41]. Together, these age-dependent ultrastructural changes account for 

the physical manifestations of cutaneous aging [42, 43].

Molecular Biomarkers of Skin Aging

Markers of cellular senescence in skin, including nuclear and SASP markers, have been 

used to detect senescent cells in aging and disease. Upregulation or downregulation of 

various cellular senescence markers have been used to characterize cellular senescence 

burden in skin. Increase in SA-β-galactosidase has been applied extensively as a marker 

of cellular senescence [44, 45]. Similarly, the cell cycle markers p16INK4a and p21CIP1/

WAF1 have been used to study senescent fibroblasts and melanocytes in skin [46, 47, 48]. 

Alterations in the level of lamin B1 have been implicated as an early senescence marker 

in multiple tissues, including skin [49, 50, 51, 52]. Particularly, reductions in lamin B1 

were found in dermal fibroblasts and keratinocytes from older donors [53], keratinocytes 

in photoaged skin [52], and melanocytes in melanocytic nevi [51]. Senescent fibroblasts 

have also been demonstrated to secrete HMGB1 before developing a SASP [54]. On the 

other hand, melanocytes and keratinocytes from older donors expressed reduced HMGB1 

[55]. In addition to these, numerous biomarkers have been developed for skin aging, such as 

telomere-associated foci [48].
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Epidermal Aging: Role of Keratinocytes

Keratinocytes are the most abundant cells in the epidermis and directly contribute to the 

skin barrier. As skin ages, there is a shift in keratinocyte morphology that contributes 

to epidermal thinning. Basal keratinocytes become shorter and larger, and corneocytes, 

which are terminally differentiated keratinocytes, also grow larger due to reduced epidermal 

turnover [56]. The notion of whether keratinocytes can acquire senescent phenotypes 

has been questioned given their highly proliferative state. p16INK4a, a marker of cellular 

senescence, was detected in human skin biopsies of sun-exposed areas [57, 58, 59]. 

Skin tissues from photoprotected areas of young and old donors showed that p16INK4a-

positive cells were predominantly melanocytes and not keratinocytes in the epidermal layer, 

highlighting the differences in senescence phenotypes given sun exposure [55, 60]. However, 

senescent cell markers were detected in keratinocytes from actinic keratoses, UV-associated 

lesions. Specifically, actinic keratosis was associated with increased p16INK4a and reduced 

lamin B1 and HMGB1, and p16INK4a expression was associated with development of 

squamous cell carcinoma [61, 62].

Epidermal Aging: Role of Melanocytes

Melanocytes, or pigment-producing cells derived from the neural crest, are in spatial 

proximity to keratinocytes in the epidermal layer. It has been postulated that cellular 

senescence may provide an evolutionary protection against malignant transformation of 

melanocytes, as pigmentation is a strong defense against melanoma [63]. As such, melanin 

accumulation in the epidermis, through α-melanocyte stimulating hormone or cholera 

toxin, can induce melanocyte senescence through the p16/CDK4/pRB pathway [64]. 

Studies have also shown that p16INK4a-positive melanocytes accumulate in aged human 

epidermis. A correlation between increased numbers of p16INK4a-positive melanocytes and 

facial aging phenotypes, such as wrinkles, morphological changes in elastic fibers, and 

dysfunctional telomeres, has been reported [55, 65, 66, 67]. In addition, UV-irradiated 

melanocytes enter premature senescence with downregulation of DNA repair programs 

such as nucleotide excision repair (NER) pathway genes, especially genes involved in 

DNA damage recognition (RAD23B, XPC, ERCC3, ERCC8, and RPA1) [68]. Moreover, 

senescent melanocytes could result in tissue-level disruption. p16-positive melanocytes 

induce gamma-H2A-X foci in neighboring keratinocytes, indicating telomere dysfunction, 

and exposure to senescent-melanocyte-conditioned media induced telomere damage in 

fibroblasts [55]. Interestingly, clearance of senescent melanocytes with ABT-737, a BCL-2 

inhibitor, or MitoQ, a mitochondrial-targeted antioxidant, attenuated telomere dysfunction 

[55]. Yet, caution must be utilized in its clearance as p16 has a function in suppressing 

or limiting growth of melanocytic nevi (moles) and germline mutations in p16 are often 

associated with dysplastic nevi and even melanomas [69].

Dermal Aging: Role of Fibroblasts

Fibroblasts, as the most abundant cell type that resides in the dermis, largely contribute 

to hallmarks of skin aging [70]. Dermal fibroblasts subjected to in vitro aging protocols 

accumulate double-strand breaks [71], oxidative DNA damage, chromosomal and epigenetic 
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abnormalities, telomere shortening or oxidation, and impaired DNA repair mechanisms 

[72]. Senescent fibroblasts garner defects in protein synthesis, folding, and degradation, in 

addition to defects in post-translational modifications such as oxidation and cross-linking, 

which affect protein homeostasis (quantitative and qualitative of the cellular proteome). 

These changes cause senescent fibroblasts to display biomarkers such as increased 

senescence-associated-beta-galactosidase (SA-β-gal), p16INK4a, and p21CIP1/WAF1 [73, 74, 

75].

Indeed, senescent fibroblasts in the skin can cause harmful effects through different 

mechanisms. UV-induced dermal senescence can alter the extracellular matrix as well as 

the function of adjacent cells, increasing the risk of carcinogenesis. For example, the 

cytokines IL-1α, IL-1β, IL-6, and TNF-α, are highly secreted by senescent cells and 

have been reported to induce skin carcinogenesis. Furthermore, the secretion of MMPs 

as a consequence of photodamage leads to collagen degradation, epithelial-mesenchymal 

conversion, angiogenesis, and inflammation [76, 77]. In cultured fibroblasts, UVA and/or 

a combination of UVA and UVB upregulate MMP-1 [78, 79], leading to skin aging 

phenotypes.

It has also been reported that an age-dependent increase in human fibroblast senescence 

occurs as indicated by p16INK4a and SA-β-gal expression in skin biopsies from donors 

across the age groups of 0-20 years, 21-70 years, and 71-95 years [80]. Analysis of primary 

human dermal fibroblasts in multiple in vitro aging models, including UVB irradiation and 

accelerated proliferation of human dermal fibroblasts in young vs. elderly donors, revealed 

reduced cell growth rate and premature senescence [81]. Further reports indicate that young 

skin is more resilient to wound healing, particularly in the context of chronic wounds that 

accumulate senescent cell phenotypes [82, 83]. However, a transient induction of senescent 

cells occurs in normal acute wound healing and could be beneficial [84]. These findings 

implicate senescent fibroblasts as a potential target for reducing the negative effects on 

extracellular matrix due to SASP factors and for enhancing dermal skin rejuvenation.

Targeting Cellular Senescence in Skin Aging

Initial reports that conveyed an inverse association between senescent cell burden and 

healthspan led to the advent of senolytics – a class of drugs that selectively clears senescent 

cells [85, 86, 87]. The impact of senescent cell accumulation was demonstrated when 

killing senescent cells via a suicide gene in a mouse model of premature aging reduced 

age-related diseases, such as sarcopenia, cataracts, and loss of subdermal adipose tissue in 

progeroid mice [88] and adipose and metabolic dysfunction in naturally-aged mice [89]. 

Therapeutic interventions that target senescent cells are categorized as senotherapeutics. 

Specifically, modulation of cellular senescence can be achieved by selective induction of 

cell death (senolytics) or SASP inhibition (senomorphics). Skin presents as an ideal site for 

senotherapeutic testing due to its accessibility and established characterization. However, 

translation of senotherapeutics has been limited by the need for better in vitro models of skin 

aging for testing. Few models of skin aging have been described, and they are limited by cell 

type [90, 91, 92].
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A hypothesis-driven, mechanism-based drug discovery approach, stemming from the 

observation that senescent cells resist apoptosis, led to the development of the first senolytic 

drugs [85]. In particular, agents that transiently decrease anti-apoptotic regulators, such 

as Src kinases or Bcl-xL or other BCL-2 family members, were effective in disabling 

defenses of senescent cells against their own pro-apoptotic SASP, causing them to undergo 

apoptosis [87, 93]. Next, bioinformatics approaches were utilized to find compounds whose 

mechanisms of action targeted these senescent cell anti-apoptotic pathways (SCAPs). These 

agents included Dasatinib (D), the Src tyrosine kinase inhibitor, and Quercetin (Q), a 

naturally occurring flavonoid found in apple peels that targets other SCAP pathways. 

First-generation senolytics also include fisetin, luteolin, curcumin, navitoclax (ABT263), 

and procyanidin C1 among others [85, 87, 94, 95, 96, 97](PMID: 34873338). Second 

generation senolytic agents are being identified through other drug discovery methods, 

including random high-throughput drug library screens, vaccines, toxin-loaded nanoparticles 

preferentially lysed by senescent cells, and immunomodulators [45, 98, 99, 100]. In 

particular, the first-generation senolytic Dasatanib and Quercetin (D+Q) showed trends of 

reducing p16 and p21 expression in human epidermis, suggesting its potential efficacy [101].

Senomodifiers or senomorphics are drugs that suppress the adverse effects of senescent 

cells without directly clearing them, such as JAK inhibitors [102] or rapamycin [103]. 

Rapamycin, which targets the mTOR pathway regulating cell growth, metabolism, protein 

synthesis, and autophagy, has been found to reduce senescent cells in human skin, 

specifically dermal fibroblasts [57, 104], possibly because the SASP spreads senescence [93] 

and, hence, inhibiting the SASP could reduce senescent cell burden. Rapamycin inhibits the 

upregulation of IL-1α in senescent fibroblasts, which subsequently blocks IL-1α-induced 

secretion of other pro-SASP factors [105, 106, 107]. In accordance, rapamycin reduced signs 

of cellular skin aging in murine skin fibroblasts following UVB irradiation [106]. Indeed, 

5 μM rapamycin significantly decreased SA-β-gal-positive cells, preserved elongated 

fibroblast morphology, and attenuated irradiation-induced reactive oxygen species release 

[106]. This was also described with the senomorphic and mTOR inhibitor, AZD8055, 

in foreskin fibroblasts [108]. Taken together, these observations suggest that targeting 

cellular senescence, in part, may contribute to skin rejuvenation and overall skin health. In 

addition, senotherapeutics could potentially block cancer pathways associated with cellular 

senescence, making them candidates to treat or prevent precancerous lesions, such as actinic 

keratoses.

Conclusions

This review highlights the importance of understanding cellular mechanisms of skin aging, 

especially, cellular senescence. Age-dependent physiological consequences of epidermal 

(keratinocytes and melanocytes) aging and dermal (fibroblasts) aging considerably affect 

skin health in the elderly population. Targeting cellular senescence as a driver of biological 

aging may allow modulation of age-related dysfunction to alleviate multimorbidity. 

However, there is need for future studies to evaluate senescent cell types and interactions 

in skin using large scale datasets and bioinformatics. With deeper understanding of 

cellular senescence in skin aging, applications of senotherapeutics for skin aging raise 

many possibilities. Can senotherapeutics reverse skin aging phenotypes resulting from 
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premature senescence and/or photoaging? How can we selectively target senescent cells 

that compromise skin tissue functionality while retaining the evolutionary benefit of 

senescence as a barrier to tumorigenesis? These questions warrant further research into 

testing senotherapeutics in the context of human skin aging.
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Fig. 1. Hallmarks of Skin Aging.
An illustration of skin senescent cell accumulation and corresponding senescence associated 

secretory phenotype (SASP) factor release in young vs. old human skin models.
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