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Abstract
Objectives  To introduce an automated computational algorithm that estimates the global noise level across the whole imag-
ing volume of PET datasets.
Methods  [18F]FDG PET images of 38 patients were reconstructed with simulated decreasing acquisition times (15–120 s) 
resulting in increasing noise levels, and with block sequential regularized expectation maximization with beta values of 450 
and 600 (Q.Clear 450 and 600). One reader performed manual volume-of-interest (VOI) based noise measurements in liver 
and lung parenchyma and two readers graded subjective image quality as sufficient or insufficient. An automated compu-
tational noise measurement algorithm was developed and deployed on the whole imaging volume of each reconstruction, 
delivering a single value representing the global image noise (Global Noise Index, GNI). Manual noise measurement values 
and subjective image quality gradings were compared with the GNI.
Results  Irrespective of the absolute noise values, there was no significant difference between the GNI and manual liver 
measurements in terms of the distribution of noise values (p = 0.84 for Q.Clear 450, and p = 0.51 for Q.Clear 600). The GNI 
showed a fair to moderately strong correlation with manual noise measurements in liver parenchyma (r = 0.6 in Q.Clear 450, 
r = 0.54 in Q.Clear 600, all p < 0.001), and a fair correlation with manual noise measurements in lung parenchyma (r = 0.52 
in Q.Clear 450, r = 0.33 in Q.Clear 600, all p < 0.001). Classification performance of the GNI for subjective image quality 
was AUC 0.898 for Q.Clear 450 and 0.919 for Q.Clear 600.
Conclusion  An algorithm provides an accurate and meaningful estimation of the global noise level encountered in clinical 
PET imaging datasets.
Clinical relevance statement  An automated computational approach that measures the global noise level of PET imaging 
datasets may facilitate quality standardization and benchmarking of clinical PET imaging within and across institutions.
Key Points 
• Noise is an important quantitative marker that strongly impacts image quality of PET images.
• An automated computational noise measurement algorithm provides an accurate and meaningful estimation of the global 
   noise level encountered in clinical PET imaging datasets.
• An automated computational approach that measures the global noise level of PET imaging datasets may facilitate quality 
   standardization and benchmarking as well as protocol harmonization.
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Abbreviations
BSREM	� Block sequential regularized expectation 

maximization reconstruction
CI	� 95% Confidence interval
F18-FDG PET	� 18F-Fluorodeoxyglucose positron emis-

sion tomography
GNI	� Global Noise Index
Q.Clear	� Trade name of block sequential regu-

larized expectation maximization 
reconstruction

SUV	� Standardized uptake values

Introduction

Positron emission tomography (PET) is an established 
diagnostic imaging modality for the assessment of a wide 
array of oncological and inflammatory diseases [1]. Image 
quality may considerably impact the diagnostic accuracy 
and evaluability of PET images. PET image quality and 
perception are influenced by various factors such as spa-
tial resolution, contrast, signal-to-noise ratio (SNR), radi-
otracer uptake, motion artifacts, reconstruction algorithm, 
and scanner design, calibration, and performance. These 
factors are interdependent and optimizing one may require 
making compromises with the others to obtain high-quality 
PET images [2]. Noise, which is the random variation of 
the signal intensity, is an important baseline parameter that 
can affect PET image quality [3, 4]. Noise, among other fac-
tors, is influenced by acquisition time, administered activity 
[5], and reconstruction methods [6]. High noise levels can 
reduce the SNR and image contrast, making it more diffi-
cult to detect and interpret the radiotracer uptake. Therefore, 
minimizing noise in PET imaging is crucial to obtain clear 
and accurate images [3]. Thus, in clinical routine and more 
often in research, image noise of PET images is measured 
to objectivize image quality [7, 8]. This can be achieved by 
means of regional, slice-based manual measurements (i.e., 
by placing volumes-of-interest (VOI)). While such measure-
ments are an established and simple means of quantifying 
image noise [7–11], they are reader-dependent and thus also 
tedious and time-consuming. In addition, only a small part 
of the imaging volume is considered. In this regard, a fully 
automated computational approach enabling an accurate 
estimation of the image noise level across the whole imag-
ing volume would be highly desirable. This would allow the 
user to estimate the global image noise level of PET datasets 
effortlessly in a high-throughput fashion and could even be 
envisioned as a fully integrated tool in PET/CT systems to 
monitor and adjust acquisition protocols for a stable opti-
mized image quality.

The objective of our study was to develop an algorithm 
that enables the automated computational estimation of the 

noise level across the whole imaging volume of PET data-
sets. Furthermore, we sought to assess the performance of 
this method by correlating it with manual noise measure-
ments in liver and lung parenchyma and by comparing it 
with image quality as determined subjectively by expert 
readers.

Materials and methods

Study population

Thirty-eight patients who underwent clinically indicated 
[18F]FDG PET/CT imaging between March and April 2021 
were retrospectively selected. There were no specific inclu-
sion criteria except the full availability of clinical and imag-
ing data. The patients included in the study were part of an 
earlier investigation by our institution evaluating an unre-
lated image quality classifier (currently under review). Writ-
ten informed consent for the scientific use of medical data 
was obtained from all patients. The study was approved by 
the local ethics committee (BASEC 2021–00444, Cantonal 
Ethics Committee Zürich, Switzerland).

PET acquisition and reconstruction

Examinations were performed on a latest generation six-ring 
digital detector PET/CT scanner (Discovery MI Gen 2, GE 
Healthcare). A body mass index (BMI)-adapted 18F-FDG 
dosage protocol was used as outlined in detail elsewhere 
[6]. To generate standardized uptake value (SUV) images 
with increasing noise levels, five datasets were reconstructed 
from each exam by unlisting list mode data, resulting in 
reduced emission counts equivalent to 120 s, 90 s, 60 s, 30 s, 
and 15 s acquisition time per bed position. For each patient, 
6–8 bed positions were acquired (depending on patient size), 
with an overlap of 23% (17 slices) [6]. Furthermore, images 
were reconstructed with a proprietary reconstruction kernel 
using block sequential regularized expectation maximization 
(Q.Clear, GE Healthcare) with beta values 450 and 600 as 
suggested in a previous study [6]. Proprietary image analysis 
software (Advantage Workstation Version 4.7, GE Health-
care) was used to generate maximum intensity projection 
(MIP) images in anteroposterior orientation.

Manual assessment of image noise and image 
quality

One reader (A.G., board-certified radiologist with 6 years 
of experience in diagnostic imaging) measured the pixel-
wise standard deviation of a semi-automated cubicle VOIs 
(2 × 2 × 2 cm3) in the right liver lobe and in lung paren-
chyma, avoiding focal lesions and vasculature. Two readers 
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(M.M. and S.S., board-certified radiologists and/or nuclear 
medicine physicians with 9 and 6 years of experience in 
diagnostic imaging respectively) reviewed all MIP images 
per patient in consensus. Each image was assigned the label 
“sufficient image quality” if both readers rated the image 
quality sufficient, and the label “insufficient image quality” 
if at least one reader rated the image quality insufficient. 
Readers were blinded to image reconstruction settings dur-
ing the readout.

Automated measurement of image noise

An automated algorithm previously used for global image 
noise measurements in clinical CT examinations [12–14] 
was adapted for the analysis of SUV images from [18F]
FDG PET. This algorithm builds on an approach originally 
described by Christianson et al [15] and was recently imple-
mented in the open-source statistics programming language 
R (version 4.1.0, R Foundation for Statistical Computing) 
[16]. On both CT images and SUV images of PET, the 
standard deviation of pixel/voxel values in a given region 
is declared as noise [6, 12, 13]. Thus, the exact approach of 
the original algorithm designed for CT imaging may also 

be used for SUV images of PET. A visual representation 
of the method is provided in Fig. 1. In brief, the original 
SUV images from [18F]FDG PET are first subjected to a 
thresholding procedure, in which all voxels that are not part 
of patient tissue are excluded (part A of Fig. 1). This pro-
cedure is performed slice-by-slice as the algorithm loops 
through all images of a dataset (part B, left side of Fig. 1). 
Then, to generate so-called noise maps, the SUV images 
are resampled slice-by-slice to a lower matrix size so that 
a novel pixel (so-called macro pixel) in a resampled image 
(i.e., noise map) contains information from 64 pixels (i.e., 
8 × 8 pixels) of the original SUV image. Importantly how-
ever, the value assigned to each of these novel macro pixels 
in the noise maps corresponds to the standard deviation of 
the SUV values of the 64 pixels contained in the original 
SUV image. Thus, each noise map contains locally resolved 
standard deviation values of the original SUV images which 
should provide an accurate representation of the image noise 
(part B, right side of Fig. 1).

From these noise maps (i.e., one noise map per slice), a 
histogram of the noise distribution across the whole patient 
is computed. Importantly, all noise values from each noise 
map of each slice are considered for the computation of the 

Fig. 1   Illustration of the generation of the Globals Noise Index 
(GNI). A shows a maximum intensity projection image. To calculate 
the GNI, the whole imaging volume is subjected to further process-
ing. B shows representative transversal image slices of the imaging 
volume at 4 different locations and the corresponding noise maps. C 

shows the distribution of noise values across the whole imaging vol-
ume. Specifically, the histogram is generated by considering all noise 
values from each image slice. The mode value of the histogram corre-
sponds to the GNI, a single global surrogate parameter of image noise 
across the whole imaging volume of a given imaging dataset
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histogram (part C of Fig. 1). From this histogram (typi-
cally showing a right-skewed distribution), the mode value 
is extracted representing the global image noise level (so-
called Global Noise Index, GNI). Notably, the histogram is 
right-skewed because noise sharply increases at anatomi-
cal borders (for example, if the standard deviation of SUV 
values is computed across a bordering area such as thoracic 
wall and lung tissue). Consequently, these few pixels in the 
noise maps covering anatomical borders will have very high 
noise values. However, because most pixels cover homo-
geneous tissue in which noise should be relatively lower, 
the histogram rises sharply at lower noise values. Thus, by 
using the mode value, the noise distribution in homogeneous 
tissue is accurately and effectively represented by the GNI 
(part C of Fig. 1).

Notably, for the GNI as computed in the current study, 
all noise values from each noise map of each image slice are 
considered. However, theoretically, the GNI could also be 
computed from individual image slices (Fig. 2). While not 
investigated in our study, this would allow the user to focus 
on the noise levels of individual anatomical regions.

Statistical analysis

All statistical analyses were performed in the open-source 
statistics programming language R (version 4.1.0, R Foun-
dation for Statistical Computing) [16]. Categorical variables 

are expressed as frequency distribution. Continuous vari-
ables are presented as mean ± standard deviation. As abso-
lute values between GNI and manual noise measurements 
may differ, we quantified whether the distribution of noise 
values was similar between GNI and manual measure-
ments irrespective of the absolute values. To this extent, 
noise values from GNI and manual measurements were 
first standardized (z-scoring). Then after standardization, 
the two-sample Kolmogorov–Smirnov tests modified for 
paired data were computed to compare the distribution of 
noise values between GNI and manual measurements of 
the liver and lung.

Furthermore, to further benchmark the GNI relative 
to manual measurements, we quantified the correlation 
between GNI and manual measurements in liver and lung 
parenchyma (i.e., without prior standardization of noise val-
ues) by computing Spearman’s rank correlation coefficients. 
Coefficients were interpreted according to Chan [17, 18] as 
follows: at least 0.8 very strong, 0.6 up to 0.8 moderately 
strong, 0.3 to 0.5 fair, less than 0.3 poor. To assess whether 
the GNI can differentiate between sufficient and insufficient 
image quality as determined subjectively by expert readers, 
receiver operating characteristic analysis was performed. 
The area under the curve (AUC) was computed and sensi-
tivity and specificity were calculated at a cutoff value maxi-
mizing Youden’s index. Two-sided p-values of < 0.05 were 
considered statistically significant.

Fig. 2   Illustration of the Global 
Noise Index (GNI) as computed 
slice-wise. A shows a coronal 
image slice. B shows the GNI 
as calculated speerately for 
each image slice. While not 
considered for this current 
study, a slice-wise computation 
of the GNI would allow the user 
to analyze specific anatomical 
regions in terms of their image 
noise level
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Results

Study cohort

Thirty-eight patients were included in our retrospec-
tive study. The mean injected [18F]FDG-activity was 
249.3 ± 57.8 MBq, and images were acquired 58.7 ± 8 min 
after injection. The mean body mass index was 26 ± 5.5 kg/
m2 (range: 15–37 kg/m2). Demographic data of the cohort 
are summarized in Table 1. Of the overall 380 imaging data-
sets, 268 were rated “sufficient image quality” and 112 were 
rated “insufficient image quality.”

Correlation of GNI and manual noise measurements

An overview of the GNI and manual noise measurements in 
liver and lung parenchyma by reconstruction and bed time 
is given in Table 2 and illustrated in Fig. 3. The behavior of 
GNI values and noise values from manual measurements 
was as expected. Noise values decreased consistently from 
Q.Clear 450 to Q.Clear 600, irrespective of bed time, and 
noise values decreased consistently with increasing bed 
time, irrespective of reconstruction type (Q.Clear 450 vs 
Q.Clear 600).

In terms of the similarity of the distribution of noise 
values (irrespective of the absolute noise values, i.e., after 
the standardization procedure), there was no significant 
difference between the GNI and manual liver measure-
ments (p = 0.51 for Q.Clear 600 and p = 0.84 for Q.Clear 
450). However, the distribution of values differed signifi-
cantly, both between manual liver and lung measurements 
(p = 0.03 for Q.Clear 600 and p < 0.001 for Q.Clear 450) and 
between GNI and manual lung measurements (p = 0.09 for 
Q.Clear 600 and p < 0.001 for Q.Clear 450). This implies 
that although the absolute noise values may differ (consider-
ably), the GNI closely resembles the behavior of noise val-
ues derived from manual liver measurements. Specifically, 
GNI showed a fair to moderately strong correlation with 

Table 1   Demographic data of study subjects (n = 38)

Values are given as absolute numbers and percentages in parenthesis 
or mean ± standard deviation
BMI, body mass index; MBq, megabecquerel

Female/male, n (%) 13 (34.2%)/25 (65.8%)
Age, years 63 ± 14
Body weight, kg 79.2 ± 19
Body height, m 1.74 ± 0.1
BMI, kg/m2 26 ± 5.5
Blood glucose level at time of injection, mg/dl 102 ± 19
Injected F18-FDG dose, MBq 249.3 ± 57.8
Scan time post injection, min 58.7 ± 8
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manual noise measurements in liver parenchyma (r = 0.6 in 
Q.Clear 450, r = 0.54 in Q.Clear 600, all p < 0.001), and a 
fair correlation with manual noise measurements in lung 
parenchyma (r = 0.52 in Q.Clear 450, r = 0.33 in Q.Clear 
600, all p < 0.001).

Classification performance of GNI for image quality

The AUC of the GNI for the classification of subjective 
image quality using reader-based assessment as target 
was 0.898 (95% confidence interval (CI): 0.855–0.942) in 
Q.Clear 450 and 0.919 (CI: 0.875–0.962) in Q.Clear 600 
(Fig. 4). Maximizing the Youden index, the sensitivity and 
specificity for the GNI were 88% and 76% for Q.Clear 450 
images, using a cutoff value of 0.21, and 80% and 89% for 
Q.Clear 600 images, using a cutoff value of 0.18.

Discussion

In this study, we aimed to develop and assess the perfor-
mance of an algorithm that enables the automated computa-
tional estimation of the noise level across the whole imaging 
volume of PET datasets.

The major findings of our study are as follows: First, an 
algorithm delivering a measure of noise on the whole imag-
ing volume that builds on an approach originally developed 
for clinical CT imaging by Christianson et al [15] can suc-
cessfully be adapted for clinical PET imaging. Importantly, 
computationally derived noise values closely resemble the 
behavior observed from manual measurements in the liver 
and are correlated with manual measurements in liver and 
lung parenchyma in terms of absolute values. Second, the 
performance of the algorithm for classification of image 

quality compared to subjective reader’s evaluation was very 
good.

Generally in PET, image noise, among other factors, is 
considerably affected by administered activity and acqui-
sition time. Recent studies suggest that by implementing 
latest generation hardware and software for PET imaging 
and by using BMI-based dosage protocols, acquisition 
time, and administered tracer dose can be continuously 
decreased without compromising image quality [19–23]. In 
this regard, it is essential to closely monitor and benchmark 
new protocols against the current clinical standard in terms 
of image quality in order to ensure that diagnostic image 

Fig. 3   Bar plots illustrating 
noise distribution as a function 
of bed time separately for GNI 
and manual noise measurements 
in liver and lung parenchyma. 
The different reconstruction ker-
nels are shown in red (Q.Clear 
450) and green (Q.Clear 600)

Fig. 4   Receiver operating characteristic (ROC) curves for the classi-
fication performance of GNI for image quality. Curves are shown for 
both Q.Clear 450 and Q.Clear 600
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quality is preserved in clinical routine. For example, this 
is very important when testing new image reconstruction 
algorithms or their parameters. Here, we used beta values 
of 450 and 600 for our reconstruction algorithm based on 
previous recommendations [6]. With higher beta values, 
for example, the noise would decrease further, which could 
then theoretically be quantified with our approach.

While image quality depends on various factors, includ-
ing subjective preferences, noise is an important surrogate 
parameter that is commonly used as a reliable and objective 
metric to assess the quality of PET images [7, 8]. Specifi-
cally, noise is not only an important marker of image quality 
itself, but also plays a crucial role in calculating quantitative 
contrast measurements as important surrogate markers of 
image quality, such as the signal-to-noise ratio or contrast-
to-noise ratio [6, 8, 24].

Thus, a large-scale evaluation of image noise is highly 
desirable as an important marker of image quality, ideally 
in a high-throughput and non-reader-dependent fashion. 
The approach presented in our study may be a promising 
candidate for this task. As our method enables an accurate 
and fully automated estimation of the global noise level 
across the whole imaging volume, PET imaging data can be 
benchmarked, evaluated, and compared both longitudinally 
and between different scanners and vendors. This may be 
especially useful for quality standardization and protocol 
harmonization across different institutions.

Importantly, our algorithm potentially allows the user to 
compute the noise level of individual anatomical regions or 
the noise level of single bed positions. This may be of interest 
as our metric can then be compared with the detectability and 
visualization of individual organ-wise pathologies or, in the 
latter case, can be used to optimize the acquisition of remain-
ing bed positions based on the noise level of the first bed posi-
tion. Additionally, it should be noted that our approach could 
also be valuable for the assessment of images acquired as part 
of dynamic PET imaging, since the noise level of individual 
slices can also be assessed as shown exemplarily in Fig. 2.

Our study has some limitations. Its retrospective nature 
and single-center scale, the relatively small cohort, the 
unbalanced dataset, and the fact that only one scanner from 
a single vendor was included all limit generalizability. Fur-
ther studies are necessary to validate the algorithm, espe-
cially across different scanners. In this regard, a correlation 
with more advanced metrics of image quality, such as the 
noise-equivalent count rate (NECR) [25, 26], is of great 
interest. Second, manual noise measurements were only 
performed by a single reader using a specific measurement 
procedure. We acknowledge that our results may have been 
impacted by the choice of measurement procedure (i.e., spe-
cific type of reader, choice of VOI size, etc.). Last, image 
quality was subjectively assessed by only two readers in our 
study and may differ among a wider range of interpreters.

Conclusion

An automated computational noise measurement algorithm 
provides an accurate and meaningful estimation of the global 
noise level encountered in clinical PET imaging datasets. 
The algorithm provides noise values that correlate with man-
ual VOI-based noise measurements and provides high per-
formance for the determination of subjective image quality.
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