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Reducing image artifacts in sparse 
projection CT using conditional 
generative adversarial networks
Keisuke Usui 1,2*, Sae Kamiyama 1, Akihiro Arita 1, Koichi Ogawa 3, Hajime Sakamoto 1, 
Yasuaki Sakano 1, Shinsuke Kyogoku 1 & Hiroyuki Daida 1

Reducing the amount of projection data in computed tomography (CT), specifically sparse-view CT, 
can reduce exposure dose; however, image artifacts can occur. We quantitatively evaluated the effects 
of conditional generative adversarial networks (CGAN) on image quality restoration for sparse-view 
CT using simulated sparse projection images and compared them with autoencoder (AE) and U-Net 
models. The AE, U-Net, and CGAN models were trained using pairs of artifacts and original images; 
90% of patient cases were used for training and the remaining for evaluation. Restoration of CT values 
was evaluated using mean error (ME) and mean absolute error (MAE). The image quality was evaluated 
using structural image similarity (SSIM) and peak signal-to-noise ratio (PSNR). Image quality improved 
in all sparse projection data; however, slight deformation in tumor and spine regions was observed, 
with a dispersed projection of over 5°. Some hallucination regions were observed in the CGAN results. 
Image resolution decreased, and blurring occurred in AE and U-Net; therefore, large deviations in ME 
and MAE were observed in lung and air regions, and the SSIM and PSNR results were degraded. The 
CGAN model achieved accurate CT value restoration and improved SSIM and PSNR compared to AE 
and U-Net models.
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Abbreviations
CT	� Computed tomography
CBCT	� Cone-beam computed tomography
CNN	� Convolutional neural network
GAN	� Generative adversarial network
CGAN	� Conditional generative adversarial network
AE	� Autoencoder
ROI	� Regions of interest
ME	� Mean error
MAE	� Mean absolute error
SSIM	� Structural similarity index
PSNR	� Peak signal-to-noise ratio
HU	� Hounsfield unit

Computed tomography (CT) has been widely used for the clinical diagnosis of many organ diseases, and its 
clinical benefits are indispensable in modern medical strategies. However, excessive X-ray doses increase the 
stochastic risks of cancer at diagnostic dose levels, and the overuse of CT scans in medical environments raises 
concerns1,2. Methods for achieving the lowest radiation dose are imperative for many CT tasks3. This problem 
can be easily addressed by reducing the number of X-ray photons; however, this leads to an increase in image 
noise and may cause further risks of missed diagnoses. Iterative reconstruction methods combine the statistical 
properties of the data in the image domain and projection space to optimize the objective function and remove 
noise and artifacts from low-dose CT images3,4. This technique depends on the CT manufacturer’s specifications, 
which limits the clinical applications of conventional image-based denoising methods, such as total variation 
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minimization5. Another effective strategy is to decrease the number of projections for a given trajectory, called 
the sparse-view CT technique6–8. Sparse projections cannot be implemented in conventional multidetector CTs 
because of the continuous helical acquisition of projection data. By contrast, sparse-view CT can reduce the 
irradiated dose in cone-beam CT (CBCT) equipped with dental CT, mammography tomosynthesis, and linear 
accelerator, and clinical benefits will be sufficient9,10. Additionally, by reducing the number of projections in 
4-dimensional (4D) CBCT, a shorter imaging time can be achieved. This potential reduction in imaging time 
can be realized by decreasing the amount of data acquisition and processing required, thereby improving the 
efficiency and practicality of 4D CBCT imaging. Moreover, to generate motion artifact minimization with non-
static objects during projection data acquisition, such as in dynamic CT imaging situations, sparse-view CT can 
be an algorithmic strategy to address them8. However, insufficient projection views lead to inaccurate image 
reconstruction and can result in prominent streak artifacts11–13. Therefore, various artifact reduction methods 
have been used to restore image quality with sparse projection data. Compressed sensing-based regularization 
techniques perform well on severely undersampled data14–16. However, these methods require prior knowledge of 
the image to be restored, and they successfully remove local noise but do not remove linear artifacts that appear 
as large structures on limited-angle tomography17.

Recently, with the development of deep learning in medical imaging, several approaches have been proposed 
to remove the noise associated with low-dose CT18–20. Various convolutional neural network (CNN)-based 
methods have been proposed; however, they often suffer from disappearing edges and image blurring21,22. Moreo-
ver, the streaking artifacts caused by projection reduction are difficult to remove using conventional CNNs23. 
Because these streak-shaped artifacts do not occur locally, they stretch over the image. Image-based CNNs work 
using hierarchical sliding convolutional windows but ultimately have a limited perceptive field of contextual 
information in the image. Therefore, simple CNNs are handled by sliding convolutions but are harder due to 
non-local effects like streaking, which lead to vanishing gradients and make training ineffective. Therefore, a 
skip connection with residual learning networks has been used to reduce these artifacts. A generative adversarial 
network (GAN) achieves accurate consistency when the underlying structures are similar even when mapped 
to nonlinear domains24,25. In particular, the conditional generative adversarial network (CGAN) algorithm has 
shown a superior ability to synthesize images from uniform label maps and is used as a solution to image-to-
image translation26. Therefore, CGAN may be advantageous for reducing image artifacts in sparse-view CT using 
a large paired supervised image with artifacts.

In this study, we investigated the effect of image artifact correction in sparse-view CT using the CGAN model 
on lung CT images, based on numerous computational artifact simulation images. The accuracy of streak artifact 
correction was evaluated by comparing and verifying its dependence on the number of sparse projection angles. 
The effect of image quality correction by the CGAN-based model was compared to that of the autoencoder 
(AE) and U-Net models, which are widely applied for medical image correction, to clarify the image quality 
and improvement effect. The contribution of this study lies in demonstrating the feasibility of utilizing sparse 
projection CT for practical applications.

Methods
Image data acquisition
Lung CT images were used to train the deep learning model, and image artifacts in sparse-view CT images were 
simulated by forward projecting the images and subsampling the simulated projections. Lung CT images of 40 
patients were obtained from a publicly available dataset, The Cancer Imaging Archive, which is an open-access 
information source created by the US National Cancer Institute27. The total number of images for these 40 
patients was 4250 images. In this dataset, CT images were acquired using multidetector CT with helical scan-
ning. The tube voltage was 120 kV, thickness of each CT image was 3 mm, matrix size was 512 × 512 pixels, and 
field of view 45 × 45 cm.

Generation of simulated sparse projection image
A total of 4250 simulated artifact images of the sparse projection were generated by each decimating the projec-
tion data from the original image. We obtained fan-beam projections by accumulating the CT values in each 
projection path at a distance of 400 pixels from the apex of the fan beam to the center of the image rotation. The 
spacing between arc-shaped detectors was set to 0.25°. These sparse projection data were acquired at rotational 
interval angles of 1°, 2°, 5°, and 10°, and a sparse sinogram was obtained using these projection data in each of the 
4250 slices. Then, simulated artifact images were created from these sparse sinograms using a filtered backprojec-
tion algorithm with a Shepp and Logan filter. An overview of the generation of the simulated sparse projection 
image is shown in Fig. 1. In this study, we used a supervised image paired with the original and simulated images 
to train and evaluate the deep learning model.

Artifacts correction in sparse‑view CT by deep learning
For each deep learning model, the training dataset comprised 4250 lung CT images, with varying levels of 
artifacts at each dispersed projection angle. Therefore, the number of simulated artifact images was 4250 for 
each dispersed projection angle, i.e., 1°, 2°, 5°, and 10°. In each dispersed projection, 90% of the patient cases 
were used for training, and the remaining 10% were used for image quality evaluation, which were randomly 
selected patient cases. Therefore, the same patient data were not used for model training and evaluation. In the 
input data, each pixel value was normalized to (0, 1) between the maximum and minimum intensities of the 
pixel value per training image. An artifact-corrected image was generated using the CGAN model. Moreover, 
the AE and U-Net models were used to generate artifact-corrected images for comparison. The details of these 
deep learning models are presented below.
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CGAN
CGAN has two CNNs, one generator, and one discriminator, which have opposite functions. During the train-
ing process, the generator attempts to produce an artifact-reduced image, whereas the discriminator networks 
attempt to distinguish the artificially created data as either the original CT image or artificially generated. In this 
study, the conditional label was an image pair of the original and simulated artifact images. Figure 2 presents 
a flowchart of the CGAN model and the architecture of the generator and discriminator. The real non-sparse 
images were used as labels in the discriminator, and paired images with sparse and non-sparse images were added 
as conditions in the generator and discriminator. The modules of these models were in the form of convolution-
BatchNorm-ReLu. Patch-GAN was utilized in the discriminator, which classified an image as either true image 
or generated image in each given patch. In addition, four convolutional layers were added to the discriminator 
architecture. The total loss function in CGAN training is as follows26:

where the generator ( G) attempts to minimize the loss function ( LcGAN (G,D) ), whereas the discriminator ( D ) 
attempts to maximize it to distinguish between G(x, z) and real samples x . Furthermore, estimation error loss 
to the discriminator feedback is added for effective training of the generator. Therefore, the final objectives were 
as follows:

where LL1(G) is an additional L1-norm-based loss function in the generator to get closer to the ground-truth 
output y , and � is a tunable parameter; in this study, we set to 100.

We conducted experiments on a personal computer equipped with two GPUs (Quadro RTX 5000, NVIDIA 
Corporation) and a CPU (Intel Xeon Silver 4210R) with 96 GB of memory. The proposed algorithm was 

(1)LcGAN (G,D) = Ex,y

[

logD
(

x, y
)]

+ Ex,z

[

log(1− D(x,G(x, z)))
]

(2)G∗
= arg min

G
max
D

LcGAN (G,D)+ �LL1(G)

Figure 1.   Overview of the generation of simulated sparse projection image. The sinograms of sparse projection 
were obtained by forward projecting to original images every 1°, 2°, 5°, and 10°. The simulated artifact image as 
sparse-view CT was created using the filtered back projection with the Shepp-Logan filter.

Figure 2.   (a) Flowchart of conditional generative adversarial network (CGAN), and the architecture of 
the generator (b) and discriminator (c). The network consists of one generator and one discriminator with 
a conditional argument. The overall network’s performance is enhanced through each network acting 
bidirectionally. The artifacts in sparse projection are corrected by a network that maps images from a source 
domain (with artifact image) to the target domain (artifacts correction image) based on the conditional ideal 
image pair.
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implemented using MATLAB 2022b (MathWorks Inc., Natick, MA, USA). The network was optimized using 
the Adam optimizer with a learning rate of 0.0002 for both the generator and discriminator networks. We used 
a batch size of one, and the training was stopped at 200 epochs. The loss curves of LL1(G) approached zero as 
the number of epochs increased and then remained almost unchanged as they approached 200 epochs. The loss 
function of the generator and discriminator, as depicted in Eq. (1), were adjusted to fluctuate around 0.5 by 
adjusting the hyperparameters. Then, object G∗ shown in Eq. (2) was updated.

AE
The AE model consisted of an encoder–decoder process with four layers21. Each layer has the modules of con-
volution-ReLu-maxPooling and reconstruction and generates an output of the same size as the input image. The 
filter size was 3 × 3, and the initial number of filters was eight. Figure 3 shows the network structure of AE. In this 
model, the input image is a simulated artifact image with sparse projection, and the output is the original image 
without artifacts. This network learns to match the input and output and extracts only the important information 
necessary for restoration from the training data. The network was optimized using the Adam optimizer with 
a learning rate of 0.001 and a batch size of 4. The training stopped after 200 epochs. The loss curves decreased 
continuously and remained almost unchanged after 200 epochs.

U‑Net
The U-Net model has four encoder and decoder depths, and each layer has convolution-ReLu-maxPooling 
modules. Skip connections are utilized in the channels at each layer to restore the overall location information 
while preserving local features28. The filter size was 3 × 3, and the number of initial filters was 64. This network 
comprises a context aggregation pathway that represents the input and a localization pathway that recombines 
these representations with shallower features. Figure 4 shows the network structure of U-Net. The input image 
was a simulated sparse artifact image, and the output image was the original image paired with the input. This 
network was optimized using the Adam optimizer with a learning rate of 0.001 and a batch size of 4. Training 
was stopped at 200 epochs, and the loss curves increased as the number of epochs increased and then remained 
almost unchanged as they approached 200 epochs.

Figure 3.   Encoder–decoder deep learning architecture of the autoencoder (AE) model. The encoder process is 
denoted by light green arrows and the decoder process by light blue arrows.

Figure 4.   Detailed U-Net architecture used in this study. Concatenated images are shown in light blue. The 
channel numbers are displayed at the bottom of the image.
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Image quality evaluation
ME and MAE
Test images, not used in training were selected using the original full view image as ground truth and the simu-
lated sparse projections as model inputs. The model outputs were compared against these ground truth inputs 
using ME and MAE to assess streak reduction performance. The quality of the corrected images was quantita-
tively evaluated by comparing them with the original CT images. To evaluate the differences in the CT number 
with respect to the original images, we set regions of interest (ROIs) in the lung, soft tissue, bone, and air regions 
and measured the mean error (ME) and mean absolute error (MAE) as follows:

where M and N are the width and height of the pixels within an ROI, respectively, X(i, j) is the CT number of the 
i-th and j-th pixels in the spared projection image or artifact reduction image, and Y(i, j) is the CT number of the 
i-th and j-th pixels in the original CT image. The sizes of the ROIs were 40 × 40, 40 × 40, 15 × 15, and 50 × 50 pixels 
in the lung, soft tissue, bone, and air regions, respectively. An example of these ROI positions is shown in Fig. 5

SSIM and PSNR
To evaluate the differences in overall image quality, the structural similarity index (SSIM) and peak signal-to-
noise ratio (PSNR) of the artifact-reduced image were calculated based on the original CT image22,29. The SSIM 
of images X and Y  is defined as follows:

where µX and µY are the average pixel values of the image pair ( X,Y  ), σX and σY are the variances, σXY is the 
covariance of X and Y  , and the C terms are regularization constants, where C1 equals (0.01× 2000)2 , C2 equals 
(0.03× 2000)2 , and 2000 is the dynamic range of the images. PSNR is defined as follows:

PSNR is defined as the maximum value in an input image X
(

i, j
)

 divided by the mean squared error between 
images X ( with artifacts or the corrected image) and Y  (the original CT image). In addition, M and N represent 
the width and height of the images, respectively. Differences in SSIM and PSNR were evaluated as statistically 
significant using a two-tailed t-test.

Ethical approval
All procedures performed in this study were in accordance with the ethical standards of the institution or the 
practice at which the study was conducted.
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Figure 5.   Position (1 to 4) of each ROI for calculating the mean error and mean absolute error compared with 
the original CT image. ROI (1 to 4) positions of the lung, soft tissue, bone, and air regions, respectively.
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Consent to participate
CT data were obtained from The Cancer Imaging Archive (http://​www.​cance​rimag​ingar​chive.​net/).

Results
Figure 6 shows the results of the artifact correction image in the sparse-view CT using each deep learning 
method. Figure 6a shows representative axial slice images with a dispersed projection angle of 1°. The lower 
images show subtracted images (the artifact correction image minus the original image), as shown by the abso-
lute difference in CT values. Moreover, Figs. (b), (c), and (d) show the results for each corrected image with 
dispersed projection angles of 2°, 5°, and 10°, respectively. The simulated sparse-view CT image degraded the 
image quality, and large deviations in the CT values were observed in the subtraction image, particularly for 
dispersed projection angles greater than 5°. By contrast, the simulated sparse projection artifacts were small at 
dispersed projection angles of 1° and 2°. Through artifact reduction using each deep learning model, differences 
in CT values in the lung and air regions were observed in the subtraction image, as shown in the AE and U-Net 
results. Figure 7 shows the enlarged images of each artifact-reduced image. Moreover, Fig. 8 displays the line 
profiles of the CT value in each deep learning model. Image artifacts caused by sparse projections were reduced 
even when the dispersed projection angle was greater than 5°. However, the image resolution was significantly 
decreased, and image blurring occurred as shown in the results of the AE and U-Net models, resulting in missing 
fine structures within the lung region. Moreover, the low CT value, which was approximately − 800 hounsfield 
unit (HU) in the lung region, differed from the original images. By contrast, we observed that the CGAN model 
reduced the artifacts while maintaining the image resolution. However, the detailed shape of the tumor and spine 
changed, and it was not possible to completely restore the image at dispersed projection angles of 5° and 10°. 
Moreover, CT value profiles in the CGAN model had some hallucinated regions in the lung and tumor areas, 
particularly in the results for dispersed projection angles of 5° and 10°.

Tables 1 and 2 present the ME and MAE results compared with the original CT image. For large decimation 
projection angles, the CT values differed from those of the original images. The results of AE and U-Net show 
large deviations in each region; in particular, the lung and air regions had a difference of over 45 HU. For CGAN, 
the HU values were similar to those of the original image for each sparse projection angle; however, a slight 
deviation was observed in the bone region, and the differences were generally less than 10 HU. Although the HU 
values in each ROI approached the original image, hallucinated structures were generated.

Table 3 presents the results in terms of the SSIM and PSNR for each dispersed projection angle with artifact 
reduction in each model. Through artifact reduction using the CGAN model, the SSIM and PSNR significantly 
improved for all sparse projection angles. By contrast, the SSIM values of AE and U-Net were less than 0.5, and 
the PSNR degraded compared to the original image at sparse projection angles of 1° and 2°.

Discussion
Our study attempted to reduce image artifacts in sparse-view CT images using deep learning. Sparse-view CT 
reduces patient exposure dose, and artifact reduction is essential when applying this technique to clinical CT 
images. For the CGAN model, each loss function in Eq. (1) was updated by the object in Eq. (2), including 
generator and discriminator loss, thereby increasing the similarity with conditional label data. Therefore, the 
performance of the CGAN model, which was hypothesized to improve the accuracy of CT value reproducibility 
and the image quality index in terms of SSIM and PSNR, was evaluated for artifact correction using simulated 
sparse-view CT images.

As shown in Figs. 6 and 7, image quality degradation with sparse projection occurred in the simulated sparse-
view CT, particularly at decimation angles of 5° and 10°, as shown in the subtraction image. As shown in the 
results of the AE model, the restoration of the decoding process was insufficient because of the suppression of 
the artifact region with a relatively high-contrast resolution component. This issue was observed at decimation 
angles of 5° and 10°. The U-Net model reduced artifacts while maintaining the image resolution at a decimation 
angle of up to 5°. However, partial over-smoothing was observed at the boundary between the adipose and muscle 
regions. This result shows the same tendency as that reported in previous studies30,31. Moreover, the lung and 
air regions were different from the original image in the artifact-reduced images generated by AE and U-Net, 
as shown in Fig. 8. The low-density CT value in the lung region tends to be smoothed with an excessively low 
CT value; therefore, the microvessel structure in the lung vanishes. This effect can be seen in the reconstructed 
image in Figs. 6 and 7, even for decimation angles of 1° and 2°. As shown in Tables 1 and 2, the ME and MAE 
exhibited large differences in the lung and air regions from the original image. The AE and U-Net set the loss 
function of MSE compared to the training data and learning with total variation regularization; therefore, these 
over-smoothing corrections and filling with a uniform value were possibly shown in the artifact-reduced images 
by AE and U-Net. This result could affect the accuracy of computational analyses using CT values in images, 
such as computer-assisted detection/diagnosis and radiation treatment planning. By contrast, the artifacts of 
sparse projection were corrected, and over-smoothing of the pixel value did not occur with the CGAN method. 
Therefore, ME and MAE were also low by almost under 5 HU in all regions, and the artifact-corrected image by 
CGAN was suitable for applying the computational analysis image. However, some hallucinated regions were 
observed in the lung region, as shown in the profile results in Fig. 8. CGAN generates similar images with learn-
ing features that are close to the condition images. The generator receives random noise as input, which adds an 
element of randomness to the generated data. Therefore, each iteration of the learning process provides differ-
ent yet similar data, and caution must be exercised with the potential creation of a delicate structure that lacks 
actual existence. In lung CT images, these hallucinated regions may be misdiagnosed as microscopic tumors and 
pulmonary blood vessels. Therefore, it is difficult to use sparse projection images corrected by the CGAN model 
as diagnostic images. However, because the CT values within the region are close to the original image, it may 

http://www.cancerimagingarchive.net/


7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3917  | https://doi.org/10.1038/s41598-024-54649-x

www.nature.com/scientificreports/

be possible to use it for radiation treatment planning. Accurate CT values in each organ region are necessary to 
calculate dose distribution using CT images; however, this correction image with the CGAN model is not suit-
able for recontouring organ structures, including tumor regions.

Figure 6.   Results of artifact-corrected image in sparse-view CT by AE, U-Net, and CGAN. (a–d) 
Representative axial slice images with dispersed projection angles of 1°, 2°, 5°, and 10°. Subtraction image, 
created by subtracting the artifact-corrected image from the original image, is shown at the bottom of each 
dispersed projection image. All images are shown with the same window width and levels.
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Figure 7.   Enlarged images of the region indicated by the red region of interest with each result of sparse-view 
CT. All images are shown with the same window width and levels.

Figure 8.   Line profiles of the CT value in each correction image using the deep learning models. (a–c) vertical 
profile direction and (d–f) horizontal profile direction. (a,d) Images corrected by the AE model, (b,e) images 
generated by the U-net model, and (c,f) images generated by the CGAN model.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3917  | https://doi.org/10.1038/s41598-024-54649-x

www.nature.com/scientificreports/

Table 1.   Mean error in the CT values of each site: lung, soft tissue, bone, and air regions. These values were 
calculated with respect to the CT numbers in the original images and are shown in terms of mean ± standard 
deviation for evaluation images.

Interval of projection data acquisition angle

1° 2° 5° 10°

Lung

 With artifacts − 0.08 ± 0.06 − 0.07 ± 0.13 − 0.07 ± 0.67 3.80 ± 3.51

 AE − 52.90 ± 0.84 − 48.70 ± 0.71 − 47.49 ± 1.73 − 75.42 ± 6.98

 U-Net − 54.01 ± 0.31 − 54.96 ± 0.45 − 54.89 ± 0.78 − 59.74 ± 2.24

 CGAN 1.47 ± 0.20 − 0.85 ± 0.25 0.97 ± 1.70 − 5.38 ± 2.84

Soft tissue

 With artifacts − 0.08 ± 0.09 − 0.09 ± 0.12 − 0.59 ± 0.55 − 2.38 ± 1.59

 AE − 17.28 ± 0.34 − 9.89 ± 0.61 − 5.81 ± 1.44 − 3.63 ± 2.12

 U-Net − 19.68 ± 0.28 − 25.55 ± 0.20 − 14.60 ± 1.08 − 21.09 ± 1.78

 CGAN 2.98 ± 0.11 0.82 ± 0.14 0.32 ± 1.74 − 0.16 ± 1.93

Bone

 With artifacts 0.14 ± 0.20 − 0.33 ± 0.50 − 0.40 ± 3.07 − 6.38 ± 12.80

 AE − 10.57 ± 2.65 − 3.20 ± 3.10 − 8.75 ± 4.25 7.13 ± 10.25

 U-Net − 14.35 ± 1.27 − 20.62 ± 1.39 − 8.83 ± 2.55 − 0.85 ± 10.77

 CGAN 3.26 ± 0.45 0.14 ± 0.74 4.15 ± 4.25 − 2.02 ± 11.55

Air

 With artifacts − 1.30 ± 0.08 − 0.66 ± 0.24 12.20 ± 2.49 35.95 ± 1.55

 AE − 62.27 ± 0.24 − 62.47 ± 0.14 − 61.19 ± 0.46 − 58.75 ± 0.96

 U-Net − 61.95 ± 0.19 − 60.97 ± 0.21 − 60.48 ± 0.46 − 61.95 ± 0.48

 CGAN − 0.45 ± 0.09 − 1.13 ± 0.17 0.86 ± 0.50 1.23 ± 0.45

Table 2.   Mean absolute error in the CT numbers of each site: lung, soft tissue, bone, and air regions. These 
values were calculated with respect to the CT numbers in the original images and are shown in terms of 
mean ± standard deviation for evaluation images.

Interval of projection data acquisition angle

1° 2° 5° 10°

Lung

 With artifacts 0.08 ± 0.05 0.12 ± 0.09 0.49 ± 0.44 3.88 ± 3.44

 AE 53.11 ± 0.84 48.89 ± 0.72 47.67 ± 1.74 75.72 ± 7.01

 U-Net 54.22 ± 0.31 55.17 ± 0.45 55.11 ± 0.79 59.97 ± 2.24

 CGAN 1.48 ± 0.20 0.85 ± 0.26 1.61 ± 1.05 5.40 ± 2.86

Soft tissue

 With artifacts 0.10 ± 0.07 0.12 ± 0.08 0.66 ± 0.46 2.51 ± 1.38

 AE 17.35 ± 0.34 9.93 ± 0.62 5.83 ± 1.44 3.64 ± 2.13

 U-Net 19.75 ± 0.28 25.65 ± 0.20 14.66 ± 1.08 21.18 ± 1.79

 CGAN 2.99 ± 0.11 0.83 ± 0.14 1.38 ± 1.03 1.28 ± 1.39

Bone

 With artifacts 0.21 ± 0.10 0.48 ± 0.34 2.64 ± 1.39 11.89 ± 7.33

 AE 10.61 ± 2.66 3.96 ± 1.94 8.78 ± 4.27 9.56 ± 7.83

 U-Net 14.41 ± 1.27 20.71 ± 1.40 8.86 ± 2.56 9.35 ± 4.52

 CGAN 3.27 ± 0.46 0.59 ± 0.43 4.17 ± 4.27 9.42 ± 6.36

Air

 With artifacts 1.30 ± 0.08 0.66 ± 0.25 12.25 ± 2.50 36.09 ± 1.56

 AE 62.51 ± 0.24 62.71 ± 0.14 61.43 ± 0.46 58.98 ± 0.97

 U-Net 62.20 ± 0.19 61.21 ± 0.21 60.71 ± 0.46 62.19 ± 0.48

 CGAN 0.45 ± 0.09 1.13 ± 0.18 0.86 ± 0.50 1.23 ± 0.45
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Table 3 shows the results in terms of SSIM and PSNR for sparse projection and correction images, for each 
model. CGAN achieved the highest SSIM and PSNR values. An SSIM of over 0.8 and PSNR over 20 dB were 
accomplished even at the decimation angle of 10°. In a previous study on the image correction of sparse-view 
CT, the SSIM and PSNR were approximately 0.8 and 30 dB, respectively, using dual CNN-based methods31. 
Results achieved by CGAN were comparable with those of previous studies; therefore, the CGAN model can 
synthesize accurate images of the sparse-view CT. However, SSIM and PSNR significantly degraded for AE and 
U-Net because ME and MAE were large for these models.

The CGAN model significantly improved the image quality index in terms of SSIM and PSNR compared to 
the U-Net and AE models. With the addition of conditions and L1 norm regularization, CGAN significantly 
improved artifact correction for sparse-view CT and restored a synthetic image that is close to the original image. 
In this study, accurate restoration of image quality, including organ structure and CT values, was achieved using 
the CGAN model up to a decimation angle of 2°. Over a decimation angle of 5°, the details of the organ structures 
appeared to be transformed, and CGAN had limitations in terms of accurate restoration. However, the image 
similarity index, in terms of SSIM and PSNR, significantly improved using CGAN correction compared with 
the sparse projection image in all decimated angle cases. Therefore, the accurate restoration of pixel values in the 
lung region, soft tissue, and bones can enhance the accuracy of image registration using pixel value information 
and improve the accuracy of calculating the distribution of radiation doses in radiation therapy. Many groups 
have explored sinogram synthesis methods based on CNNs in the projection domain and proposed filling in 
missing view data in sinograms32,33. Our study applied reconstructed images as training and evaluation data; 
therefore, artifact correction was performed on the reconstructed CT images. Because there is no sinogram-based 
correction, our study has the advantage of not being affected by filter characteristics such as high-frequency 
enhancement by the FBP. As the image reconstruction process can be accelerated with direct correction in the 
reconstructed image, it is more practical in clinical practice. Moreover, implementing artifact correction directly 
on the reconstructed images is considered more practical and versatile because users cannot acquire sinograms 
directly from clinical CT scanners. However, focusing on the details of the tumor contour, the details of the 
tumor structure were distorted, limiting the complete reconstruction of the structure using the CGAN model. 
Moreover, unexpected hallucinate regions occurred when using the CGAN model, and it is imperative that we 
thoroughly evaluate the intended purpose of the generated images and strive for their practical use.

In previous studies, the compressed sensing (CS) method was applied to reconstruct CT images from sparse 
projection data15,17. This method formulates the reconstruction problem as a convex optimization problem with 
data fidelity and image sparsity, thereby promoting regularizer terms. A numerical solver iteratively solves the 
image reconstruction optimization problem to remove view angle undersampling-induced aliasing artifacts 
and correct the reconstructed image against the recorded data. However, the pixel value in each region tended 
to over smooth the value, which showed as patchy image. Zhang et al. developed the prior image-constrained 
compressed sensing (PICCS) method to prevent the occurrence of blurring, and severe patching appeared in 
the reconstructed image16. In this method, a prior image reconstructed using the FBP algorithm from the union 
of interleaved dynamic projection datasets was used to constrain the CS image reconstruction method. How-
ever, a prior image of the same slice position with full projection data is required, and our research cannot be 
applied because there is no process to acquire the same prior image. In recent years, combining the deep learning 
reconstruction method with the prior image-constrained CS (PICCS) algorithm has been proposed to improve 
the reconstruction accuracy for individual patients and enhance generalizability for sparse-view reconstruction 
problems34. In this method, the prior image was created using deep learning with the U-Net model, and it is 
possible that CGAN can be used instead of the existing model. Harms et al. proposed a paired cycle-GAN-based 
CBCT image correction method, which led to the accurate restoration of HU values and the removal of streak-
ing and shading artifacts25. In this study, the residual network made it possible to create accurate synthetic CT 
(corrected CBCT) by learning specific differences between CBCT and CT. In our study, the CGAN model using 

Table 3.   SSIM and PSNR values in each dispersed projection angle with artifact reduction by deep learning 
models. These values were calculated based on the original CT image. *p-values of < 0.005 were deemed 
significant for differences from the results of corresponding results of artifacts image. *p < 0.005, showing a 
significant difference from the artifact conditions.

Interval of projection data acquisition angle

1° 2° 5° 10°

SSIM

 With artifacts 0.87 ± 0.02 0.58 ± 0.02 0.29 ± 0.02 0.17 ± 0.02

 AE 0.40 ± 0.03* 0.38 ± 0.02* 0.37 ± 0.02* 0.31 ± 0.03*

 U-Net 0.41 ± 0.03* 0.41 ± 0.03* 0.40 ± 0.03* 0.31 ± 0.02*

 CGAN 0.94 ± 0.02* 0.90 ± 0.03* 0.87 ± 0.02* 0.79 ± 0.02*

PSNR

 With artifacts 33.6 ± 0.3 26.8 ± 0.3 19.7 ± 0.4 16.0 ± 0.5

 AE 24.8 ± 0.1* 24.5 ± 0.1* 23.3 ± 0.2* 20.4 ± 0.4*

 U-Net 24.9 ± 0.1* 24.8 ± 0.1* 24.0 ± 0.1* 21.1 ± 0.3*

 CGAN 36.7 ± 0.7* 33.3 ± 0.4* 29.3 ± 0.4* 23.7 ± 0.6*
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paired supervised images can reduce non-locally streaking artifacts in sparse-view CT. Moreover, we compared 
the performance of artifact reduction between the conventional AE and U-net models and revealed the sig-
nificance of image quality improvement for sparse-view CT. If we cannot acquire paired supervised original 
and sparse-view CTs, the cycle-GAN model is one of the adequate deep learning models to improve the image 
quality of the sparse projection. However, unsupervised learning may result in lower image synthesis accuracy 
than supervised learning35,36.

It is difficult to collect a large number of pixel-by-pixel paired CT images with sparse projections in a clinical 
CT unit because conventional CT equipment involves continuous rotational data acquisition. Therefore, in this 
study, many virtual sparse-view CT images were created from sufficiently projected CT images using computa-
tional simulations, and deep learning was performed using these images. CGAN needs to add a conditional label 
using paired images, and the effectiveness of image quality improvement is expected. In this study, the image 
evaluated by deep learning models was an artifact image generated by the computational simulation of sparse pro-
jection, and the correction effect for the artifacts caused by the actual sparse projection was not verified. However, 
because sparse projection is not possible with current clinical CT units, the CT data acquisition system needs to 
be modified to apply artifact correction methods with deep learning. We believe that our research findings can 
contribute to reducing radiation exposure and shortening imaging time (by reducing the projection data per 
phase owing to 4D reconstruction) in cone-beam CT images that can be acquired through sparse projection. Our 
study clarified the effect of image quality improvement for sparse-view CT using three deep learning models and 
revealed that the CGAN model can synthesize the most similar image, including consistency of CT values. For 
the clinical application of artifact correction of sparse-view CT images, it is necessary to evaluate the practicality 
of artifact correction using CGAN by verifying the accuracy of this learning model for actual sparse projection 
images in future studies. This study was limited to the use of diagnostic helical CT image, and clinical data will 
need to be generated from a real cone-beam CT system to clarify the contribution of this deep learning model.

Conclusion
To suppress image artifacts in sparse-view CT, a deep learning model, CGAN, was constructed using arti-
fact images created by computational simulation as training data, and its correction effect was compared and 
evaluated with that of other deep learning models. The CGAN model demonstrated high image reproducibility 
compared to AE and U-Net, as well as particularly accurate CT value restoration. However, over a decimation 
angle of 5°, the accuracy of reconstructing exact organ structures was limited, and unexpected structures could 
be generated.

Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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