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Abstract

Deformable image registration (DIR) between daily and reference images is fundamentally 

important for adaptive radiotherapy. In the last decade, deep learning-based image registration 

methods have been developed with faster computation time and improved robustness compared 

to traditional methods. However, the registration performance is often degraded in extra-cranial 

sites with large volume containing multiple anatomic regions, such as Computed Tomography 

(CT)/Magnetic Resonance (MR) images used in head and neck (HN) radiotherapy. In this 

study, we developed a hierarchical deformable image registration (DIR) framework, Patch-based 

Registration Network (Patch-RegNet), to improve the accuracy and speed of CT-MR and MR-

MR registration for head-and-neck MR-Linac treatments. Patch-RegNet includes three steps: a 

whole volume global registration, a patch-based local registration, and a patch-based deformable 

registration. Following a whole-volume rigid registration, the input images were divided into 

overlapping patches. Then a patch-based rigid registration was applied to achieve accurate 

local alignment for subsequent DIR. We developed a ViT-Morph model, a combination of a 
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convolutional neural network (CNN) and the Vision Transformer (ViT), for the patch-based DIR. 

A modality independent neighborhood descriptor was adopted in our model as the similarity 

metric to account for both inter-modality and intra-modality registration. The CT-MR and MR-MR 

DIR models were trained with 242 CT-MR and 213 MR-MR image pairs from 36 patients, 

respectively, and both tested with 24 image pairs (CT-MR and MR-MR) from 6 other patients. The 

registration performance was evaluated with 7 manually contoured organs (brainstem, spinal cord, 

mandible, left/right parotids, left/right submandibular glands) by comparing with the traditional 

registration methods in Monaco treatment planning system and the popular deep learning-based 

DIR framework, Voxelmorph. Evaluation results show that our method outperformed VoxelMorph 

by 6 % for CT-MR registration, and 4 % for MR-MR registration based on DSC measurements. 

Our hierarchical registration framework has been demonstrated achieving significantly improved 

DIR accuracy of both CT-MR and MR-MR registration for head-and-neck MR-guided adaptive 

radiotherapy.

Keywords

CT/MR deformable registration; Vision transformer; Patch-based registration; Multi-modality 
registration

1. Introduction

Recent technological advancement in radiotherapy (RT) has enabled online adaptive 

radiotherapy (ART) to optimize radiation treatment plans on-the-fly based on daily anatomy 

changes to improve treatment accuracy (Wu et al., 2011). ART is attractive in the treatment 

of head and neck cancer (HNC) because potential significant tumor shrinkage, large 

anatomical deformation of organs at risk (OARs), and substantial weight loss are commonly 

observed for HNC patients during treatment (Castelli et al., 2018; Bahl et al., 2019; Burela 

et al., 2019). Without ART, the anatomical changes can lead to a compromised plan for 

dose delivery, with either unnecessary damage to critical organs or under-treatment near the 

tumor boundary. Cone beam computed tomography (CBCT) has been in use for decades 

for patient alignment, it enables the observation of anatomical changes and assessing 

the necessity of conducting offline ART (Belshaw et al., 2019). However, the inferior 

image quality and poor soft tissue contrast of CBCT can limit its performance in clinical 

implementation. The advent of magnetic resonance (MR) imaging-guided linear accelerators 

(MR-Linacs) has provided an excellent platform for online ART, enabling MR-guided 

radiotherapy (MRgRT) (McDonald et al., 2021; Kupelian and Sonke, 2014; Raaymakers 

et al., 2009). Integrated MR-Linacs allow the acquisition of on-board MR images just before 

radiation delivery, thereby providing superior visualization of the soft tissue for daily online 

plan re-optimization.

In MRgRT, daily MR images are used for daily set up verification and plan adaptation. 

The key enabling technology for online ART is deformable image registration (DIR), which 

establishes spatial relationship between two images by transforming a moving image to 

a fixed image space. DIR establishes the relationship between the planning computed 

tomography (CT) and MRI images so that the original treatment plan on CT can be adapted 

Zhao et al. Page 2

Comput Med Imaging Graph. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and re-optimized based on daily anatomy on MRI to achieve optimal treatment delivery 

(Raaymakers et al., 2009; Owrangi et al., 2018; Schmidt and Payne, 2015). The current ART 

workflow relies on the DIR process to deform contours delineated on planning CT onto 

the daily MR image, followed by a full plan re-optimization using the established spatial 

relationship between CT and MR images. However, DIR between CT and MR images has 

long been a difficult task due to significant contrast differences and anatomical changes over 

time, particularly for extracranial anatomical sites. For example, the neck flexion is often 

unavoidable from fraction to fraction no matter how carefully the patient is set up for HNC 

treatment. In addition, the treatment volume of HNC often spans a large region from top 

of nasopharynx to lower neck or upper lung, further complicating the DIR task because of 

locoregional anatomical variations in the HN region, as shown in Fig. 1. Existing registration 

tools in clinic could not ensure accurate and robust contour propagation, especially for 

flexible structures such as the neck and spine (McDonald et al., 2021). They always require 

the physician to review and revise the deformed contours on daily MR images, which is 

tedious and time-consuming. Therefore, to facilitate the online ART workflow of MRgRT of 

HNC, it is crucial to develop a fast and efficient DIR method for CT-MR registration.

Many approaches have been developed to address the challenges in inter-/intra modality 

image registration. For decades, traditional registration algorithms based on maximizing 

image similarity between two images have been successively implemented in many 

applications (Brock et al., 2017). However, these iterative optimization-based methods 

usually require high computational cost and are not robust or accurate for cases with 

large deformation. Recently, deep learning (DL)-based approaches have been demonstrated 

to have superior performance and speed compared to the traditional methods (Chen et 

al., 2021c, 2022; Fu et al., 2020; Haskins et al., 2020). The DL-based DIR methods are 

broadly categorized into (i) supervised and (ii) unsupervised learning methods (Chen et 

al., 2021c; Fu et al., 2020; Haskins et al., 2020). In supervised learning methods, the 

networks are trained with ground-truth deformation vector fields (DVFs) that are usually 

generated from traditional methods or synthetic data. The registration performance is limited 

by the quality of ground-truth DVFs which may be different from the actual anatomical 

deformation. On the other hand, unsupervised learning methods have been developed to 

overcome these limitations by training the networks to optimize similarity metrics between 

deformed and fixed images like traditional registration methods. VoxelMorph, proposed by 

Balakrishnan et al. (2019), was an example of unsupervised learning methods that utilized 

a spatial transformer network (STN) (Jaderberg et al., 2015) to generate the deformed 

image during training process. However, the application of the unsupervised registration 

methods for CT-MR comes with many challenges due to the inherent limitation of available 

similarity metrics. While mutual information (MI) (Maes et al., 1997; Viola and Wells, 

1995) has been commonly used in CT-MR registration, its performance for DIR may be 

diminished due to its intrinsic global measurement and limited capacity in distinguishing 

tissue types with similar intensities (Heinrich et al., 2012a). To overcome this problem, 

translation methods using Generative Adversarial Network (GAN) (Goodfellow et al., 2020) 

have been proposed to generate synthetic CT (sCT) from MR images, which are used as a 

bridge for CT-MR registration. McKenzie et al. (2020) reduced the multi-modal registration 

problem to a mono-modal one by using a cycle-consistency GAN model to generate sCT 
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from MR images for HNC patients. Xu et al. (2020) proposed to further combine the sCT-

CT registration together with MR-CT registration, which could leverage the deformation 

predictions from both multi-modal and mono-modal registrations. However, the performance 

of this method is restricted by the reliability of the anatomical features in synthetic images 

(Xu et al., 2020). Furthermore, the convolutional neural network (CNN)-based registration 

methods with a limited size effective receptive field may suffer from loss of long-range 

spatial relations in moving and fixed images during registration. Recently, there has been an 

increase of applying transformer to computer vision tasks, such as segmentation (Chen et 

al., 2021b; Zhang et al., 2021a; Cao et al., 2023), image reconstruction (Güngör et al., 2022; 

Guo et al., 2022), and image recognition (Dosovitskiy et al., 2020; Wu et al., 2021). This 

technique has been demonstrated to have superior performance in image registration because 

of its self-attention mechanism and ability to build associations between distant parts of 

images (Chen et al., 2021a; Zhang et al., 2021b; Liu et al., 2022). However, to the best our 

knowledge, no studies have been conducted to address the challenges of DIR between CT 

and MR images specifically for HN sites.

In this study, we attempt to achieve accurate and rapid DIR for CT-MR and MR-MR in 

online MR-guided ART for HNC. Although our focus is precise DIR for inter-modality 

(CT-MR) images, we also demonstrate the usability of our proposed approach for intra-

modality (MR-MR) images in the context of MR-guided ART. We propose a novel 

hierarchical registration framework named Patch-RegNet, where the patch-based registration 

is introduced to improve the local alignment. One difficulty in training a DL-based DIR 

network for HNC is to achieve a good initial position between moving and fixed images 

owing to their extensive coverage over multiple anatomic sites, including the head, neck, 

shoulders, and upper lungs. Our Patch-RegNet addresses this issue using a three-stage 

workflow: a whole volume rigid registration, a patch-based rigid registration, and a patch-

based deformable registration. The patch-based rigid registration ensures an improved local 

pre-alignment between two images for subsequent DIR. Our patch-based DIR network, ViT-

Morph, is built upon the combination of Vision Transformer (ViT) (Dosovitskiy et al., 2020) 

and VoxelMorph (Balakrishnan et al., 2019) to take advantage of both CNN features and the 

long-range spatial relationships from the transformer. In addition, the modality independent 

neighborhood descriptor (MIND) (Heinrich et al., 2012a) is used as the similarity metric in 

Patch-RegNet to account for both inter-(CT-MR) and intra- (MR-MR) modality DIR. Our 

proposed Patch-RegNet is evaluated on the clinical HNC CT and MR images acquired for 

radiotherapy both qualitatively and quantitatively.

2. Materials and methods

2.1. Overview

Patch-RegNet has a hierarchical registration framework to complete registration tasks 

robustly and automatically in a fully unsupervised manner. The overall framework is shown 

in Fig. 2.

The hierarchical registration framework starts with a whole-volume rigid registration. The 

moving and fixed images are first rigidly registered based on whole-image volumes. 

Overlapping patches are then extracted from the pre-aligned images for the subsequent 
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patch-based registration model. Within patch-based registration, a rigid registration is 

applied to further refine the local alignment of patch pairs for following DIR, which is 

achieved by training a patch-based DIR network, ViT-Morph, for registration. The ViT-

Morph model is trained to capture the deformation field between moving and fixed patches. 

A deformed patch is generated by warping the moving patch with the deformation field 

using a spatial transformer network (STN). Finally, the deformed patches are fused together 

to obtain the entire deformed image.

2.2. Whole volume global registration

Let VM, VF ϵ RD×H×W denote the whole volumes of moving and fixed images. VM and 

VF are first rigidly aligned to account for different anatomical scanning range as an initial 

step to facilitate the subsequent DL-based DIR process. In Patch-RegNet, we use SimpleITK 

(Beare et al., 2018) to implement a rigid registration method that minimizes the Mattes 

MI (Mattes et al., 2001) between moving and fixed images with a gradient optimization 

algorithm. Instead of using an affine transform, a similarity transform is employed for the 

linear registration. We observe that a similarity transform could often give more robust 

results than an affine transform for the sake of slightly inferior local alignment accuracy. 

After the whole volume linear registration, VF and pre-aligned VM are cropped to the 

overlapped region, represented by V F
′  and V M

′  for the following registration.

2.3. Patch-based local registration

The whole volume registration techniques generally do not provide sufficient accuracy in 

some local regions for subsequent DIR, especially for images covering a large area with 

multiple anatomical sites like HN images.

To address this problem, we propose the patch-based rigid registration to provide the 

DL-based registration with improved regional guidance. Let Pm, Pf ϵ Rd×h×w represent 

the corresponding patches extracted from the fixed and pre-aligned moving images. The 

parameters d, h, w are chosen to enable the patch to cover the complete anatomic site/sites 

and keep it with the flexibility of locoregional alignment. Body masks are generated for 

V F
′  to assist the patch extraction. Based on the body mask, the patch centers are limited 

to be within the patient body to minimize the inclusion of air outside the body for each 

patch. This patch extraction strategy ensures that the extracted patches cover the entire 

patient body while leaving sufficient space outside the body for deformable registration of 

corresponding patches. As shown in Fig. 3, two tunable parameters, stride s and cropping 

c, allow the flexibility of patch extraction and border exclusion during patch fusion. As 

registration for each image voxel needs the surrounding spatial information, the patches are 

extracted with large overlapping regions which are controlled by the user specified strides s. 

However, registration in the peripheral regions of patches might be inaccurate due to the lack 

of sufficient surrounding spatial information. Thus, the patches are cropped to abandon the 

peripheral regions in the patch-fusion process.

After patch extraction, Pm and Pf are registered using the same algorithm used in whole 

volume linear registration for further local alignment. The pre-aligned patch Pm
′  generated 

from Pm, is then deformably registered to Pf using the patch-based ViT-Morph network. 
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During patch fusion, each patch is cropped by cropping parameter c to keep the central part 

of the patch for the final deformed image.

2.4. Patch-based deformable registration: ViT-Morph

The objective of the final stage is to predict a deformation vector field ϕ ϵ R3×d×h×w that 

can warp the moving patch Pm
′  to match the fixed patch Pf. Based on the framework of 

VoxelMorph, we adapted the UNet architecture and combine it with Vision Transformer 

(ViT) to construct the ViT-Morph network. The framework is shown in Fig. 2(b) and (c).

Specifically, a residual-UNet is adopted in the network. It can take advantage of long skip 

connections like UNet and alleviate the gradient vanishing issue with residual connections. 

The overview of our architecture is described in Fig. 2(b). The implementation of ViT has 

been detailed described in previous work (Chen et al., 2021a, 2021b; Dosovitskiy et al., 

2020). ViT is integrated as an encoder with the residual-UNet in feature map level. To be 

more specific, after the images Pf, Pm
′  are encoded into feature maps through residual-UNet 

decoders, the high-level feature maps are fed into ViT and extracted into vectorized patches 

xp
i ∈ RP3 ⋅ C i = 1, …, N , where xp

idenotes the ith vectorized patch, P represents the patch 

size, N = dℎw
P3  is the number of patches, and C denotes the channel size. The patches are 

then mapped into a latent D-dimensional space using a trainable linear projection. The patch 

positional information is preserved by adding specific position embeddings to the patch 

embeddings:

z0 =   xp
1E; xp

2E; …xp
NE + Epos

where E ∈ R P3 ⋅ C × D is the patch embedding projection and Epos ϵ RN×D is the position 

embedding.

Following the patch and position embeddings, the embedded patches are fed into the 

Transformer encoder, which consists of 12 layers of Multihead Self-Attention (MSA) 

and Multi-Layer Perceptron (MLP) blocks (Vaswani et al., 2017). The output of thel th 

Transformer encoder can be expressed as following:

z′ℓ = MSA LN zℓ − 1 + zℓ − 1

zℓ = MLP LN z′ℓ + z′ℓ

where zl represents encoded image representation and L N
˙

 denotes the layer normalization, 

which is added before each MSA and MLP block.

Finally, the resulting sequence of hidden feature from ViT is reshaped and decoded with 

residual-UNet decoders to output the final deformation field ϕ. STN is implemented to warp 
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the moving patch P′m with ϕ, and the dissimilarity between Pf and P ′m ∘ ϕ is then calculated 

as the similarity loss function for network training.

2.5. Loss function and training strategy

The simple intensity-based similarity loss in VoxelMorph could not be used effectively 

for inter-modality (CT-MR) registration. MI was introduced for the rigid alignment of 

multi-modal images. However, its application to deformable CT-MR registration comes with 

many difficulties (Heinrich et al., 2012a). Because MI is intrinsically a global measurement, 

it would result in inaccurate image registration with the loss of local accuracy. In our 

network, we employed MIND (Heinrich et al., 2012a), a feature of 12 channels extracting 

the distinctive structure similarity from a local neighborhood, as the similarity metric for 

DIR, described further below. It has been demonstrated to have superior performance in 

MR-CT DIR tasks using conventional registration algorithms (Heinrich et al., 2012b). 

Following the similar implementation, the MIND features are calculated for fixed Pf and 

deformed patches P ′m ∘ ϕ during the training process. The MIND-based unsupervised loss ℒ 
MIND penalizes the differences between their MIND features and is defined as follows:

ℒMIND Pf, P ′m ∘ ϕ, x = 1
R ∑

s ∈ R
MIND Pf, x, s − MIND Pm ∘ ϕ, x, s 2

where ℒMIND Pf, P ′m ∘ ϕ, x  represent the similarity loss between fixed Pf and deformed 

patches P ′m ∘ ϕ at voxel x, and MIND(⋅, ⋅, ⋅) denotes the MIND feature. Specifically, for 

voxel x in image patch I, its MIND feature in a local search region R is defined as:

MIND(I, x, s) = 1
M exp − Dp(I, x, x + s)

V (I, X) s ∈ R

where M is a normalization constant to ensure the maximum value of MIND(I, x, s) is 1, 

Dp(I, x, x + s) denotes the patch distance, V (I, x) represents the local variance estimation, 

and the spatial search region is set to be R = 6. To be more specific, D p(I, x, x + s) is the L2 

distance between two patches P with the size of (2p+ 1) (Bahl et al., 2019) centered at voxel 

x and voxel x + s, defined as:

Dp(I, X, X + s) = ∑
p ∈ P

(I(x + p) − I(x + s + p) 2

And the variance estimate V(I, x) is calculated based on the mean of the patch distances 

within a six-neighborhood n ϵ N:

V (I, x) = 1
6 ∑

n ∈ N
Dp(I, x, x + n)

In order to ensure the generation of a reasonable deformation vector field ϕ, a smoothness 

constraint is needed for regularization. In our study, the l2-norm of first order gradient of ϕ 
was applied as the diffusion regularizer ℒsmootℎ as:
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ℒsmootℎ(ϕ) = ∑
p ∈ ω

∥ ∇u(p) ∥2

where ω is the set of all voxels and u denotes the displacement field. Thus, the final loss 

function used for training the network is:

ℒ Pf, Pm
′ , ϕ = ℒMIND Pf, Pm

′ ∘ ϕ + λℒsmootℎ(ϕ)

where λ is a tunable regularization parameter.

2.6. Data acquisition and preprocessing

MR and CT images of 42 head and neck patients who were treated on a 1.5 T MR-Linac 

(Unity; Elekta AB; Stockholm, Sweden) at The University of Texas MD Anderson Cancer 

Center were included in this study. Each patient had a pre-treatment CT simulation scan 

and daily T2-weighted MR scans. The number of treatment fractions ranged from 2 to 35, 

giving a total of 266 pairs of CT-MR and 237 pairs of MR-MR scans. The voxel intensities 

of MR images can vary significantly among different patients, scans, and machines. To 

reduce the intensity variations in MR images, the Z-score normalization (Wahid et al., 2021) 

within the patient body was applied. The body contour for each MR image was generated 

in RayStation (version 11B; RaySearch Laboratories; Stockholm, Sweden), and the Z-score 

normalization was conducted only within the body contours.

After the whole volume registration in the first stage, all fixed and moving images 

were preprocessed to have an isotropic resolution of 1mm3 and spatial dimensions 

(420×420×300). In the following patch-based registration step, the stride was chosen to 

be s = 96, 96, 80, and the overlapping patches were extracted with a size of (160×160×128), 

which can sufficiently cover one complete anatomical structure in HN region. 40–80 patches 

were extracted from each scan, depending on the patient’s body size. In the patch fusion, 

we used the cropping parameter c = 20, 20, 16 to exclude the boundary region in the fusion 

process.

2.7. Evaluations and implementation

We selected 48 pairs of images (24 CT-MR and 24 MR-MR) from 6 patients as a testing 

dataset, and the remaining data were partitioned randomly into a training set (80 %) 

and a validation set (20 %). Seven manually labelled organs at risk (OARs) were used 

for evaluation, including brain stem, spinal cord, mandible, right and left parotid glands, 

right and left submandibular glands. These OARs were contoured separately on CT and 

T2-weigthed MR images by experienced radiation oncologists. After the DIR by our model, 

the deformed contours of the moving images were compared with those on the fixed 

images by calculating Dice similarity coefficient (DSC) and mean surface distance (MSD). 

Those labelled structures were only used for quantitative evaluation and not used for model 

training. Visual assessment was also performed by overlaying the deformed contours on 

those ground-truth contours in the fixed images.
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To demonstrate the effectiveness of our method, we compared our Patch-RegNet with 

VoxelMorph-MIND and a clinical DIR tool in Monaco Treatment Planning System (version 

5.4 Elekta AB; Stockholm, Sweden). VoxelMorph-MIND is the VoxelMorph network using 

MIND as the similarity metric and whole-volume global registration for pre-alignment. 

Input images were cropped and resized to 256 × 256 × 288 to fit the network. The paired 

two-tailed t-test was included in our study to evaluate the statistical difference between 

our proposed method and other methods at a significance level of 0.05 (defined by a p < 

0.05). This comparison was performed for both inter-modality (CT-MR) and intra-modality 

(MR-MR) registrations.

In addition, we also trained a ViT-Morph-MIND model without using hierarchical 

registration framework for comparison. The primary purpose of training this model for 

comparison was to evaluate the effectiveness of the proposed network (a combination of 

visual transformer with a UNet) and the hierarchical framework. The ViT-Morph-MIND 

model was trained with whole-volume images, which have the same image size of 256 

× 256 × 288 as that in VoxelMorph-MIND. This performance was performed for CT-MR 

registration only because we expect that the ViT-Morph-MIND performs consistently for 

CT-MR and MR-MR registrations when compared with the Patch-RegNet.

Our Patch-RegNet was implemented with the TensorFlow and trained on an NVIDIA 

QUADRO RTX 8000 for 120 epochs. We applied Adam optimizer (Kingma and Ba, 2014) 

to train our model with a learning rate of 0.0001. The regularization parameter λ is set 

to 1.0 to achieve the best network performance based on our investigation. To improve 

the model performance, we employed data augmentation techniques to the input image 

pairs during training, including rotation, random flipping, and non-linear transformations. 

Specifically, a horizontal flipping operation was randomly performed with a probability of 

50 %. Furthermore, the image pairs underwent rotation around the longitudinal axis, with 

two random angles selected in the range of [− 30°, 30 °]. Non-linear transformations using 

random B-spline mapping were also applied to further enhance the variations of the training 

data.

3. Results

3.1. Registration accuracy: inter-modality (CT-MR) registration

The DIR results between CT and daily MR images were quantitatively and qualitatively 

analyzed to evaluate the performance of our Patch-RegNet for inter-modality registration.

Examples of the CT-MR registration results are shown in Fig. 4. The contours on 

the simulation CT images were propagated onto the daily MR images using different 

registration methods, including the traditional DIR tool in Monaco (a1, c1), VoxelMorph-

MIND (a2, c2), and Patch-RegNet (a3, c3). The deformed contours were overlaid on the 

MR images and compared to the ground-truth contours shown in red color-wash for the 

evaluation of DIR accuracy. For better visualization, the insets (b1–b3, d1–d3) show the 

zoomed-in images of the deformed contours of specific structures (a1–a3, c1–c3) indicated 

by the dashed-line boxes.
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As can be seen in Fig. 4, the deformed contours by Monaco have a considerable amount of 

disagreement with the manual contours, while our Patch-RegNet achieves the most accurate 

registration results among the four approaches. As can be seen from the zoomed-in images 

(a1–a3, c1–c3), there are clear distinctions between our Patch-RegNet and other methods, 

especially for the alignment of spinal cord and parotid glands.

Table 1 reports the average DSC and MSD over all organs calculated for different 

registration methods. Among them, our Path-RegNet achieved the best performance with 

the highest average DSC of 0.76 and lowest average MSD of 1.9 mm. Based on the DSC 

measurements, Our Patch-RegNet outperforms the VoxelMorph-MIND and the traditional 

DIR in Monaco by 6 %, and 10 %, respectively. The results demonstrate that our 

proposed Patch-RegNet achieves a statistically significant (p < 0.05 using a two-tailed t-test) 

improvement over other methods for inter-modality (CT-MR) registration.

The boxplots of organ-specific results are shown in Fig. 5 for detailed comparison. 

These results further demonstrate that our Patch-RegNet achieves improved registration 

performance for each organ under consideration. The improvement is more noticeable in 

organs/structures that are more likely to move from day to day due to setup, e.g. the 

mandible, because the local alignment in the hierarchical registration framework of Patch-

RegNet can effectively correct this local displacement. In addition, Fig. 5 shows that our 

Patch-RegNet has smaller variance and improved median performance compared to other 

methods, indicating improved robustness and reliability of Patch-RegNet. The run-time for 

DIR process of each method is listed in Table 1 as well. The run-time included in the table 

is the average time for the DIR registration of one single case. The deep-learning methods 

show much faster registration than the traditional method in Monaco.

3.2. Registration accuracy: intra-modality (MR-MR) registration

The performance of our Patch-RegeNet for intra-modality (MR-MR) registration was also 

evaluated and compared with the traditional DIR tool in Monaco and VoxelMorph-MIND.

Table 2 summarizes the quantitative results of the average DSC and MSD over all 

organs calculated for different registration methods. Similar to the results of inter-modality 

registration, our Patch-RegNet achieves the best average DSC of 0.86 and average MSD 

of 0.9 mm. Compared with VoxelMorph-MIND and the traditional DIR tool in Monaco, 

Patch-RegNet improves the DSC accuracy by 4 % and 7 %, respectively. As shown in the 

quantitative results, our proposed Patch-RegNet achieves a statistically significant (p < 0.05 

using a two-tailed t-test) improvement over all other methods for intra-modality (MR-MR) 

registration. It indicates our Patch-RegNet method can work effectively not only for inter-

modality (CT-MR) but also for intra-modality (MR-MR) registration. The detailed DSC 

and MSD results for each structure are presented as boxplots in Fig. 6. Although Monaco 

is observed to achieve better registration results for some specific patients, its registration 

performance is unstable among different patients. On the contrary, our Patch-RegNet is 

much more robust for different cases, demonstrated by the smaller variance and improved 

median values in the boxplots. Therefore, overall performance of our Patch-RegNet is better 

than both the traditional DIR tool in Monaco and VoxelMorph-MIND. In addition, as shown 
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in Tables 1 and 2, the average run-times for DIR process of CT-MR and MR-MR are 

comparable, which are more than 10 times faster than the traditional method.

3.3. Effectiveness of ViT-Morph and hierarchical framework

To assess the effectiveness of our proposed network architecture, ViT-Morph, and the 

hierarchical registration framework, we trained a ViT-Morph-MIND model for CT-MR 

image registration without using the hierarchical registration framework for a comparative 

analysis. The overall quantitative results are presented in Table 3 and the organ-specific 

results are illustrated in Fig. 7 with boxplots. By comparing the ViT-Morph-MIND with 

the VoxelMorph-MIND, the results in Table 3 and Fig. 7 indicate that ViT-Morph-MIND 

achieves higher DSC scores and lower MSD values for both overall performance and 

organ-specific results. The superior performance of VIT-Morph-MIND suggests that the 

integration of Vision Transformer and UNet in the proposed ViT-Morph model leads to 

improved accuracy in image registration. This finding highlights the effectiveness of the 

proposed ViT-Morph as an effective network for image registration.

On the other hand, the comparison between Patch-RegNet and ViT-Morph-MIND 

demonstrates that the Patch-RegNet outperforms the ViT-Morph-MIND 3 % on DSC 

measurement and 0.2 mm on MSD measurement overall. This improvement demonstrates 

the effectiveness of our hierarchical framework in improving the performance of the 

registration. The hierarchical framework in Patch-RegNet, which utilizes patch-based local 

registration, provides improved regional guidance for deep learning-based DIR. By focusing 

the registration on local regions and specific anatomical sites, it effectively addresses the 

challenge of inadequate alignment accuracy in some local regions that cannot be achieved 

using a global rigid registration. This comparison demonstrated how a combination of novel 

network architecture design and hierarchical registration framework in our Patch-RegNet 

improves the accuracy of deformable registration.

3.4. Regularization analysis

We investigated the influence of the hyperparameter λ, which regularizes the smoothness of 

the generated DVFs, to our Patch-RegNet. The average DSC results for the test dataset for 

different values of the regularization parameter λ are plotted in Fig. 8. The results for both 

CT-MR and MR-MR registration show that our method is relatively robust to the choice of λ 
values. The optimal value for the regularization parameter is demonstrated to be λ = 1.0 for 

both inter- and intra-modality registration.

4. Discussion

In last two decades, ART has gained widespread popularity due to its ability to deliver more 

personalized and accurate treatment. Meanwhile, the advent of MR-Linacs has significantly 

advanced the field of ART by enabling the integration of MR imaging into radiotherapy 

with online plan adaptation. DIR plays a crucial role in ART to ensure accurate contour 

propagation with daily anatomical changes so that treatment plan can be reoptimized in real 

time. In this study, we introduced a novel hierarchical framework for the implementation of 

efficient and precise CT-MR and MR-MR DIR. This framework features the utilization of 
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patch-based registration, which can improve the local registration over a large anatomical 

region. The results of this study indicate that our proposed method significantly outperforms 

current DIR techniques in CT-MR and MR-MR registration accuracy. Compared to 

VoxelMorph, an average DSC improvement of 0.04 for 7 structures is not trivial and has 

significant impact in clinic, which can be demonstrated by statistical testing (p < 0.05 for all 

tests), subjective evaluations (Fig. 4), and quantitative evaluation for all individual structures 

(Figs. 5–7). Moreover, the study demonstrates that the proposed Patch-RegNet achieves 

faster registration speed compared to the traditional method in Monaco, as presented in 

Tables 1 and 2. Although our Patch-RegNet is slower than VoxelMorph-MIND due to 

multiple patch-based registrations, a total run time of 5–6 s for each case is acceptable 

for most clinical applications and the improved registration accuracy is worth the cost in 

registration time. On the other hand, a small improvement in contour propagation may save 

a lot of time for contour editing in online ART. This is particularly important in the HN 

region, where a lot of critical organs needs to be contoured for treatment planning. Our 

Patch-RegNet could greatly benefit the critical organs that are particularly susceptible to 

daily setup uncertainty during treatment. Despite the increased computation time compared 

to VoxelMorph, Patch-RegNet offers enhanced accuracy that can justify the slightly longer 

processing time, especially considering the applications in ART.

In this work, we introduced a novel deep learning-based model, named ViT-Morph, for DIR 

by incorporating Vision Transformer (ViT) into conventional Convolutional Neural Network 

(CNN) networks. ViT-Morph leverages both the local features provided by CNNs and 

the long-range image relationships obtained through the self-attention mechanism in ViT. 

We expected the combination of these two models would provide a more comprehensive 

representation of the medical images, which will provide superior image registration 

performance. The result of comparison between the performance of ViT-Morph-MIND and 

VoxelMorph-MIND in CT-MR DIR demonstrated a marked improvement in performance of 

ViT-Morph-MIND compared to the CNN-based network, VoxelMorph-MIND. These results 

proved that the combination of ViT and CNN indeed enhanced the performance of DIR.

One of the main challenges for deep learning-based registration methods is the pre-

alignment of the moving and fixed images prior to the DIR process. It is common practice 

to apply a global rigid or affine registration to the moving and fixed images as an initial step 

for the following more complicated DIR process. However, this approach, which involves 

the application of rigid or affine registration to the entire image volumes alone, may not 

provide adequate alignment accuracy in some local regions for subsequent DIR, particularly 

for images that cover a large area and contain more than one anatomical site, such as 

HN images. Our study demonstrated that the hierarchical framework in Patch-RegNet 

can fundamentally address the local pre-alignment issue. This framework involves the 

extraction of patches from the whole image volumes and the application of patch-based local 

registration, which provides improved regional guidance for DL-based DIR by focusing 

the registration on local regions and specific anatomical sites. The results presented in 

Sections 3.1 and 3.2 indicate a substantial improvement in CT-MR and MR-MR DIR 

through the use of our hierarchical framework. This framework can greatly benefit organs 

that are particularly susceptible to daily setup uncertainty during treatment, such as the 

mandible and spinal cord. Our Patch-RegNet has been compared to the same DL network 
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ViT-Morph-MIND that did not use a hierarchical framework in Section 3.3. The comparison 

results highlighted the effectiveness of the hierarchical framework, demonstrating that the 

improved performance of Patch-RegNet is not solely attributed to the introduction of a new 

DL network, but also to the combination of the new network and the hierarchical framework. 

Table 3 provides further evidence, showing the impact of our hierarchical framework on the 

DIR performance. Additionally, the flexibility of Patch-RegNet allows for the replacement 

of ViT-Morph-MIND with a more advanced networks, thus providing the potential for 

enhanced registration performance.

We used the HN patients to demonstrate the effectiveness of our Patch-RegNet for both 

inter-modality (CT-MR) and intra-modality (MR-MR) DIR. However, this registration 

method can be extended for the registration tasks of other body sites and other image 

modalities. To facilitate this expansion, a continuous process of data accumulation and 

thorough curation of large image datasets will be necessary. Additionally, the selection of 

appropriate patch size is crucial when extending the application of Patch-RegNet to other 

body sites. In this study, we employed overlapping patches with dimensions of 160× 160 

× 128, ensuring adequate coverage for complete anatomic structures in the HN region. It is 

possible that varying patch sizes may be required for applications to other body sites.

Besides the development of the framework, the MIND descriptor was introduced as the 

similarity metric in Patch-RegNet for inter- and intra-modality DIR. The MIND extracts 

the distinctive features within a local neighborhood to create descriptor vectors, allowing 

the transformation of images from different modalities into a common domain. This 

enables straightforward similarity measurement through the use of metrics such as the 

sum of squared differences. Consequently, the incorporation of the MIND descriptor 

in Patch-RegNet enhances its robustness against image noise and non-linear intensity 

variations, making it suitable for the registration of images acquired from various modalities. 

Furthermore, the similarity metric used in Patch-RegNet can be easily changed to alternative 

metrics to accommodate other specific registration tasks.

In the results we presented, MR images were used as fixed images for CT-MR DIR. 

This choice was primarily driven by the clinical application, where contours delineated 

by physicians on simulation CT images are deformably mapped to daily MR images. Our 

contour deformation was performed using the binary mask deformation approach so that 

the MR image needed to be fixed to obtain a deformation vector field for the contour 

deformation. It is worth mentioning that our Patch-RegNet can be applied directly for MR 

-CT registration with a fixed CT image as well. In our initial investigation, we conducted 

a comparative analysis of the registration performances for both CT-MR and MR-CT 

registrations. Although the inverse consistency is not enforced explicitly in our algorithm, 

the registration performance in two directions did not show any significant difference. This 

observation can be attributed to accurate and consistent correspondence detection from 

both directions (CT-MR or MR-CT). It is known that some anatomical structures may be 

more visible on one image than the other. However, the structures exist on both images, 

and the modality independence loss function, i.e. MIND, used in our algorithm enables 

effective correspondence findings regardless of the choice of fixed images. Consequently, 

the selection of fixed images does not significantly impact the registration accuracy.
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In this study, we evaluated the registration accuracy of our proposed deep learning-based 

image registration model, Patch-RegNet, through both qualitative and quantitative methods. 

Despite the promising results of our study, there are some limitations that should be noted. 

First, we only evaluated the performance of our proposed method for CT-MR and MR-MR 

registration. Thus, the applicability of Patch-RegNet to other modalities, such as PET and 

SPECT, remains to be investigated. Second, the study only focuses on head and neck cancer 

patients, and the extension of this work to other anatomical sites will need to be further 

assessed. Furthermore, the limited data used in our study may affect the generalizability 

of the results to other patient populations. Therefore, future studies with larger and more 

diverse datasets are necessary to validate the performance of our proposed method. Lastly, 

the performance of Patch-RegNet was only evaluated using a limited number of metrics, and 

further investigations are necessary to assess its clinical impact.

5. Conclusions

We developed the Patch-RegNet, a fully automated hierarchical registration framework, for 

inter-modality (CT-MR) and intra-modality (MR-MR) DIR. The hierarchical framework 

enables our Patch-RegNet to achieve markedly improved registration for large-volume 

images containing multiple anatomic sites. The patch-based ViT-Morph in our Patch-

RegNet takes advantage of both CNN and ViT features of long-range spatial relationships. 

Additionally, MIND is incorporated as similarity metric to effectively train the network for 

multi-modality registrations. The Patch-RegNet is validated using HN cancer patient images 

and demonstrated superior results compared to the traditional DIR and other DL-based DIR 

methods.
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Fig. 1. 
Illustration of the anatomical coverage of HNC patient.
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Fig. 2. 
Overall framework of the proposed Patch-RegNet. (a) The hierarchical registration 

framework consists of three-stage registrations: a whole volume global registration, a 

patch-based local registration, and a patch-based deformable registration. The patch-based 

registration model that includes stages 2 and 3 is shown in (b) and (c). (b) The schematic 

illustration of ViT-Morph: a hybrid network of vision transformer (ViT) and VoxelMorph; 

(c) the details of the convolutional neural network (CNN): a combination of a modified 

residual-UNet and ViT. The transformer encoder consists of 12 alternating layers of 

Multihead Self-Attention (MSA) and Multi-Layer Perceptron (MLP) blocks.
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Fig. 3. 
Illustration of patch processing with adjustable parameters stride s and cropping c. (a) Patch 

extraction. (b) Patch fusion. (c) Patch extraction is restricted within the patient body. h × w is 

the patch size. The diagram is shown in 2D, but the actual implementation is in 3D.
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Fig. 4. 
Qualitative evaluation results of different registration methods. The manual contours (red 

color-wash) are compared with the deformed contours from Monaco (yellow), VoxelMorph-

MIND (green), and our Patch-RegNet (blue) methods. (VM: VoxelMorph-MIND).
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Fig. 5. 
Quantitative evaluation results of different methods for inter-modality (CT-MR) registration. 

Boxplots showing DSC and MSD results for various anatomical structures using 

Monaco, VM (VoxelMorph-MIND), ViT-Morph (ViT-Morph-MIND), and our Patch-RegNet 

methods. DSC: Dice similarity coefficient. MSD: mean surface distance.
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Fig. 6. 
Quantitative evaluation results of different methods for intra-modality (MR-MR) 

registration. Boxplots showing DSC and MSD results for various anatomical structures 

using Monaco, VM (VoxelMorph-MIND), and our Patch-RegNet methods. DSC: Dice 

similarity coefficient. MSD: mean surface distance.
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Fig. 7. 
Quantitative evaluation results of different methods for inter-modality (CT-MR) registration. 

Boxplots showing DSC and MSD results for various anatomical structures using VM 

(VoxelMorph-MIND), ViT-Morph (ViT-Morph-MIND), and our Patch-RegNet methods. 

DSC: Dice similarity coefficient. MSD: mean surface distance.
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Fig. 8. 
Average DSC results of test data for Patch-RegNet with varied regularization parameter λ.
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Table 1

Quantitative comparison of different methods for inter-modality (CT-MR) registration. The average Dice 

similarity coefficient (DSC) (%) and mean surface distance (MSD) (mm) and their standard deviations are 

calculated over all 7 organs for all test patients. The bolded numbers denote the highest scores.

Methods Rigid Monaco VoxelMorph Patch-RegNet

DSC 0.61 ± 0.16 0.69 ± 0.11 0.72 ± 0.10 0.76 ± 0.05

MSD (mm) 3.1 ± 1.8 2.6 ± 1.1 2.2 ± 0.7 1.9 ± 0.5

Times (s) - 60 0.03 5.6

DSC: Dice similarity coefficient; MSD: mean surface distance.
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Table 2

Quantitative comparison of different methods for intra-modality (MR-MR) registration. The average Dice 

similarity coefficient (DSC) (%) and mean surface distance (MSD) (mm)) and their standard deviations are 

calculated over all 7 organs for all test patients. The bolded numbers denote the best scores.

Methods Rigid Monaco VoxelMorph Patch-RegNet

DSC (%) 0.76 ± 0.16 0.80 ± 0.11 0.83 ± 0.7 0.86 ± 0.06

MSD (mm) 2.0 ± 1.5 1.5 ± 1.5 1.1 ± 0.6 0.9 ± 0.3

Times (s) - 60 0.03 5.2

DSC: Dice similarity coefficient; MSD: mean surface distance.
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Table 3

Quantitative comparison of different methods for inter-modality (CT-MR) registration. The average Dice 

similarity coefficient (DSC) (%) and mean surface distance (MSD) (mm) and their standard deviations are 

calculated over all 7 organs for all test patients. The bolded numbers denote the highest scores.

Methods VoxelMorph ViT-Morph Patch-RegNet

DSC 0.72 ± 0.10 0.73 ± 0.09 0.76 ± 0.05

MSD (mm) 2.2 ± 0.7 2.1 ± 0.7 1.9 ± 0.5

Times (s) 0.03 0.03 5.6

DSC: Dice similarity coefficient; MSD: mean surface distance.
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