Table 6.
Most common FDD algorithms for PV plants.
| Reference | Type of Algorithm | Function | Type of Fault | PV-System used | Accuracy | 
|---|---|---|---|---|---|
| [227] | BPNN-GA | Detection | local material ageing, shadowing, open/short circuit | PV Array | – | 
| [235] | Fuzzy logic | Detection | Arc fault | PV Array | 96 % | 
| [236] | LAPART algorithm | Detection | Power Reduction | PV Module | 86 % | 
| [237] | fuzzy inference system | Detection & identification | DC side short-circuits | PV Array | 94 % | 
| [238] | neuro-fuzzy classifier | Detection & Classification | series losses, faulty by-pass diode, blocking diode | PV Array | 90–98 % | 
| [231] | ANN | Identification | By-pass diode short circuit, Connection fault | PV System | – | 
| [232] | RBF-ELM | Classification | short circuit, ageing | PV Array | 88.5 % | 
| [239] | M-SVM | Identification & classification | Degradation, line-to-line fault | PV Module | 98 % | 
| [240] | PNN | Detection & Classification | short circuit, disconnected string | PV Array | 100 % | 
| [241] | fuzzy C-mean (FCM) | Detection & Classification | short, open, partial occlusion, and other defects | PV Array | 96 % | 
| [242] | decision tree | Detection & Classification | string, short-circuit, or line-line fault | PV Array | 99 % | 
| [243] | Improved GA | Identification & localization | short-circuit, | PV String | 95 % | 
| [244] | random forest (RF) | Detection & Classification | line faults, deterioration, open circuit, fractional shading | PV Array | 99.13 % |