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Abstract
Objective: High-throughput phenotyping will accelerate the use of electronic health records (EHRs) for translational research. A critical roadblock is
the extensive medical supervision required for phenotyping algorithm (PA) estimation and evaluation. To address this challenge, numerous weakly-
supervised learning methods have been proposed. However, there is a paucity of methods for reliably evaluating the predictive performance of PAs
when a very small proportion of the data is labeled. To fill this gap, we introduce a semi-supervised approach (ssROC) for estimation of the receiver
operating characteristic (ROC) parameters of PAs (eg, sensitivity, specificity).

Materials and Methods: ssROC uses a small labeled dataset to nonparametrically impute missing labels. The imputations are then used for
ROC parameter estimation to yield more precise estimates of PA performance relative to classical supervised ROC analysis (supROC) using
only labeled data. We evaluated ssROC with synthetic, semi-synthetic, and EHR data from Mass General Brigham (MGB).

Results: ssROC produced ROC parameter estimates with minimal bias and significantly lower variance than supROC in the simulated and
semi-synthetic data. For the 5 PAs from MGB, the estimates from ssROC are 30% to 60% less variable than supROC on average.

Discussion: ssROC enables precise evaluation of PA performance without demanding large volumes of labeled data. ssROC is also easily
implementable in open-source R software.

Conclusion: When used in conjunction with weakly-supervised PAs, ssROC facilitates the reliable and streamlined phenotyping necessary for
EHR-based research.
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Background and significance
Electronic health records (EHRs) are a vital source of data
for clinical and translational research.1 Vast amounts of EHR
data have been tapped for real-time studies of infectious dis-
eases, development of clinical decision support tools, and
genetic studies at unprecedented scale.2–10 This myriad of
opportunities rests on the ability to accurately and rapidly
extract a wide variety of patient phenotypes (eg, diseases) to
identify and characterize populations of interest. However,
precise and readily available phenotype information is rarely
available in patient records and presents a major barrier to
EHR-based research.11,12

In practice, phenotypes are extracted from patient records
with either rule-based or machine learning (ML)-based phe-
notyping algorithms (PAs) derived from codified and natural
language processing (NLP)-derived features.13,14 While PAs
can characterize clinical conditions with high accuracy, they
traditionally require a substantial amount of medical supervi-
sion that limits the automated power of EHR-based studies.15

Several research networks have spent considerable effort
developing PAs, including i2b2 (Informatics for Integrating
Biology & the Bedside), the eMERGE (Electronic Medical
Records and Genomics) Network, and the OHDSI (Observa-
tional Health Data Sciences and Informatics) program that
released APHRODITE (Automated PHenotype Routine for
Observational Definition, Identification, Training, and
Evaluation).16

Typically, PA development consists of 2 key steps: (i) algo-
rithm estimation and (ii) algorithm evaluation. Algorithm
estimation determines the appropriate aggregation of features
extracted from patient records to determine phenotype sta-
tus. For a rule-based approach, domain experts assemble a
comprehensive set of features and corresponding logic to
assign patient phenotypes.12,13 As this manual assembly is
highly laborious, significant effort has been made to auto-
mate algorithm estimation with ML. Numerous studies have
demonstrated success with PAs derived from standard super-
vised learning methods such as penalized regression, random
forest, and deep neural networks.17–24 The scalability of a
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supervised approach, however, is limited by the substantial
number of gold-standard labels required for model training.
Gold-standard labels, which require time-consuming manual
medical chart review, are infeasible to obtain for a large vol-
ume of records.25,26

In response, semi-supervised (SS) and weakly-supervised
methods for PA estimation that substantially decrease or
eliminate the need for gold-standard labeled data have been
proposed. Among SS methods, self-training and surrogate-
assisted SS learning are common.27–29 For example, Zhang et
al15 introduced PheCAP, a common pipeline for SS learning
that utilizes silver-standard labels for feature selection prior
to supervised model training to decrease the labeling demand.
Unlike gold-standard labels, silver-standard labels can be
automatically extracted from patient records (eg, ICD codes
or free-text mentions of the phenotype) and serve as proxies
for the gold-standard label.30,31 PheCAP was based on the
pioneering work of Agarwal et al32 and Banda et al,33 which
introduced weakly-supervised PAs trained entirely on silver-
standard labels. These methods completely eliminate the need
for chart review for algorithm estimation and are the basis of
the APHRODITE framework. Moreover, this work
prompted numerous developments in weakly-supervised PAs,
including methods based on non-negative matrix/tensor fac-
torization, parametric mixture modeling, and deep learning,
which are quickly becoming the new standard in the PA
literature.14,29

In contrast to the success in automating PA estimation,
there has been little focus on the algorithm evaluation step.
Algorithm evaluation assesses the predictive performance of
a PA, typically through the estimation of the receiver operat-
ing characteristic (ROC) parameters such as sensitivity and
specificity. At a high-level, the ROC parameters measure how
well a PA discriminates between phenotype cases and con-
trols relative to the gold-standard. As phenotypes are the
foundation of EHR-based studies, it is critical to reliably eval-
uate the ROC parameters to provide researchers with a sense
of trust in using a PA.34–36 However, complete PA evaluation
is performed far too infrequently due to the burden of chart
review.14,25,37

To address this challenge, Gronsbell and Cai38 proposed
the first semi-supervised method for ROC parameter estima-
tion. This method assumes that the predictive model is
derived from a penalized logistic regression model and was
only validated on 2 PAs with relatively large labeled data sets
(455 and 500 labels). Swerdel et al25 later introduced PheVa-
luator, and its recent successor PheValuator 2.0, to efficiently
evaluate rule-based algorithms using “probabilistic gold-
standard” labels generated from diagnostic predictive models
rather than chart review.37 Although the authors provided a
comprehensive evaluation for numerous rule-based PAs, Phe-
Valuator can lead to biased ROC analysis, and hence a dis-
torted understanding of the performance of a PA, when the
diagnostic predictive model is not correctly specified.39–41

PheValuator can also only be applied to rule-based PAs.
To fill this gap in the PA literature, we introduce a SS

approach to precisely estimate the ROC parameters of PAs,
which we call “ssROC”. The key difference between ssROC
and classical ROC analysis (supROC) using only labeled data
is that ssROC imputes missing gold-standard labels in order
to leverage large volumes of unlabeled data (ie, records with-
out gold-standard labels). By doing so, ssROC yields less var-
iable estimates than supROC to enable reliable PA evaluation

with fewer gold-standard labels. Moreover, ssROC imputes
the missing labels with a nonparametric calibration of the
predictions from the PA to ensure that the resulting estimates
of the ROC parameters are unbiased regardless of the
adequacy of PA.

Objective
The primary objectives of this work are to:

1) Extend the proposal of Gronsbell and Cai38 to a wider
class of weakly-supervised PAs that are common in the PA
literature, including a theoretical analysis and develop-
ment of a statistical inference procedure that performs
well in finite-samples.

2) Provide an in-depth real data analysis of PAs for 5 pheno-
types from Mass General Brigham (MGB) and extensive
studies of synthetic and semi-synthetic data to illustrate
the practical utility of ssROC.

3) Release an implementation of ssROC in open-source R
software to encourage the use of our method by the infor-
matics community.

Through our analyses of simulated, semi-synthetic, and
real data, we observe substantial gains in estimation precision
from ssROC relative to supROC. In the analysis of the 5 PAs
from MGB, the estimates from ssROC are approximately
30% to 60% less variable than supROC on average. Our
results suggest that, when used together with weakly-
supervised PAs, ssROC can facilitate the reliable and stream-
lined PA development that is necessary for EHR-based
research.

Materials and methods
Overview of ssROC
We focus on evaluating a classification rule derived from a
PA with ROC analysis. ROC analysis assesses the agreement
between the gold-standard label for a binary phenotype (eg,
disease case/control), Y, and a PA score, S, indicating a
patient’s likelihood of having the underlying phenotype (eg,
the predicted probability of being a case). Y is typically
obtained from chart review and S can be derived from vari-
ous phenotyping methods. We focus on scores derived from
parametric models fit with a weakly-supervised approach due
to their ability to automate PA estimation and increasing
popularity in the informatics literature.14,32,42–44 For ease of
notation, we suppress the dependence of S on the estimated
model parameter and provide more details on the PA in Sec-
tion S3.
In classical supROC analysis, the data are assumed to con-

tain information on both Y and S for all observations. How-
ever, in the phenotyping setting, Y is typically only available
for a very small subset of patients due to the laborious nature
of chart review. This gives rise to the semi-supervised setting
in which a small labeled dataset is accompanied by a much
larger unlabeled dataset. To leverage all of the available data
and facilitate more reliable (ie, lower variance) evaluation of
PAs, ssROC imputes the missing Y with a nonparametric
recalibration of S, denoted as bmðSÞ, to make use of the unla-
beled data. An overview of ssROC is provided in Figure 1.
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Data structure and notation
More concretely, the available data in the SS setting consists
of a small labeled dataset

L ¼ fðYi; SiÞji ¼ 1; . . . ;ng

and an unlabeled dataset

U ¼ fSiji ¼ nþ 1; . . . ;nþNg:

In the classical setting, it is assumed that (i) U is a much
larger than L so that n � N and (ii) the observations in L are
randomly selected from the underlying pool of data.
Throughout our discussion, we suppose that a higher value
of S is more indicative of the phenotype. An observation is
deemed to have the phenotype if S > c, where c is the thresh-
old for classification.

ROC analysis
More formally, ROC analysis evaluates a PA with the true
positive rate (TPR), false positive rate (FPR), positive predic-
tive value (PPV), and negative predictive value (NPV). In
diagnostic testing, the TPR is referred to as sensitivity, while
the FPR is 1 minus the specificity.45 For a given classification
threshold, one may evaluate the ROC parameters by enumer-
ating the correct and incorrect classifications. This informa-
tion can be summarized in a confusion matrix as shown in
Figure 2.

In practice, it is the task of the researcher to estimate an
appropriate threshold for classification. This is commonly
done by summarizing the trade-off between the TPR and
FPR, defined respectively as

TPRðcÞ ¼ PðS > c jY ¼ 1Þ and FPRðcÞ ¼ PðS > c jY ¼ 0Þ:

The ROC curve, ROCðuÞ ¼ TPR½FPR−1ðuÞ�, summarizes
the TPR and FPR across all possible choices of the threshold.
In the context of PAs, c is often chosen to achieve a low
FPR.22 An overall summary measure of the discriminative
power of S in classifying Y is captured by the area under the
ROC curve (AUC),

AUC ¼
ð1
0
ROCðuÞdu:

The AUC is equivalent to the probability that a phenotype
case has a higher value of S than a phenotype control.46 For a
given threshold, the predictive performance of the classifica-
tion rule derived from the PA is assessed with the PPV and
NPV, defined respectively as

PPVðcÞ ¼ PðY ¼ 1 j S > cÞ; and

NPVðcÞ ¼ PðY ¼ 0 j S < cÞ:

Supervised ROC analysis
With only labeled data, one may obtain supervised estimators
of the ROC parameters (supROC) with their empirical coun-
terparts. For example, the TPR and FPR can be estimated as

dTPRsupðcÞ ¼
Pn

i¼1 YiIðSi > cÞPn
i¼1 Yi

and

dFPRsupðcÞ ¼
Pn

i¼1ð1−YiÞIðSi > cÞPn
i¼1ð1−YiÞ :

The remaining parameters are estimated in a similar fash-
ion. Variance estimates can be obtained from a resampling
procedure, such as bootstrap or perturbation resampling.47

ssROC: semi-supervised ROC analysis
Unlike its supervised counterpart that relies on only the
labeled data, ssROC contains 2 steps of estimation to make
use of the unlabeled data and provide a more reliable under-
standing of PA performance. In the first step, the missing
labels are imputed by recalibrating the PA scores using a
model trained with the labeled data. In the second step, the
imputations are used in lieu of the gold-standard labels to
evaluate the ROC parameters based on the PA scores in the
unlabeled data in an analogous manner to supROC. Below
we provide an overview of these 2 steps using the TPR as an
example.

Figure 1. Overview of PA estimation and evaluation. The phenotyping algorithm (PA) is first estimated to obtain the scores (S). Patient charts from the

electronic health record (EHR) warehouse are reviewed to obtain the gold-standard label (Y) for PA evaluation. In classical supervised ROC analysis

(supROC), only the labeled data from chart review is used to evaluate the PA’s performance. Semi-supervised ROC analysis (ssROC) uses the labeled

data to impute the missing Y as bmðSÞ so that the unlabeled data can be utilized for estimation to yield more precise estimates of the ROC parameters.
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Step 1. Recalibrate the PA scores by fitting the model mðSÞ
¼ PðY ¼ 1jSÞ with the labeled data. Obtain the imputations,
fbmðSiÞji ¼ nþ1; . . . ; nþNg, for the unlabeled data based on
the fitted model.

Step 2. Use the imputations to estimate the TPR with the
unlabeled data as

TP
^

RssROCðcÞ ¼
PnþN

i¼nþ1 bmðSiÞIðSi > cÞPnþN
i¼nþ1 bmðSiÞ

:

The purpose of the first step is to ensure that the imputa-
tions do not introduce bias into the ROC parameter esti-
mates. For example, utilizing the PA scores directly for
imputation can distort the ROC parameter estimates due to
potential inaccuracies of S in predicting Y. We propose to use
a kernel regression model to nonparametrically impute the
missing labels to prevent biasing the ssROC estimates.40

Technical detail related to fitting the kernel regression model
is provided in Section S1. In contrast, the purpose of the sec-
ond step is to harness the large unlabeled dataset to produce
estimates with lower variance than supROC. Similar to
supROC, we propose a perturbation resampling procedure
for variance estimation and detail 2 commonly used confi-
dence intervals (CIs) based on the procedure in Section S2. In
Section S3, we also provide a theoretical justification for the
improved precision of ssROC relative to supROC for a wide
range of weakly-supervised PAs.

Data and metrics for evaluation
We assessed the performance of ssROC using simulated,
semi-synthetic, and real-world EHR data from MGB. All
analyses used the R software package, ssROC, available at
https://github.com/jlgrons/ssROC.

Simulation study
Our simulations cover PAs with high and low accuracy and
varying degrees of calibration. For each accuracy setting, we
simulated PA scores that (i) were perfectly calibrated, (ii)
overestimated the probability of Y, and (iii) underestimated
the probability of Y.40 In all settings, Y was generated from a
Bernoulli distribution with a prevalence of 0.3. To generate
S, we first generated a random variable Z from a normal mix-
ture model with ZjY ¼ y � Nðay; r2Þ and an independent
noise variable from a Bernoulli mixture model with �jY ¼ y
� BernðpyÞ for y ¼ 0;1. The PA score was obtained as

S ¼
(
expitðc0 þ c1ZÞ for perfect calibration

expitðZþ �Þ otherwise
: (1)

where c0 ¼ ða21 − a20Þ=2r2þlog ½ð1−lÞ=lÞ�, c1 ¼ ða1 − a0Þ=r2,
l ¼ PðY ¼ 1Þ, and expitðxÞ ¼ 1

1þe−x. The values of c0 and c1
ensure that S ¼ PðY ¼ 1jZÞ for perfect calibration. Six simu-
lation settings were obtained by varying ða0; a1; r;p0;p1Þ,
shown in Table 1. We also considered the extreme setting
when S is independent of Y by permuting S generated from
the model with high accuracy and perfect calibration. The
calibration curves for each setting are presented in Figure S2.
Across all settings, N¼ 10 000, n ¼ 75, 150, 250 and 500,
and results are summarized across 5000 simulated datasets.

Semi-synthetic data analysis
To better reflect the complexity of PAs in real data, we gener-
ated semi-synthetic data for phenotyping depression with the
MIMIC-III clinical database. MIMIC-III contains structured
and unstructured EHR data from patients in the critical care
units of the Beth Israel Deaconess Medical Center between
2001 and 2012.21,48 As depression status is unavailable in
patient records, it was simulated for all observations using a
logistic regression model. That is, Y � Bern½expitðbTXÞ�
where

b ¼ ðb0; b1; b2; b3Þ;
X ¼ ð1; logðXNLPþXICDþ1Þ;Xage; logðXHUþ1ÞÞT

XNLP is the number of depression related clinical concepts,
XICD is the number of depression related ICD-9 codes, Xage is
age at admission, and XHU is a measure of healthcare utiliza-
tion based on the total number of evaluation and manage-
ment Current Procedural Terminology (CPT) codes and the

Figure 2. Confusion matrix. The algorithm score from the phenotyping algorithm (PA) is used to determine phenotype case/control status based on the

classification threshold. The ROC parameters are evaluated by enumerating the number of correct and incorrect classifications relative to the gold-

standard label.(A) Percent bias of supROC. (B) Percent bias of ssROC. (C) Relative efficiency (supROC: ssROC).

Table 1. Parameter configurations for the 6 simulation studies.

High PA accuracy Low PA accuracy

Perfectly calibrated PA (−0.5, 0.5, 0.5) (−0.25, 0.25, 0.5)
Overestimated PA (1, 2.3, 0.5, 0.3, 0.3) (0.5, 1.2, 0.5, 0.5, 0.5)
Underestimated PA (−2.6, −1.5, 0.5,

0.1, 0.1)
(−2.5, −1.5, 1,

0.3, 0.3)

The simulation settings were derived by varying the parameters
ða0; a1; r; p0; p1Þ in Model 1.
Abbreviation: PA, phenotyping algorithm.
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length of stay. The list of depression-related ICD-9 codes and
clinical concepts are presented in Section S6.

Given the PA score is obtained from complex EHR data,
we focus on simulating the phenotype to achieve high and
low PA accuracy and present the calibration in Figure S4. We
set b ¼ ð1;4;0:05;−3Þ and b ¼ ð1;1;0:01;−1Þ and to mimic
a PA with high and low accuracy (AUC ¼ 90.1 and 72.6,
respectively). The prevalence of Y in both settings was
approximately 0.3. For both settings, the unlabeled set con-
sisted of one visit from N¼ 32 172 unique patients and n ¼
75, 150, 250, and 500 visits were randomly sampled 5000
times to generate labeled datasets of various sizes. We
obtained the PA for depression by fitting PheNorm without
the random corruption denoising step. PheNorm is a weakly-
supervised method based on normalizing silver-standard
labels with respect to patient healthcare utilization using a
normal mixture model.43 PheNorm is also used in our real-
data analysis and described in detail in Section S4. XNLP and
XICD were used as silver-standard labels to fit PheNorm with
XHU as the measure of healthcare utilization.

Real-world EHR data application
We further validated ssROC using EHR data from MGB, a
Boston-based healthcare system anchored by 2 tertiary care
centers, Brigham and Women’s Hospital and Massachusetts
General Hospital. We evaluated PAs for 5 phenotypes,
including cerebral aneurysm (CA), congestive heart failure
(CHF), Parkinson’s disease (PD), systemic sclerosis (SS), and
type 1 diabetes (T1DM). The data are from the Research
Patient Data Registry which stores data on over 1 billion vis-
its containing diagnoses, medications, procedures, laboratory
information, and clinical notes from 1991 to 2017.

The full data for each phenotype consisted of patient
records with at least one phenotype-related PheCode in their
record.49 A subset of patients was randomly sampled from
the full data and sent for chart review. For each phenotype,
the PA was obtained by fitting PheNorm without denoising
using the total number of (i) phenotype-related PheCodes and
(ii) positive mentions of the phenotype-related clinical con-
cepts as the silver-standard labels and the number of notes in
a patient’s EHR as the measure of healthcare utilization. The
phenotypes represent different levels of PA accuracy, labeled
and unlabeled dataset sizes, and prevalence (P). A summary
of the 5 phenotypes is presented in Table 2.

Benchmark method and reported metrics
We compared the PA evaluation results from ssROC and the
benchmark, supROC, using the simulated, semi-synthetic,
and real EHR data. We transformed the PA scores by their
respective empirical cumulative distribution functions prior
to ROC analysis. This transformation improves the perform-
ance of the imputation step, particularly when the distribu-
tion of S is skewed.50 For the kernel regression, we used a
Gaussian kernel with bandwidth determined by the standard
deviation of the transformed PA scores divided by n0:45.51

Additional detail related to the imputation step is provided in
Section S1. We obtained variance estimates for the ROC
parameters using perturbation resampling with 500 replica-
tions and weights from a scaled beta distribution,
4 � Betað1=2;3=2Þ, to improve finite-sample performance.52

We focused on logit-based CIs, described in Section S2.2, due
to their improved coverage relative to standard Wald
intervals.53

We assessed percent bias for both supROC and ssROC by
computing the mean of [(point estimate−ground truth)/
(ground truth)�100%] across the replicated datasets. The
ground truth values of the ROC parameters for the simulated
and semi-synthetic data are provided in Tables S1 and S6.
The empirical standard error (ESE) was computed as the
standard deviation of the estimates from these datasets. The
asymptotic standard error (ASE) was computed as the mean
of the standard error estimates derived from the perturbation
resampling procedure across the replicated datasets. Using
mean squared error (MSE) as an aggregate measure of bias
and variance, we evaluated the relative efficiency (RE) as the
ratio of the MSE of supROC to the MSE of ssROC. The per-
formance of our resampling procedure was assessed with the
coverage probability (CP) of the 95% CIs for both estimation
procedures. In the real data analysis, we present point esti-
mates from both supROC and ssROC and the RE defined as
the ratio of the variance of supROC to ssROC. We evaluated
the performance of the PAs at an FPR of 10% and report the
results for the AUC, classification threshold (Threshold),
TPR, PPV, and NPV for all analyses.

Results
Simulation study
Figures 3 and 4 show the percent bias and RE in the high and
low accuracy settings, respectively. Both ssROC and supROC
generally exhibit low bias across all settings and ssROC often
has lower bias than supROC. Additionally, ssROC has lower
variance than supROC in all settings, as indicated by REs
that consistently exceed 1. In the high accuracy setting, the
median REs across all calibration patterns and labeled sizes is
between 1.3 (AUC) and 1.9 (Threshold). For the low accu-
racy setting, the median REs range from 1.1 (AUC) to 1.6
(Threshold). Practically, these results imply that ssROC is
more precise for a fixed amount of labeled than supROC.
Alternatively, this reduction in variance can also be inter-
preted as a reduction in sample size required for ssROC to
achieve the same variance as supROC. For example, the RE
for PPV with n ¼ 250 under the setting of high PA accuracy
and perfect calibration is 2, which suggests that ssROC can
achieve the same variance as supROC with half the amount
of labeled data.
When S is independent of Y, Figure S3 shows that ssROC

has negligible bias, yields precision similar to supROC for the
ROC parameters, and has improved precision for the

Table 2. Summary of the MGB phenotypes.

Phenotype n N P PheCode CUI

Cerebral aneurysm
(CA)

134 18 679 .68 433.5 C0917996

Congestive heart
failure (CHF)

140 155 112 .18 428 C0018801

Parkinson’s disease
(PD)

97 17 752 .62 332 C0030567

Systemic sclerosis (SS) 189 4272 .43 709.3 C0036421
Type 1 diabetes
(T1DM)

121 46 013 .17 250.1 C0011854

The labeled dataset size (nÞ, the unlabeled dataset size (N), and the
prevalence (P) of the 5 phenotypes as well as the main PheCode and
concept unique identifier (CUI) used to train PheNorm. The underlying full
data for each phenotype included all participants who passed the filter of
� 1 PheCode for the phenotype of interest.
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threshold. These empirical findings demonstrate the robust-
ness of ssROC to a wide range of PA scores and are further
supported by our theoretical analysis in Section S3. Specifi-
cally, our analysis verifies that ssROC is guaranteed to per-
form on par supROC for the ROC parameters and yield
more precise estimation for the Threshold when S is inde-
pendent of Y.

The ESE, ASE, and CP for the 95% CIs of both supROC
and ssROC are presented in Tables S2 and S3. The proposed
logit-based CI consistently achieves reasonable coverage for
both methods. The estimated variance for ssROC is also gen-
erally more accurate than that from supROC. Additionally,
our results underscore the advantages of employing the logit-
based interval over the standard Wald interval, particularly
when n is small and/or the point estimate is near the
boundary.

Semi-synthetic data analysis
The findings from the semi-synthetic EHR data analysis align
closely with the results of our simulations, further demon-
strating the robustness of ssROC to the PA score. Generally,
ssROC has smaller bias than supROC and both methods

have small bias across all settings as highlighted in Figure 5A
and B. ssROC again demonstrates improved precision rela-
tive to supROC. The median RE across labeled data sizes in
the setting with high PA accuracy is between 1.3 (AUC) and
1.9 (Threshold) and between 1.1 (AUC) and 2.1 (Threshold)
for the low accuracy setting. Additionally, Tables S7 and S8
show that the logit-based CIs for both methods yield reason-
able coverage.

Analysis of 5 PAs from MGB
Table 3 presents the point estimates for the 5 phenotypes
from MGB, ordered by the AUC estimates from ssROC, at a
FPR of 10%. As our primary focus is to compare ssROC
with supROC, a single FPR was chosen for consistency across
the phenotypes. However, this does lead to low TPRs for
some phenotypes, such as CHF. Generally, the point esti-
mates from ssROC are similar to those from supROC. There
are some differences in the Threshold estimates for CA and
SS, which leads to some discrepancies in the other estimates.
As supROC is only evaluated at the unique PA scores in the
labeled dataset, the Threshold estimate can be unstable at
some FPRs. In contrast, ssROC is evaluated across a broader

A

B

C

Figure 3. Percent bias and relative efficiency (RE) for high phenotyping algorithm (PA) accuracy settings at a false positive rate (FPR) of 10%. RE is

defined as the mean squared error of supROC compared to the mean squared error of ssROC. For all scenarios, the size of the unlabeled was N¼10 000.
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range of PA scores in the unlabeled dataset and results in
more stable estimation.

Figure 6 shows the RE of supROC to ssROC across the 5
phenotypes at a FPR of 10%. The median RE gain across
phenotypes ranges from approximately 1.5 (AUC, TPR) to
2.7 (Threshold), implying that the estimates from ssROC are
approximately 30%-60% less variable than supROC on
average. It is worth noting the RE for the Threshold estimate
for CHF is quite high. Figure S5 illustrates that this behavior
can be explained by the empirical distribution of the
resampled estimates. The distribution of the estimates from
supROC are multimodal, while those from ssROC are
approximately normal as expected. This behavior further
emphasizes the stability of ssROC relative to supROC in real
data.

Consistent with our simulation and theoretical results, we
also observe that RE is linked to PA accuracy. For example, a
phenotype with high PA accuracy, such as T1DM, exhibits a
higher RE compared to CA, which has the lowest PA accu-
racy. Overall, these findings underscore the advantages of
our proposed ssROC method compared to supROC in yield-
ing more precise ROC analysis.

Discussion
Although high-throughput phenotyping is the backbone of
EHR-based research, there is a paucity of methods for reli-
ably evaluating the predictive performance of a PA with lim-
ited labeled data. The proposed ssROC method fills this gap.
ssROC is a simple 2-step estimation procedure that leverages
large volumes of unlabeled data by imputing missing gold-
standard labels with a nonparametric recalibration of a PA
score. Unlike existing procedures for PA evaluation in the
informatics literature, ssROC eliminates the requirement that
the PA be correctly specified to yield unbiased estimation of
the ROC parameters and may be utilized for ML-based
PAs.25,37 While we focus specifically on weakly-supervised
PAs in our theoretical analysis and data examples given their
increasing popularity and ability to automate PA estimation,
ssROC can also be used to evaluate rule-based or other ML-
based PAs. Moreover, by harnessing unlabeled data, ssROC
yields substantially less variable estimates than supROC in
simulated, semi-synthetic, and real data. Practically, this
translates into a significant reduction in the amount of chart
review required to obtain a precise understanding of PA
performance.

A

B

C

Figure 4. Percent bias and relative efficiency (RE) for low phenotyping algorithm (PA) accuracy settings at a false positive rate (FPR) of 10%. RE is

defined as the mean squared error of supROC compared to the mean squared error of ssROC. For all scenarios, the size of the unlabeled was N¼10 000.
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Although our work is a first step toward streamlining PA
evaluation, there are several avenues that warrant future
research. First, ssROC assumes that the labeled examples are
randomly sampled from the underlying full data. In situations
where the goal is to phenotype multiple conditions or

comorbidities, more effective sampling strategies such as
stratified random sampling have the potential to further
enhance the efficiency of ssROC.54 However, due to the large
discrepancy in size of the labeled and unlabeled data, develop-
ing procedures to accommodate non-random sampling is non-
trivial.55 Second, the nonparametric recalibration step
demands a sufficient amount of labeled data for the kernel
regression to be well estimated. While our extensive simula-
tion studies across a wide variety of PAs and sample sizes
illustrate the robustness of ssROC, our future work will
develop a parametric recalibration procedure that accommo-
dates smaller labeled data sizes. Third, ssROC can also be
extended for model comparisons and evaluation of fairness
metrics, which are urgently needed given the increasing recog-
nition of unfairness in informatics applications. The calibra-
tion step would need to be augmented in both settings to
utilize additional information in multiple PA scores or pro-
tected attributes, respectively. This augmentation could poten-
tially lead to a more efficient procedure as ssROC only uses
information from one PA score for imputation. Lastly, our
results demonstrate the ability of ssROC to provide accurate
ROC evaluation for 5 phenotypes with variable prevalence,
labeled and unlabeled dataset sizes, and PA accuracy within
one health system. Further work is needed to understand the

A

B

C

Figure 5. Percent bias and relative efficiency (RE) for the semi-synthetic data analysis at a false positive rate (FPR) of 10%. RE is defined as the mean

squared error of supROC compared to the mean squared error of ssROC. For both settings, the size of total data was 32 172.

Table 3. Point estimates for the 5 phenotypes from MGB at a FPR of

10%.

Phenotype Method AUC Threshold TPR PPV NPV

CA ssROC 81.3 64.0 51.0 89.8 51.5
supROC 80.4 73.7 35.2 87.4 40.1

CHF ssROC 83.2 84.9 42.0 44.1 89.2
supROC 79.3 86.1 36.0 43.9 86.6

PD ssROC 85.9 75.3 49.1 74.1 75.2
supROC 81.6 80.1 34.1 72.4 64.1

SS ssROC 89.4 59.8 60.6 89.9 60.7
supROC 87.5 64.6 52.3 89.7 53.2

T1DM ssROC 90.5 80.4 68.8 57.3 93.7
supROC 91.5 80.1 75.0 59.8 94.8

Abbreviations: CA, cerebral aneurysm; CHF, congestive heart failure; FPR,
false positive rate; MGB, Mass General Brigham; NPV, negative predictive
value; PD, Parkinson’s disease; PPV, positive predictive value; SS, systemic
sclerosis; ssROC, semi-supervised receiver operating characteristic analysis;
supROC, supervised receiver operating characteristic analysis; T1DM, type
1 diabetes; TPR, true positive rate.
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performance of our method across a diverse range of pheno-
types and to extend our approach to accommodate federated
analyses across multiple healthcare systems.

Conclusion
In this article, we introduced a semi-supervised approach,
ssROC, that leverages a large volume of unlabeled data
together with a small subset of gold-standard labeled data to
precisely estimate the ROC parameters of PAs. PA develop-
ment involves 2 key steps: (i) algorithm estimation and (ii)
algorithm evaluation. While a considerable amount of effort
has been placed on algorithm estimation, ssROC fills the cur-
rent gap in robust and efficient methodology for predictive
performance evaluation. Additionally, ssROC is simple to
implement and is available in open-source R software to
encourage use in practice. When used in conjunction with
weakly-supervised PAs, ssROC demonstrates the potential to
facilitate the reliable and streamlined phenotyping that is nec-
essary for a wide variety of translational EHR applications.
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